Research article
06 Jul 2022
Research article
| 06 Jul 2022
Spatial assessment of probable recharge areas – investigating the hydrogeological controls of an active deep-seated gravitational slope deformation
Jan Pfeiffer et al.
Related authors
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
EGUsphere, https://doi.org/10.5194/egusphere-2022-950, https://doi.org/10.5194/egusphere-2022-950, 2022
Short summary
Short summary
Landslides are one of the major weather related geohazards. To assess their potential impact and design mitigation solutions, a detailed understanding of the slope is required. We tested if use of machine learning, combined with satellite remote sensing data, would allow us to forecast deformation. Our results on the Vögelsberg landslide, a deep-seated landslide near Innsbruck, Austria, show that the formulation of such machine learning system is not as straightforward as often hoped for.
M. Bremer, V. Wichmann, M. Rutzinger, T. Zieher, and J. Pfeiffer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 943–950, https://doi.org/10.5194/isprs-archives-XLII-2-W13-943-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-943-2019, 2019
J. Pfeiffer, T. Zieher, M. Rutzinger, M. Bremer, and V. Wichmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 421–428, https://doi.org/10.5194/isprs-annals-IV-2-W5-421-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-421-2019, 2019
T. Zieher, M. Bremer, M. Rutzinger, J. Pfeiffer, P. Fritzmann, and V. Wichmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 461–467, https://doi.org/10.5194/isprs-annals-IV-2-W5-461-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-461-2019, 2019
Anika Donner, Paul Töchterle, Christoph Spötl, Irka Hajdas, Xianglei Li, R. Lawrence Edwards, and Gina E. Moseley
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-97, https://doi.org/10.5194/cp-2022-97, 2023
Preprint under review for CP
Short summary
Short summary
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland, a type of speleothem that has been notably difficult to date. We present a successful approach in determining the age of these minerals using 230Th/U disequilibrium and 14C dating. We relate the formation of the cryogenic cave minerals to a well-documented extreme (weather) event in 1889 CE. Additionally, we provide a detailed report on the mineralogical and isotopic composition of these minerals.
Judith Uwihirwe, Alessia Riveros, Hellen Wanjala, Jaap Schellekens, Frederiek Sperna Weiland, Markus Hrachowitz, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 22, 3641–3661, https://doi.org/10.5194/nhess-22-3641-2022, https://doi.org/10.5194/nhess-22-3641-2022, 2022
Short summary
Short summary
This study compared gauge-based and satellite-based precipitation products. Similarly, satellite- and hydrological model-derived soil moisture was compared to in situ soil moisture and used in landslide hazard assessment and warning. The results reveal the cumulative 3 d rainfall from the NASA-GPM to be the most effective landslide trigger. The modelled antecedent soil moisture in the root zone was the most informative hydrological variable for landslide hazard assessment and warning in Rwanda.
Charlotte Honiat, Gabriella Koltai, Yuri Dublyansky, R. Larry Edwards, Haiwei Zhang, Hai Cheng, and Christoph Spötl
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-78, https://doi.org/10.5194/cp-2022-78, 2022
Preprint under review for CP
Short summary
Short summary
A look at the climate evolution during the last warm period may allow to test ground for future climate conditions. We quantified the temperature evolution during the last interglacial using tiny amount of water trapped in the crystals of precisely dated stalagmites in caves from the southeastern European Alps. Our record indicates temperatures up to 2 °C warmer than today and an unstable climate during the first half of the Last Interglacial.
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
EGUsphere, https://doi.org/10.5194/egusphere-2022-950, https://doi.org/10.5194/egusphere-2022-950, 2022
Short summary
Short summary
Landslides are one of the major weather related geohazards. To assess their potential impact and design mitigation solutions, a detailed understanding of the slope is required. We tested if use of machine learning, combined with satellite remote sensing data, would allow us to forecast deformation. Our results on the Vögelsberg landslide, a deep-seated landslide near Innsbruck, Austria, show that the formulation of such machine learning system is not as straightforward as often hoped for.
Paul Töchterle, Simon D. Steidle, R. Lawrence Edwards, Yuri Dublyansky, Christoph Spötl, Xianglei Li, John Gunn, and Gina E. Moseley
Geochronology, 4, 617–627, https://doi.org/10.5194/gchron-4-617-2022, https://doi.org/10.5194/gchron-4-617-2022, 2022
Short summary
Short summary
Cryogenic cave carbonates (CCCs) provide a marker for past permafrost conditions. Their formation age is determined by Th / U dating. However, samples can be contaminated with small amounts of Th at formation, which can cause inaccurate ages and require correction. We analysed multiple CCCs and found that varying degrees of contamination can cause an apparent spread of ages, when samples actually formed within distinguishable freezing events. A correction method using isochrons is presented.
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-48, https://doi.org/10.5194/esurf-2022-48, 2022
Revised manuscript under review for ESurf
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of related velocity and surface changes. Because our time series are very long and show repeated destabilzation, they help us understand the processes of rock glacier destablization.
Yi Luo, Jiaming Zhang, Zhi Zhou, Juan P. Aguilar-Lopez, Roberto Greco, and Thom Bogaard
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-316, https://doi.org/10.5194/hess-2022-316, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
This paper describes an experiment and modelling to the hydrological response of desiccation cracks under long-term wetting-drying cycles. We developed a new dynamic dual-permeability model to quantify the dynamic evolution of desiccation cracks and associated preferential flow and moisture distribution. Compared to other models, the dynamic dual-permeability model could describe the experimental data much better but also provided an improved description of the underlying physics.
Maria Wind, Friedrich Obleitner, Tanguy Racine, and Christoph Spötl
The Cryosphere, 16, 3163–3179, https://doi.org/10.5194/tc-16-3163-2022, https://doi.org/10.5194/tc-16-3163-2022, 2022
Short summary
Short summary
We present a thorough analysis of the thermal conditions of a sag-type ice cave in the Austrian Alps using temperature measurements for the period 2008–2021. Apart from a long-term increasing temperature trend in all parts of the cave, we find strong interannual and spatial variations as well as a characteristic seasonal pattern. Increasing temperatures further led to a drastic decrease in cave ice. A first attempt to model ablation based on temperature shows promising results.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
EGUsphere, https://doi.org/10.5194/egusphere-2022-349, https://doi.org/10.5194/egusphere-2022-349, 2022
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. The absence of dripwater and rock temperature are indicative of frozen bedrock, while relict ice formations record past damming events.
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1093–1099, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1093-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1093-2022, 2022
V. Zahs, L. Winiwarter, K. Anders, M. Bremer, M. Rutzinger, M. Potůčková, and B. Höfle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1109–1116, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022, 2022
Judith Uwihirwe, Markus Hrachowitz, and Thom Bogaard
Nat. Hazards Earth Syst. Sci., 22, 1723–1742, https://doi.org/10.5194/nhess-22-1723-2022, https://doi.org/10.5194/nhess-22-1723-2022, 2022
Short summary
Short summary
This research tested the value of regional groundwater level information to improve landslide predictions with empirical models based on the concept of threshold levels. In contrast to precipitation-based thresholds, the results indicated that relying on threshold models exclusively defined using hydrological variables such as groundwater levels can lead to improved landslide predictions due to their implicit consideration of long-term antecedent conditions until the day of landslide occurrence.
B. Hiebl, A. Mayr, A. Kollert, M. Rutzinger, M. Bremer, N. Helm, and K. Chytry
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 367–374, https://doi.org/10.5194/isprs-annals-V-2-2022-367-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-367-2022, 2022
L. Müller, M. Rutzinger, A. Mayr, and A. Kollert
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 391–398, https://doi.org/10.5194/isprs-annals-V-2-2022-391-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-391-2022, 2022
Punpim Puttaraksa Mapiam, Monton Methaprayun, Thom Bogaard, Gerrit Schoups, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 26, 775–794, https://doi.org/10.5194/hess-26-775-2022, https://doi.org/10.5194/hess-26-775-2022, 2022
Short summary
Short summary
The density of rain gauge networks plays an important role in radar rainfall bias correction. In this work, we aimed to assess the extent to which daily rainfall observations from a dense network of citizen scientists improve the accuracy of hourly radar rainfall estimates in the Tubma Basin, Thailand. Results show that citizen rain gauges significantly enhance the performance of radar rainfall bias adjustment up to a range of about 40 km from the center of the citizen rain gauge network.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Kathleen A. Wendt, Xianglei Li, R. Lawrence Edwards, Hai Cheng, and Christoph Spötl
Clim. Past, 17, 1443–1454, https://doi.org/10.5194/cp-17-1443-2021, https://doi.org/10.5194/cp-17-1443-2021, 2021
Short summary
Short summary
In this study, we tested the upper limits of U–Th dating precision by analyzing three stalagmites from the Austrian Alps that have high U concentrations. The composite record spans the penultimate interglacial (MIS 7) with an average 2σ age uncertainty of 400 years. This unprecedented age control allows us to constrain the timing of temperature shifts in the Alps during MIS 7 while offering new insight into millennial-scale changes in the North Atlantic leading up to Terminations III and IIIa.
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 153–160, https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021, 2021
A. Kollert, M. Rutzinger, M. Bremer, K. Kaufmann, and T. Bork-Hüffer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2021, 201–208, https://doi.org/10.5194/isprs-annals-V-4-2021-201-2021, https://doi.org/10.5194/isprs-annals-V-4-2021-201-2021, 2021
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Xianglei Li, Kathleen A. Wendt, Yuri Dublyansky, Gina E. Moseley, Christoph Spötl, and R. Lawrence Edwards
Geochronology, 3, 49–58, https://doi.org/10.5194/gchron-3-49-2021, https://doi.org/10.5194/gchron-3-49-2021, 2021
Short summary
Short summary
In this study, we built a statistical model to determine the initial δ234U in submerged calcite crusts that coat the walls of Devils Hole 2 (DH2) cave (Nevada, USA) and, using a 234U–238U dating method, extended the chronology of the calcite deposition beyond previous well-established 230Th ages and determined the oldest calcite deposited in this cave, a time marker for cave genesis. The novel method presented here may be used in future speleothem studies in similar hydrogeological settings.
Rolf Hut, Thanda Thatoe Nwe Win, and Thom Bogaard
Geosci. Instrum. Method. Data Syst., 9, 435–442, https://doi.org/10.5194/gi-9-435-2020, https://doi.org/10.5194/gi-9-435-2020, 2020
Short summary
Short summary
GPS drifters that float down rivers are important tools in studying rivers, but they can be expensive. Recently, both GPS receivers and cellular modems have become available at lower prices to tinkering scientists due to the rise of open hardware and the Arduino. We provide detailed instructions on how to build a low-power GPS drifter with local storage and a cellular model that we tested in a fieldwork in Myanmar. These instructions allow fellow geoscientists to recreate the device.
M. Rutzinger, K. Anders, M. Bremer, B. Höfle, R. Lindenbergh, S. Oude Elberink, F. Pirotti, M. Scaioni, and T. Zieher
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B5-2020, 243–250, https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-243-2020, https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-243-2020, 2020
I. Gutierrez, E. Før Gjermundsen, W. D. Harcourt, M. Kuschnerus, F. Tonion, and T. Zieher
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 719–726, https://doi.org/10.5194/isprs-annals-V-2-2020-719-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-719-2020, 2020
A. Mayr, M. Bremer, and M. Rutzinger
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 765–772, https://doi.org/10.5194/isprs-annals-V-2-2020-765-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-765-2020, 2020
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Ashish Sinha, Gayatri Kathayat, and Hanying Li
Clim. Past, 16, 211–225, https://doi.org/10.5194/cp-16-211-2020, https://doi.org/10.5194/cp-16-211-2020, 2020
Short summary
Short summary
Few studies have paid attention to the important effect of nonsummer monsoon (NSM) precipitation on the speleothem δ18O in SE China. We find the summer monsoon precipitation is equivalent to NSM precipitation amount in the area of spring persistent rain in SE China, and we discuss the relationships between seasonal precipitation amount, moisture source, δ18O, and ENSO. Characterizing the spatial differences in seasonal precipitation is key to interpreting the speleothem δ18O record.
Gina E. Moseley, Christoph Spötl, Susanne Brandstätter, Tobias Erhardt, Marc Luetscher, and R. Lawrence Edwards
Clim. Past, 16, 29–50, https://doi.org/10.5194/cp-16-29-2020, https://doi.org/10.5194/cp-16-29-2020, 2020
Short summary
Short summary
Abrupt climate change during the last ice age can be used to provide important insights into the timescales on which the climate is capable of changing and the mechanisms that drive those changes. In this study, we construct climate records for the period 60 to 120 ka using stalagmites that formed in caves along the northern rim of the European Alps and find good agreement with the timing of climate changes in Greenland and the Asian monsoon.
Mike Rogerson, Yuri Dublyansky, Dirk L. Hoffmann, Marc Luetscher, Paul Töchterle, and Christoph Spötl
Clim. Past, 15, 1757–1769, https://doi.org/10.5194/cp-15-1757-2019, https://doi.org/10.5194/cp-15-1757-2019, 2019
Short summary
Short summary
Rainfall in North Africa is known to vary through time and is likely to change as global climate warms. Here, we provide a new level of understanding about past rainfall in North Africa by looking at a stalagmite which formed within northeastern Libya between 67 and 30 thousand years ago. We find that at times more rain falls, and the associated moisture is mostly derived from the western Mediterranean during winter storms. Sometimes, water comes from the eastern Mediterranean.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Thom Bogaard, Erika Vatiero, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-344, https://doi.org/10.5194/hess-2019-344, 2019
Revised manuscript not accepted
Short summary
Short summary
Knowing the isotopic composition of water vapor in the air is a difficult task. The estimation of δ18O and δ2H has to be done carefully, because it is accompanied by a high risk of methodological errors (if it is sampled) or wrong assumptions that can lead to incorrect values (if it is modeled). The aim of this work was to compare available sampling methods for water vapor in the air and estimate their isotopic composition, comparing the results against direct measurements of the sampled air.
J. Boehm, M. Rutzinger, B. Yang, M. Weinmann, B. Riveiro, and W. Yao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 915–917, https://doi.org/10.5194/isprs-archives-XLII-2-W13-915-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-915-2019, 2019
M. Bremer, V. Wichmann, M. Rutzinger, T. Zieher, and J. Pfeiffer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 943–950, https://doi.org/10.5194/isprs-archives-XLII-2-W13-943-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-943-2019, 2019
J. Boehm, M. Rutzinger, B. Yang, M. Weinmann, B. Riveiro, and W. Yao
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 313–315, https://doi.org/10.5194/isprs-annals-IV-2-W5-313-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-313-2019, 2019
A. Mayr, M. Bremer, M. Rutzinger, and C. Geitner
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 405–412, https://doi.org/10.5194/isprs-annals-IV-2-W5-405-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-405-2019, 2019
J. Pfeiffer, T. Zieher, M. Rutzinger, M. Bremer, and V. Wichmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 421–428, https://doi.org/10.5194/isprs-annals-IV-2-W5-421-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-421-2019, 2019
T. Zieher, M. Bremer, M. Rutzinger, J. Pfeiffer, P. Fritzmann, and V. Wichmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 461–467, https://doi.org/10.5194/isprs-annals-IV-2-W5-461-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-461-2019, 2019
Hanying Li, Hai Cheng, Ashish Sinha, Gayatri Kathayat, Christoph Spötl, Aurèle Anquetil André, Arnaud Meunier, Jayant Biswas, Pengzhen Duan, Youfeng Ning, and Richard Lawrence Edwards
Clim. Past, 14, 1881–1891, https://doi.org/10.5194/cp-14-1881-2018, https://doi.org/10.5194/cp-14-1881-2018, 2018
Short summary
Short summary
The
4.2 ka eventbetween 4.2 and 3.9 ka has been widely discussed in the Northern Hemsiphere but less reported in the Southern Hemisphere. Here, we use speleothem records from Rodrigues in the southwestern Indian Ocean spanning from 6000 to 3000 years ago to investigate the regional hydro-climatic variability. Our records show no evidence for an unusual climate anomaly between 4.2 and 3.9 ka. Instead, it shows a multi-centennial drought between 3.9 and 3.5 ka.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Gayatri Kathayat, Ashish Sinha, R. Lawrence Edwards, and Liangcheng Tan
Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, https://doi.org/10.5194/cp-14-1805-2018, 2018
Short summary
Short summary
The collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event; however, the hydroclimate of this event in China is still poorly known. Based on stalagmite records from monsoonal China, we found that north China was dry but south China was wet during this event. We propose that the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between north and south China.
César~Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Thom Bogaard, Erika Vatiero, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-538, https://doi.org/10.5194/hess-2018-538, 2018
Manuscript not accepted for further review
Short summary
Short summary
The measurement of stable isotopes in water vapor has been improved with the use of laser technologies. Its direct application in the field depends on the availability of infrastructure or the budget of the project. For those cases when it is not possible, we provide an alternative method to sample the air for its later measurement. This method is based on the use of a low-cost polyethylene bag, getting stable measurements with a volume of 450 mL of air reducing the risk of sample deterioration.
Petra Hulsman, Thom A. Bogaard, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 5081–5095, https://doi.org/10.5194/hess-22-5081-2018, https://doi.org/10.5194/hess-22-5081-2018, 2018
Short summary
Short summary
In many river basins, the development of hydrological models is challenged by poor discharge data availability and quality. In contrast, water level data are more reliable, as these are direct measurements and are unprocessed. In this study, an alternative calibration method is presented using water-level time series and the Strickler–Manning formula instead of discharge. This is applied to a semi-distributed rainfall-runoff model for the semi-arid, poorly gauged Mara River basin in Kenya.
A. Mayr, M. Rutzinger, and C. Geitner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 691–697, https://doi.org/10.5194/isprs-archives-XLII-2-691-2018, https://doi.org/10.5194/isprs-archives-XLII-2-691-2018, 2018
T. Zieher, I. Toschi, F. Remondino, M. Rutzinger, Ch. Kofler, A. Mejia-Aguilar, and R. Schlögel
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 1243–1250, https://doi.org/10.5194/isprs-archives-XLII-2-1243-2018, https://doi.org/10.5194/isprs-archives-XLII-2-1243-2018, 2018
Gabriella Koltai, Hai Cheng, and Christoph Spötl
Clim. Past, 14, 369–381, https://doi.org/10.5194/cp-14-369-2018, https://doi.org/10.5194/cp-14-369-2018, 2018
Short summary
Short summary
Here we present a multi-proxy study of flowstones in fractures of crystalline rocks with the aim of assessing the palaeoclimate significance of this new type of speleothem archive. Our results indicate a high degree of spatial heterogeneity, whereby changes in speleothem mineralogy and carbon isotope composition are likely governed by aquifer-internal processes. In contrast, the oxygen isotope composition reflects first-order climate variability.
David J. Peres, Antonino Cancelliere, Roberto Greco, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 18, 633–646, https://doi.org/10.5194/nhess-18-633-2018, https://doi.org/10.5194/nhess-18-633-2018, 2018
Short summary
Short summary
We investigate the influence of imprecise identification of triggering instants on landslide early warning thresholds by perturbing an error-free synthetic dataset. Combined impacts of uncertainty with respect to temporal discretization of data and criteria for singling out rainfall events are assessed as well. Results show that thresholds can be significantly affected by these uncertainty sources.
Thom Bogaard and Roberto Greco
Nat. Hazards Earth Syst. Sci., 18, 31–39, https://doi.org/10.5194/nhess-18-31-2018, https://doi.org/10.5194/nhess-18-31-2018, 2018
Short summary
Short summary
The vast majority of shallow landslides and debris flows are precipitation initiated and predicted using historical landslides plotted versus observed precipitation information. However, this approach has severe limitations. This is partly due to the fact that it is not precipitation that initiates a landslide or debris flow but rather the hydrological dynamics in the soil and slope. We propose to include hydrological information in the regional hydro-meteorological hazard assessment.
Thomas Zieher, Martin Rutzinger, Barbara Schneider-Muntau, Frank Perzl, David Leidinger, Herbert Formayer, and Clemens Geitner
Nat. Hazards Earth Syst. Sci., 17, 971–992, https://doi.org/10.5194/nhess-17-971-2017, https://doi.org/10.5194/nhess-17-971-2017, 2017
Short summary
Short summary
At catchment scale, it is challenging to provide the required input parameters for physically based slope stability models. In the present study, the parameterization of such a model is optimized against observed shallow landslides during two triggering rainfall events. With the resulting set of parameters the model reproduces the location and the triggering timing of most observed landslides. Based on that, potential effects of increasing precipitation intensity on slope stability are assessed.
M. Rutzinger, B. Höfle, R. Lindenbergh, S. Oude Elberink, F. Pirotti, R. Sailer, M. Scaioni, J. Stötter, and D. Wujanz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-6, 15–22, https://doi.org/10.5194/isprs-annals-III-6-15-2016, https://doi.org/10.5194/isprs-annals-III-6-15-2016, 2016
Marie K. M. Charrière and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 16, 1175–1188, https://doi.org/10.5194/nhess-16-1175-2016, https://doi.org/10.5194/nhess-16-1175-2016, 2016
Short summary
Short summary
This paper present the results of interviews that were conducted with the developers of apps dedicated to avalanche risk communication. The study investigates the context of their development to determine how choices of content and visualization were made as well as how their effectiveness is evaluated. Results show that consensus is achieved in terms of message but not in terms of visualization. However, progress remains in terms of effectiveness evaluation.
W. Shao, T. A. Bogaard, M. Bakker, and R. Greco
Hydrol. Earth Syst. Sci., 19, 2197–2212, https://doi.org/10.5194/hess-19-2197-2015, https://doi.org/10.5194/hess-19-2197-2015, 2015
Short summary
Short summary
The effect of preferential flow on the stability of landslides is studied through numerical simulation of two types of rainfall events on a hypothetical hillslope. A model is developed that consists of two parts. The first part is a model for combined saturated/unsaturated subsurface flow and is used to compute the spatial and temporal water pressure response to rainfall. Preferential flow is simulated with a dual-permeability continuum model consisting of a matrix/preferential flow domain.
V. J. Cortes Arevalo, M. Charrière, G. Bossi, S. Frigerio, L. Schenato, T. Bogaard, C. Bianchizza, A. Pasuto, and S. Sterlacchini
Nat. Hazards Earth Syst. Sci., 14, 2681–2698, https://doi.org/10.5194/nhess-14-2681-2014, https://doi.org/10.5194/nhess-14-2681-2014, 2014
C. Spötl and H. Cheng
Clim. Past, 10, 1349–1362, https://doi.org/10.5194/cp-10-1349-2014, https://doi.org/10.5194/cp-10-1349-2014, 2014
D. M. Krzeminska, T. A. Bogaard, T.-H. Debieche, F. Cervi, V. Marc, and J.-P. Malet
Earth Surf. Dynam., 2, 181–195, https://doi.org/10.5194/esurf-2-181-2014, https://doi.org/10.5194/esurf-2-181-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
M. Luetscher, M. Borreguero, G. E. Moseley, C. Spötl, and R. L. Edwards
The Cryosphere, 7, 1073–1081, https://doi.org/10.5194/tc-7-1073-2013, https://doi.org/10.5194/tc-7-1073-2013, 2013
J. E. van der Spek, T. A. Bogaard, and M. Bakker
Hydrol. Earth Syst. Sci., 17, 2171–2183, https://doi.org/10.5194/hess-17-2171-2013, https://doi.org/10.5194/hess-17-2171-2013, 2013
D. M. Krzeminska, T. A. Bogaard, J.-P. Malet, and L. P. H. van Beek
Hydrol. Earth Syst. Sci., 17, 947–959, https://doi.org/10.5194/hess-17-947-2013, https://doi.org/10.5194/hess-17-947-2013, 2013
M. Hrachowitz, H. Savenije, T. A. Bogaard, D. Tetzlaff, and C. Soulsby
Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, https://doi.org/10.5194/hess-17-533-2013, 2013
V. E. Johnston, A. Borsato, C. Spötl, S. Frisia, and R. Miorandi
Clim. Past, 9, 99–118, https://doi.org/10.5194/cp-9-99-2013, https://doi.org/10.5194/cp-9-99-2013, 2013
Related subject area
Landslides and Debris Flows Hazards
Using principal component analysis to incorporate multi-layer soil moisture information in hydrometeorological thresholds for landslide prediction: an investigation based on ERA5-Land reanalysis data
Assessing uncertainties in landslide susceptibility predictions in a changing environment (Styrian Basin, Austria)
Brief communication: An autonomous UAV for catchment-wide monitoring of a debris flow torrent
How volcanic stratigraphy constrains headscarp collapse scenarios: the Samperre cliff case study (Martinique island, Lesser Antilles)
Landslide susceptibility assessment in the rocky coast subsystem of Essaouira, Morocco
Landsifier v1.0: a Python library to estimate likely triggers of mapped landslides
Timing landslide and flash flood events from SAR satellite: a regionally applicable methodology illustrated in African cloud-covered tropical environments
Potential of satellite-derived hydro-meteorological information for landslide initiation thresholds in Rwanda
Earthquake-induced landslides in Haiti: analysis of seismotectonic and possible climatic influences
Pre-collapse motion of the February 2021 Chamoli rock–ice avalanche, Indian Himalaya
Physically based modeling of co-seismic landslide, debris flow, and flood cascade
Finite-hillslope analysis of landslides triggered by excess pore water pressure: the roles of atmospheric pressure and rainfall infiltration during typhoons
Estimating global landslide susceptibility and its uncertainty through ensemble modeling
Terrain visibility impact on the preparation of landslide inventories: a practical example in Darjeeling district (India)
Using Sentinel-1 radar amplitude time series to constrain the timings of individual landslides: a step towards understanding the controls on monsoon-triggered landsliding
Introducing SlideforMAP: a probabilistic finite slope approach for modelling shallow-landslide probability in forested situations
Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars
Rainfall thresholds estimation for shallow landslides in Peru from gridded daily data
What drives landslide risk? Disaggregating risk analyses, an example from the Franz Josef Glacier and Fox Glacier valleys, New Zealand
Geographic information system models with fuzzy logic for susceptibility maps of debris flow using multiple types of parameters: a case study in Pinggu District of Beijing, China
Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: an application for the southern Andes
Quantification of meteorological conditions for rockfall triggers in Germany
Debris flow velocity and volume estimations based on seismic data
Spatio-temporal analysis of slope-type debris flow activity in Horlachtal, Austria based on orthophotos and LiDAR data since 1947
Integration of observed and model-derived groundwater levels in landslide threshold models in Rwanda
Landslides caught on seismic networks and satellite radars
Variable hydrograph inputs for a numerical debris-flow runout model
Assessing the relationship between weather conditions and rockfall using terrestrial laser scanner to improve risk management
Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy)
Brief communication: Introducing rainfall thresholds for landslide triggering based on artificial neural networks
Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories
Generating landslide density heatmaps for rapid detection using open-access satellite radar data in Google Earth Engine
Multiscale effects caused by the fracturing and fragmentation of rock blocks during rock mass movement: implications for rock avalanche propagation
Rapid assessment of abrupt urban mega-gully and landslide events with structure-from-motion photogrammetric techniques validates link to water resources infrastructure failures in an urban periphery
Automated determination of landslide locations after large trigger events: advantages and disadvantages compared to manual mapping
Evaluation of filtering methods for use on high-frequency measurements of landslide displacements
A modeling methodology to study the tributary-junction alluvial fan connectivity during a debris flow event
Brief communication: The role of geophysical imaging in local landslide early warning systems
Evaluating landslide response in a seismic and rainfall regime: a case study from the SE Carpathians, Romania
Natural and human-induced landslides in a tropical mountainous region: the Rift flank west of Lake Kivu (DR Congo)
Main Ethiopian Rift landslides formed in contrasting geological settings and climatic conditions
Investigating causal factors of shallow landslides in grassland regions of Switzerland
Debris flow event on Osorno volcano, Chile, during summer 2017: new interpretations for chain processes in the southern Andes
Integrating empirical models and satellite radar can improve landslide detection for emergency response
Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment
Optimizing and validating the Gravitational Process Path model for regional debris-flow runout modelling
Geographic-information-system-based topographic reconstruction and geomechanical modelling of the Köfels rockslide
Spatiotemporal clustering of flash floods in a changing climate (China, 1950–2015)
Atmospheric triggering conditions and climatic disposition of landslides in Kyrgyzstan and Tajikistan at the beginning of the 21st century
Analysis of meteorological parameters triggering rainfall-induced landslide: a review of 70 years in Valtellina
Nunziarita Palazzolo, David J. Peres, Enrico Creaco, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 23, 279–291, https://doi.org/10.5194/nhess-23-279-2023, https://doi.org/10.5194/nhess-23-279-2023, 2023
Short summary
Short summary
We propose an approach exploiting PCA to derive hydrometeorological landslide-triggering thresholds using multi-layered soil moisture data from ERA5-Land reanalysis. Comparison of thresholds based on single- and multi-layered soil moisture information provides a means to identify the significance of multi-layered data for landslide triggering in a region. In Sicily, the proposed approach yields thresholds with a higher performance than traditional precipitation-based ones (TSS = 0.71 vs. 0.50).
Raphael Knevels, Helene Petschko, Herwig Proske, Philip Leopold, Aditya N. Mishra, Douglas Maraun, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 23, 205–229, https://doi.org/10.5194/nhess-23-205-2023, https://doi.org/10.5194/nhess-23-205-2023, 2023
Short summary
Short summary
In summer 2009 and 2014, rainfall events occurred in the Styrian Basin (Austria), triggering thousands of landslides. Landslide storylines help to show potential future changes under changing environmental conditions. The often neglected uncertainty quantification was the aim of this study. We found uncertainty arising from the landslide model to be of the same order as climate scenario uncertainty. Understanding the dimensions of uncertainty is crucial for allowing informed decision-making.
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022, https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Marc Peruzzetto, Yoann Legendre, Aude Nachbaur, Thomas J. B. Dewez, Yannick Thiery, Clara Levy, and Benoit Vittecoq
Nat. Hazards Earth Syst. Sci., 22, 3973–3992, https://doi.org/10.5194/nhess-22-3973-2022, https://doi.org/10.5194/nhess-22-3973-2022, 2022
Short summary
Short summary
Volcanic edifices result from successive construction and dismantling phases. Thus, the geological units forming volcanoes display complex geometries. We show that such geometries can be reconstructed thanks to aerial views, topographic surveys and photogrammetric models. In our case study of the Samperre cliff (Martinique, Lesser Antilles), it allows us to link destabilizations from a rocky cliff to the existence of a filled paleo-valley and estimate a potentially unstable volume.
Abdellah Khouz, Jorge Trindade, Sérgio C. Oliveira, Fatima El Bchari, Blaid Bougadir, Ricardo A. C. Garcia, and Mourad Jadoud
Nat. Hazards Earth Syst. Sci., 22, 3793–3814, https://doi.org/10.5194/nhess-22-3793-2022, https://doi.org/10.5194/nhess-22-3793-2022, 2022
Short summary
Short summary
The aim of this study was to assess the landslide susceptibility of the rocky coast of Essaouira using the information value model. The resulting susceptibility maps could be used for both environmental protection and general planning of future development activities.
Kamal Rana, Nishant Malik, and Ugur Ozturk
Nat. Hazards Earth Syst. Sci., 22, 3751–3764, https://doi.org/10.5194/nhess-22-3751-2022, https://doi.org/10.5194/nhess-22-3751-2022, 2022
Short summary
Short summary
The landslide hazard models assist in mitigating losses due to landslides. However, these models depend on landslide databases, which often have missing triggering information, rendering these databases unusable for landslide hazard models. In this work, we developed a Python library, Landsifier, consisting of three different methods to identify the triggers of landslides. These methods can classify landslide triggers with high accuracy using only a landslide polygon shapefile as an input.
Axel A. J. Deijns, Olivier Dewitte, Wim Thiery, Nicolas d'Oreye, Jean-Philippe Malet, and François Kervyn
Nat. Hazards Earth Syst. Sci., 22, 3679–3700, https://doi.org/10.5194/nhess-22-3679-2022, https://doi.org/10.5194/nhess-22-3679-2022, 2022
Short summary
Short summary
Landslides and flash floods are rainfall-induced processes that often co-occur and interact, generally very quickly. In mountainous cloud-covered environments, determining when these processes occur remains challenging. We propose a regional methodology using open-access satellite radar images that allow for the timing of landslide and flash floods events, in the contrasting landscapes of tropical Africa, with an accuracy of up to a few days. The methodology shows potential for transferability.
Judith Uwihirwe, Alessia Riveros, Hellen Wanjala, Jaap Schellekens, Frederiek Sperna Weiland, Markus Hrachowitz, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 22, 3641–3661, https://doi.org/10.5194/nhess-22-3641-2022, https://doi.org/10.5194/nhess-22-3641-2022, 2022
Short summary
Short summary
This study compared gauge-based and satellite-based precipitation products. Similarly, satellite- and hydrological model-derived soil moisture was compared to in situ soil moisture and used in landslide hazard assessment and warning. The results reveal the cumulative 3 d rainfall from the NASA-GPM to be the most effective landslide trigger. The modelled antecedent soil moisture in the root zone was the most informative hydrological variable for landslide hazard assessment and warning in Rwanda.
Hans-Balder Havenith, Kelly Guerrier, Romy Schlögel, Anika Braun, Sophia Ulysse, Anne-Sophie Mreyen, Karl-Henry Victor, Newdeskarl Saint-Fleur, Léna Cauchie, Dominique Boisson, and Claude Prépetit
Nat. Hazards Earth Syst. Sci., 22, 3361–3384, https://doi.org/10.5194/nhess-22-3361-2022, https://doi.org/10.5194/nhess-22-3361-2022, 2022
Short summary
Short summary
We present a new landslide inventory for the 2021, M 7.2, Haiti, earthquake. We compare characteristics of this inventory with those of the 2010 seismically induced landslides, highlighting the much larger total area of 2021 landslides. This fact could be related to the larger earthquake magnitude in 2021, to the more central location of the fault segment ruptured in 2021 with respect to coastal zones, and/or to possible climatic preconditioning of slope failures in the 2021 affected area.
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022, https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary
Short summary
On 7 February 2021, a large rock–ice avalanche occurred in Chamoli, Indian Himalaya. The resulting debris flow swept down the nearby valley, leaving over 200 people dead or missing. We use a range of satellite datasets to investigate how the collapse area changed prior to collapse. We show that signs of instability were visible as early 5 years prior to collapse. However, it would likely not have been possible to predict the timing of the event from current satellite datasets.
Bastian van den Bout, Chenxiao Tang, Cees van Westen, and Victor Jetten
Nat. Hazards Earth Syst. Sci., 22, 3183–3209, https://doi.org/10.5194/nhess-22-3183-2022, https://doi.org/10.5194/nhess-22-3183-2022, 2022
Short summary
Short summary
Natural hazards such as earthquakes, landslides, and flooding do not always occur as stand-alone events. After the 2008 Wenchuan earthquake, a co-seismic landslide blocked a stream in Hongchun. Two years later, a debris flow breached the material, blocked the Min River, and resulted in flooding of a small town. We developed a multi-process model that captures the full cascade. Despite input and process uncertainties, probability of flooding was high due to topography and trigger intensities.
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Anne Felsberg, Jean Poesen, Michel Bechtold, Matthias Vanmaercke, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 22, 3063–3082, https://doi.org/10.5194/nhess-22-3063-2022, https://doi.org/10.5194/nhess-22-3063-2022, 2022
Short summary
Short summary
In this study we assessed global landslide susceptibility at the coarse 36 km spatial resolution of global satellite soil moisture observations to prepare for a subsequent combination of the two. Specifically, we focus therefore on the susceptibility of hydrologically triggered landslides. We introduce ensemble techniques, common in, for example, meteorology but not yet in the landslide community, to retrieve reliable estimates of the total prediction uncertainty.
Txomin Bornaetxea, Ivan Marchesini, Sumit Kumar, Rabisankar Karmakar, and Alessandro Mondini
Nat. Hazards Earth Syst. Sci., 22, 2929–2941, https://doi.org/10.5194/nhess-22-2929-2022, https://doi.org/10.5194/nhess-22-2929-2022, 2022
Short summary
Short summary
One cannot know if there is a landslide or not in an area that one has not observed. This is an obvious statement, but when landslide inventories are obtained by field observation, this fact is seldom taken into account. Since fieldwork campaigns are often done following the roads, we present a methodology to estimate the visibility of the terrain from the roads, and we demonstrate that fieldwork-based inventories are underestimating landslide density in less visible areas.
Katy Burrows, Odin Marc, and Dominique Remy
Nat. Hazards Earth Syst. Sci., 22, 2637–2653, https://doi.org/10.5194/nhess-22-2637-2022, https://doi.org/10.5194/nhess-22-2637-2022, 2022
Short summary
Short summary
The locations of triggered landslides following a rainfall event can be identified in optical satellite images. However cloud cover associated with the rainfall means that these images cannot be used to identify landslide timing. Timings of landslides triggered during long rainfall events are often unknown. Here we present methods of using Sentinel-1 satellite radar data, acquired every 12 d globally in all weather conditions, to better constrain the timings of rainfall-triggered landslides.
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022, https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assessment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMAP) that can assess the shallow-landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
Chuxuan Li, Alexander L. Handwerger, Jiali Wang, Wei Yu, Xiang Li, Noah J. Finnegan, Yingying Xie, Giuseppe Buscarnera, and Daniel E. Horton
Nat. Hazards Earth Syst. Sci., 22, 2317–2345, https://doi.org/10.5194/nhess-22-2317-2022, https://doi.org/10.5194/nhess-22-2317-2022, 2022
Short summary
Short summary
In January 2021 a storm triggered numerous debris flows in a wildfire burn scar in California. We use a hydrologic model to assess debris flow susceptibility in pre-fire and postfire scenarios. Compared to pre-fire conditions, postfire conditions yield dramatic increases in peak water discharge, substantially increasing debris flow susceptibility. Our work highlights the hydrologic model's utility in investigating and potentially forecasting postfire debris flows at regional scales.
Carlos Millán-Arancibia and Waldo Lavado-Casimiro
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-199, https://doi.org/10.5194/nhess-2022-199, 2022
Revised manuscript under review for NHESS
Short summary
Short summary
This study is the first approximation of regional rainfall thresholds that trigger shallow landslides in Peru. This research was generated from a gridded precipitation data and landslide inventory. The analysis showed that the threshold based on the combination of mean daily intensity-duration variables gives the best results for separating rainfall events that generate landslides. Through this work, is demonstrate the potential of thresholds for landslide monitoring at the regional level.
Saskia de Vilder, Chris Massey, Biljana Lukovic, Tony Taig, and Regine Morgenstern
Nat. Hazards Earth Syst. Sci., 22, 2289–2316, https://doi.org/10.5194/nhess-22-2289-2022, https://doi.org/10.5194/nhess-22-2289-2022, 2022
Short summary
Short summary
This study calculates the fatality risk posed by landslides while visiting Franz Josef Glacier and Fox Glacier valleys, New Zealand, for nine different scenarios, where the variables of the risk equation were adjusted to determine the range in risk values and associated uncertainty. The results show that it is important to consider variable inputs that change through time, such as the increasing probability of an earthquake and the impact of climate change on landslide characteristics.
Yiwei Zhang, Jianping Chen, Qing Wang, Chun Tan, Yongchao Li, Xiaohui Sun, and Yang Li
Nat. Hazards Earth Syst. Sci., 22, 2239–2255, https://doi.org/10.5194/nhess-22-2239-2022, https://doi.org/10.5194/nhess-22-2239-2022, 2022
Short summary
Short summary
The disaster prevention and mitigation of debris flow is a very important scientific problem. Our model is based on geographic information system (GIS), combined with grey relational, data-driven and fuzzy logic methods. Through our results, we believe that the streamlining of factors and scientific classification should attract attention from other researchers to optimize a model. We also propose a good perspective to make better use of the watershed feature parameters.
Ivo Fustos-Toribio, Nataly Manque-Roa, Daniel Vásquez Antipan, Mauricio Hermosilla Sotomayor, and Viviana Letelier Gonzalez
Nat. Hazards Earth Syst. Sci., 22, 2169–2183, https://doi.org/10.5194/nhess-22-2169-2022, https://doi.org/10.5194/nhess-22-2169-2022, 2022
Short summary
Short summary
We develop for the first time a rainfall-induced landslide early warning system for the south of Chile. We used forecast precipitation values at different scales using mesoscale models to evaluate the probability of landslides using statistical models. We showed the feasibility of implementing these models in future, supporting stakeholders and decision-makers.
Katrin M. Nissen, Stefan Rupp, Thomas M. Kreuzer, Björn Guse, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 22, 2117–2130, https://doi.org/10.5194/nhess-22-2117-2022, https://doi.org/10.5194/nhess-22-2117-2022, 2022
Short summary
Short summary
A statistical model is introduced which quantifies the influence of individual potential triggering factors and their interactions on rockfall probability in central Europe. The most important factor is daily precipitation, which is most effective if sub-surface moisture levels are high. Freeze–thaw cycles in the preceding days can further increase the rockfall hazard. The model can be applied to climate simulations in order to investigate the effect of climate change on rockfall probability.
Andreas Schimmel, Velio Coviello, and Francesco Comiti
Nat. Hazards Earth Syst. Sci., 22, 1955–1968, https://doi.org/10.5194/nhess-22-1955-2022, https://doi.org/10.5194/nhess-22-1955-2022, 2022
Short summary
Short summary
The estimation of debris flow velocity and volume is a fundamental task for the development of early warning systems and other mitigation measures. This work provides a first approach for estimating the velocity and the total volume of debris flows based on the seismic signal detected with simple, low-cost geophones installed along the debris flow channel. The developed method was applied to seismic data collected at three test sites in the Alps: Gadria and Cancia (IT) and Lattenbach (AT).
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-138, https://doi.org/10.5194/nhess-2022-138, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
In the present study, an area-wide slope-type debris flow record for the Horlachtal, Austria since 1947 based on historic and recent orthophotos is established. Spatial and temporal analyses show variations of debris flow activity in space and time in a high alpine region. The results can contribute to a better understanding of past slope-type debris flow dynamics in the frame of climate change and their possible future development.
Judith Uwihirwe, Markus Hrachowitz, and Thom Bogaard
Nat. Hazards Earth Syst. Sci., 22, 1723–1742, https://doi.org/10.5194/nhess-22-1723-2022, https://doi.org/10.5194/nhess-22-1723-2022, 2022
Short summary
Short summary
This research tested the value of regional groundwater level information to improve landslide predictions with empirical models based on the concept of threshold levels. In contrast to precipitation-based thresholds, the results indicated that relying on threshold models exclusively defined using hydrological variables such as groundwater levels can lead to improved landslide predictions due to their implicit consideration of long-term antecedent conditions until the day of landslide occurrence.
Andrea Manconi, Alessandro C. Mondini, and the AlpArray working group
Nat. Hazards Earth Syst. Sci., 22, 1655–1664, https://doi.org/10.5194/nhess-22-1655-2022, https://doi.org/10.5194/nhess-22-1655-2022, 2022
Short summary
Short summary
Information on when, where, and how landslide events occur is the key to building complete catalogues and performing accurate hazard assessments. Here we show a procedure that allows us to benefit from the increased density of seismic sensors installed on ground for earthquake monitoring and from the unprecedented availability of satellite radar data. We show how the procedure works on a recent sequence of landslides that occurred at Piz Cengalo (Swiss Alps) in 2017.
Andrew Mitchell, Sophia Zubrycky, Scott McDougall, Jordan Aaron, Mylène Jacquemart, Johannes Hübl, Roland Kaitna, and Christoph Graf
Nat. Hazards Earth Syst. Sci., 22, 1627–1654, https://doi.org/10.5194/nhess-22-1627-2022, https://doi.org/10.5194/nhess-22-1627-2022, 2022
Short summary
Short summary
Debris flows are complex, surging movements of sediment and water. Discharge observations from well-studied debris-flow channels were used as inputs for a numerical modelling study of the downstream effects of chaotic inflows. The results show that downstream impacts are sensitive to inflow conditions. Inflow conditions for predictive modelling are highly uncertain, and our method provides a means to estimate the potential variability in future events.
Tom Birien and Francis Gauthier
EGUsphere, https://doi.org/10.5194/egusphere-2022-326, https://doi.org/10.5194/egusphere-2022-326, 2022
Short summary
Short summary
On highly fractured rockwall such as those found in northern Gaspésie, most rockfalls are triggered by weather conditions. This study highlights that in winter, rockfall frequency is 12 times higher during a superficial thaw than during a cold period in which temperature remains below 0 °C. In summer, rockfall frequency is 22 times higher during a heavy rainfall event than during a period mainly dry. This knowledge could be used to implement a risk management strategy.
Sansar Raj Meena, Silvia Puliero, Kushanav Bhuyan, Mario Floris, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, https://doi.org/10.5194/nhess-22-1395-2022, https://doi.org/10.5194/nhess-22-1395-2022, 2022
Short summary
Short summary
The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and machine learning algorithms.
Pierpaolo Distefano, David J. Peres, Pietro Scandura, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 22, 1151–1157, https://doi.org/10.5194/nhess-22-1151-2022, https://doi.org/10.5194/nhess-22-1151-2022, 2022
Short summary
Short summary
In the communication, we introduce the use of artificial neural networks (ANNs) for improving the performance of rainfall thresholds for landslide early warning. Results show how ANNs using rainfall event duration and mean intensity perform significantly better than a classical power law based on the same variables. Adding peak rainfall intensity as input to the ANN improves performance even more. This further demonstrates the potentialities of the proposed machine learning approach.
Robert Emberson, Dalia B. Kirschbaum, Pukar Amatya, Hakan Tanyas, and Odin Marc
Nat. Hazards Earth Syst. Sci., 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022, https://doi.org/10.5194/nhess-22-1129-2022, 2022
Short summary
Short summary
Understanding where landslides occur in mountainous areas is critical to support hazard analysis as well as understand landscape evolution. In this study, we present a large compilation of inventories of landslides triggered by rainfall, including several that are described here for the first time. We analyze the topographic characteristics of the landslides, finding consistent relationships for landslide source and deposition areas, despite differences in the inventories' locations.
Alexander L. Handwerger, Mong-Han Huang, Shannan Y. Jones, Pukar Amatya, Hannah R. Kerner, and Dalia B. Kirschbaum
Nat. Hazards Earth Syst. Sci., 22, 753–773, https://doi.org/10.5194/nhess-22-753-2022, https://doi.org/10.5194/nhess-22-753-2022, 2022
Short summary
Short summary
Rapid detection of landslides is critical for emergency response and disaster mitigation. Here we develop a global landslide detection tool in Google Earth Engine that uses satellite radar data to measure changes in the ground surface properties. We find that we can detect areas with high landslide density within days of a triggering event. Our approach allows the broader hazard community to utilize these state-of-the-art data for improved situational awareness of landslide hazards.
Qiwen Lin, Yufeng Wang, Yu Xie, Qiangong Cheng, and Kaifeng Deng
Nat. Hazards Earth Syst. Sci., 22, 639–657, https://doi.org/10.5194/nhess-22-639-2022, https://doi.org/10.5194/nhess-22-639-2022, 2022
Short summary
Short summary
Fracturing and fragmentation of rock blocks are important and universal phenomena during the movement of rock avalanches (large and long-run-out rockslide-debris avalanches). The movement of a fragmenting rock block is simulated by the discrete element method, aiming to quantify the fracturing and fragmentation effect of the block in propagation. The fracturing and fragmentation processes and their influences on energy transformation in the system are described in detail.
Napoleon Gudino-Elizondo, Matthew W. Brand, Trent W. Biggs, Alejandro Hinojosa-Corona, Álvaro Gómez-Gutiérrez, Eddy Langendoen, Ronald Bingner, Yongping Yuan, and Brett F. Sanders
Nat. Hazards Earth Syst. Sci., 22, 523–538, https://doi.org/10.5194/nhess-22-523-2022, https://doi.org/10.5194/nhess-22-523-2022, 2022
Short summary
Short summary
Mass movement hazards in the form of gullies and landslides pose significant risks in urbanizing areas yet are poorly documented. This paper presents observations and modeling of mass movement events over a 5-year period in Tijuana, Mexico. Three major events were observed, and all were linked to water resources infrastructure failures (WRIFs), namely leaks and breaks in water supply pipes. Modeling shows that WRIF-based erosion was also a non-negligible contributor to the total sediment budget.
David G. Milledge, Dino G. Bellugi, Jack Watt, and Alexander L. Densmore
Nat. Hazards Earth Syst. Sci., 22, 481–508, https://doi.org/10.5194/nhess-22-481-2022, https://doi.org/10.5194/nhess-22-481-2022, 2022
Short summary
Short summary
Earthquakes can trigger thousands of landslides, causing severe and widespread damage. Efforts to understand what controls these landslides rely heavily on costly and time-consuming manual mapping from satellite imagery. We developed a new method that automatically detects landslides triggered by earthquakes using thousands of free satellite images. We found that in the majority of cases, it was as skilful at identifying the locations of landslides as the manual maps that we tested it against.
Sohrab Sharifi, Michael T. Hendry, Renato Macciotta, and Trevor Evans
Nat. Hazards Earth Syst. Sci., 22, 411–430, https://doi.org/10.5194/nhess-22-411-2022, https://doi.org/10.5194/nhess-22-411-2022, 2022
Short summary
Short summary
This study is devoted to comparing the effectiveness of three different filters for noise reduction of instruments. It was observed that the Savitzky–Golay and Gaussian-weighted moving average filters outperform the simple moving average. Application of these two filters in real-time landslide monitoring leads to timely detection of acceleration moment and better preservation of information regarding displacement and velocity.
Alex Garcés, Gerardo Zegers, Albert Cabré, Germán Aguilar, Aldo Tamburrino, and Santiago Montserrat
Nat. Hazards Earth Syst. Sci., 22, 377–393, https://doi.org/10.5194/nhess-22-377-2022, https://doi.org/10.5194/nhess-22-377-2022, 2022
Short summary
Short summary
We propose a workflow to model the response of an alluvial fan located in the Atacama Desert during an extreme storm event. For this alluvial fan, five different deposits were identified and associated with different debris flow surges. Using a commercial software program, our workflow concatenates these surges into one model. This study depicts the significance of the mechanical classification of debris flows to reproduce how an alluvial fan controls the tributary–river junction connectivity.
Jim S. Whiteley, Arnaud Watlet, J. Michael Kendall, and Jonathan E. Chambers
Nat. Hazards Earth Syst. Sci., 21, 3863–3871, https://doi.org/10.5194/nhess-21-3863-2021, https://doi.org/10.5194/nhess-21-3863-2021, 2021
Short summary
Short summary
This work summarises the contribution of geophysical imaging methods to establishing and operating local landslide early warning systems, demonstrated through a conceptual framework. We identify developments in geophysical monitoring equipment, the spatiotemporal resolutions of these approaches and methods to translate geophysical to geotechnical information as the primary benefits that geophysics brings to slope-scale early warning.
Vipin Kumar, Léna Cauchie, Anne-Sophie Mreyen, Mihai Micu, and Hans-Balder Havenith
Nat. Hazards Earth Syst. Sci., 21, 3767–3788, https://doi.org/10.5194/nhess-21-3767-2021, https://doi.org/10.5194/nhess-21-3767-2021, 2021
Short summary
Short summary
The SE Carpathians belong to one of the most active seismic regions of Europe. In recent decades, extreme rainfall events have also been common. These natural processes result in frequent landslides, particularly of a debris flow type. Despite such regimes, the region has been little explored to understand the response of the landslides in seismic and rainfall conditions. This study attempts to fill this gap by evaluating landslide responses under seismic and extreme-rainfall regimes.
Jean-Claude Maki Mateso, Charles Bielders, Elise Monsieurs, Arthur Depicker, Benoît Smets, Théophile Tambala, Luc Bagalwa Mateso, and Olivier Dewitte
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-336, https://doi.org/10.5194/nhess-2021-336, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
To summarize, this research highlights the importance of human activities on the occurrence of landslides and the need to consider this context when studying hillslope instability patterns in regions under anthropogenic pressure. Also, this study highlights the importance of considering the timing of landslides and hence the added value of using historical information for compiling an inventory.
Karel Martínek, Kryštof Verner, Tomáš Hroch, Leta A. Megerssa, Veronika Kopačková, David Buriánek, Ameha Muluneh, Radka Kalinová, Miheret Yakob, and Muluken Kassa
Nat. Hazards Earth Syst. Sci., 21, 3465–3487, https://doi.org/10.5194/nhess-21-3465-2021, https://doi.org/10.5194/nhess-21-3465-2021, 2021
Short summary
Short summary
This study combines field geological and geohazard mapping with remote sensing data. Geostatistical analysis evaluated precipitation, land use, vegetation density, rock mass strength, and tectonics. Contrasting tectonic and climatic setting of the Main Ethiopian Rift and uplifted Ethiopian Plateau have major impacts on the distribution of landslides.
Lauren Zweifel, Maxim Samarin, Katrin Meusburger, and Christine Alewell
Nat. Hazards Earth Syst. Sci., 21, 3421–3437, https://doi.org/10.5194/nhess-21-3421-2021, https://doi.org/10.5194/nhess-21-3421-2021, 2021
Short summary
Short summary
Mountainous grassland areas can be severely affected by soil erosion, such as by shallow landslides. With an automated mapping approach we are able to locate shallow-landslide sites on aerial images for 10 different study sites across Swiss mountain regions covering a total of 315 km2. Using a statistical model we identify important explanatory variables for shallow-landslide occurrence for the individual sites as well as across all regions, which highlight slope, aspect and terrain roughness.
Ivo Janos Fustos-Toribio, Bastian Morales-Vargas, Marcelo Somos-Valenzuela, Pablo Moreno-Yaeger, Ramiro Muñoz-Ramirez, Ines Rodriguez Araneda, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci., 21, 3015–3029, https://doi.org/10.5194/nhess-21-3015-2021, https://doi.org/10.5194/nhess-21-3015-2021, 2021
Short summary
Short summary
Links between debris flow and volcanic evolution are an open question in the southern Andes. We modelled the catastrophic debris flow using field data, a geotechnical approach and numerical modelling of the Petrohué event (Chile, 2017). Our results indicated new debris-flow-prone zones. Finally, we propose considering connections between volcanoes and debris flow in the southern Andes.
Katy Burrows, David Milledge, Richard J. Walters, and Dino Bellugi
Nat. Hazards Earth Syst. Sci., 21, 2993–3014, https://doi.org/10.5194/nhess-21-2993-2021, https://doi.org/10.5194/nhess-21-2993-2021, 2021
Short summary
Short summary
When cloud cover obscures optical satellite imagery, there are two options remaining for generating information on earthquake-triggered landslide locations: (1) models which predict landslide locations based on, e.g., slope and ground shaking data and (2) satellite radar data, which penetrates cloud cover and is sensitive to landslides. Here we show that the two approaches can be combined to give a more consistent and more accurate model of landslide locations after an earthquake.
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, https://doi.org/10.5194/nhess-21-2773-2021, 2021
Short summary
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Jason Goetz, Robin Kohrs, Eric Parra Hormazábal, Manuel Bustos Morales, María Belén Araneda Riquelme, Cristián Henríquez, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 21, 2543–2562, https://doi.org/10.5194/nhess-21-2543-2021, https://doi.org/10.5194/nhess-21-2543-2021, 2021
Short summary
Short summary
Debris flows are fast-moving landslides that can cause incredible destruction to lives and property. Using the Andes of Santiago as an example, we developed tools to finetune and validate models predicting likely runout paths over large regions. We anticipate that our automated approach that links the open-source R software with SAGA-GIS will make debris-flow runout simulation more readily accessible and thus enable researchers and spatial planners to improve regional-scale hazard assessments.
Christian Zangerl, Annemarie Schneeberger, Georg Steiner, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 21, 2461–2483, https://doi.org/10.5194/nhess-21-2461-2021, https://doi.org/10.5194/nhess-21-2461-2021, 2021
Short summary
Short summary
The Köfels rockslide in the Ötztal Valley (Austria) represents the largest known extremely rapid rockslide in metamorphic rock masses in the Alps and was formed in the early Holocene. Although many hypotheses for the conditioning and triggering factors were discussed in the past, until now no scientifically accepted explanatory model has been found. This study provides new data and numerical modelling results to better understand the cause and triggering factors of this gigantic natural event.
Nan Wang, Luigi Lombardo, Marj Tonini, Weiming Cheng, Liang Guo, and Junnan Xiong
Nat. Hazards Earth Syst. Sci., 21, 2109–2124, https://doi.org/10.5194/nhess-21-2109-2021, https://doi.org/10.5194/nhess-21-2109-2021, 2021
Short summary
Short summary
This study exploits 66 years of flash flood disasters across China.
The conclusions are as follows. The clustering procedure highlights distinct spatial and temporal patterns of flash flood disasters at different scales. There are distinguished seasonal, yearly and even long-term persistent flash flood behaviors of flash flood disasters. Finally, the decreased duration of clusters in the recent period indicates a possible activation induced by short-duration extreme rainfall events.
Xun Wang, Marco Otto, and Dieter Scherer
Nat. Hazards Earth Syst. Sci., 21, 2125–2144, https://doi.org/10.5194/nhess-21-2125-2021, https://doi.org/10.5194/nhess-21-2125-2021, 2021
Short summary
Short summary
We applied a high-resolution, gridded atmospheric data set combined with landslide inventories to investigate the atmospheric triggers, define triggering thresholds, and characterize the climatic disposition of landslides in Kyrgyzstan and Tajikistan. Our results indicate the crucial role of snowmelt in landslide triggering and prediction in Kyrgyzstan and Tajikistan, as well as the added value of climatic disposition derived from atmospheric triggering conditions.
Andrea Abbate, Monica Papini, and Laura Longoni
Nat. Hazards Earth Syst. Sci., 21, 2041–2058, https://doi.org/10.5194/nhess-21-2041-2021, https://doi.org/10.5194/nhess-21-2041-2021, 2021
Short summary
Short summary
In this paper the relation between the intensity of meteorological events and the magnitude of triggered geo-hydrological issues was examined. A back analysis was developed across a region of the central Alps. The meteorological triggers were interpreted using two approaches: the first using local rain gauge data and a new one considering meteorological reanalysis maps. The results obtained were compared and elaborated for defining a magnitude of each geo-hydrological event.
Cited articles
Binet, S., Jomard, H., Lebourg, T., Guglielmi, Y., Tric, E., Bertrand, C., and Mudry, J.: Experimental analysis of groundwater flow through a landslide slip surface using natural and artificial water chemical tracers, Hydrol.
Process., 21, 3463–3472, https://doi.org/10.1002/hyp.6579, 2007. a, b
Blasch, K. W. and Bryson, J. R.: Distinguishing Sources of Ground Water
Recharge by Using δ2H and δ18O, Groundwater, 45, 294–308, https://doi.org/10.1111/j.1745-6584.2006.00289.x, 2007. a, b
Bogaard, T., Guglielmi, Y., Marc, V., Emblanch, C., Bertrand, C., and Mudry,
J.: Hydrogeochemistry in landslide research: a review, Bulletin de la
Société Géologique de France, 178, 113–126, https://doi.org/10.2113/gssgfbull.178.2.113, 2007. a
Bogaard, T. A. and Greco, R.: Landslide hydrology: from hydrology to pore
pressure, WIREs Water, 3, 439–459, https://doi.org/10.1002/wat2.1126, 2016. a
Bonzanigo, L., Eberhardt, E., and Loew, S.: Long-term investigation of a
deep-seated creeping landslide in crystalline rock. Part I. Geological and
hydromechanical factors controlling the Campo Vallemaggia landslide, Can.
Geotech. J., 44, 1157–1180, https://doi.org/10.1139/T07-043, 2007. a
Bouchaou, L., Michelot, J., Vengosh, A., Hsissou, Y., Qurtobi, M., Gaye, C.,
Bullen, T., and Zuppi, G.: Application of multiple isotopic and geochemical
tracers for investigation of recharge, salinization, and residence time of
water in the Souss–Massa aquifer, southwest of Morocco, J. Hydrol., 352, 267–287, https://doi.org/10.1016/j.jhydrol.2008.01.022, 2008. a
Cappa, F., Guglielmi, Y., Soukatchoff, V., Mudry, J., Bertrand, C., and
Charmoille, A.: Hydromechanical modeling of a large moving rock slope
inferred from slope levelling coupled to spring long-term hydrochemical
monitoring: example of the La Clapière landslide (Southern Alps, France), J. Hydrol., 291, 67–90, https://doi.org/10.1016/j.jhydrol.2003.12.013, 2004. a, b
Cervi, F., Ronchetti, F., Martinelli, G., Bogaard, T. A., and Corsini, A.:
Origin and assessment of deep groundwater inflow in the Ca' Lita landslide
using hydrochemistry and in situ monitoring, Hydrol. Earth Syst. Sci., 16, 4205–4221, https://doi.org/10.5194/hess-16-4205-2012, 2012. a, b
Chalikakis, K., Plagnes, V., Guerin, R., Valois, R., and Bosch, F. P.:
Contribution of geophysical methods to karst-system exploration: an overview,
Hydrogeol. J., 19, 1169, https://doi.org/10.1007/s10040-011-0746-x, 2011. a
Cignetti, M., Godone, D., Zucca, F., Bertolo, D., and Giordan, D.: Impact of
Deep-seated Gravitational Slope Deformation on urban areas and large
infrastructures in the Italian Western Alps, Sci. Total Environ., 740, 140360, https://doi.org/10.1016/j.scitotenv.2020.140360, 2020. a
Clark, I. D. and Fritz, P.: Environmental isotopes in hydrogeology, 1st Edn.,
CRC Press, https://doi.org/10.1201/9781482242911, 1997 a, b
Cronshey, R., McCuen, R. H., Miller, N., Rawls, W., Robbins, S., and Woodward, D.: Urban hydrology for small watersheds, US Dept. of Agriculture, Soil Conservation Service, Engineering Division, https://tamug-ir.tdl.org/handle/1969.3/24438 (last access: 28 June 2022), 1986. a
Crosta, G., Frattini, P., and Agliardi, F.: Deep seated gravitational slope
deformations in the European Alps, Tectonophysics, 605, 13–33,
https://doi.org/10.1016/j.tecto.2013.04.028, 2013. a
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
https://doi.org/10.3402/tellusa.v16i4.8993, 1964. a
Eberhardt, E., Bonzanigo, L., and Loew, S.: Long-term investigation of a
deep-seated creeping landslide in crystalline rock. Part II. Mitigation
measures and numerical modelling of deep drainage at Campo Vallemaggia, Can. Geotech. J., 44, 1181–1199, https://doi.org/10.1139/T07-044, 2007. a
Gröning, M., Lutz, H., Roller-Lutz, Z., Kralik, M., Gourcy, L., and
Pöltenstein, L.: A simple rain collector preventing water re-evaporation
dedicated for δ18O and δ2H analysis of cumulative precipitation samples, J. Hydrol., 448–449, 195–200, https://doi.org/10.1016/j.jhydrol.2012.04.041, 2012. a
Guglielmi, Y., Vengeon, J., Bertrand, C., Mudry, J., Follacci, J., and Giraud, A.: Hydrogeochemistry: an investigation tool to evaluate infiltration into large moving rock masses (case study of La Clapière and Séchilienne alpine landslides), Bull. Eng. Geol. Environ., 61, 311–324, https://doi.org/10.1007/s10064-001-0144-z, 2002. a, b, c, d, e, f
Hilberg, S.: Review: Natural tracers in fractured hard-rock aquifers in the
Austrian part of the Eastern Alps–previous approaches and future
perspectives for hydrogeology in mountain regions, Hydrogeol. J., 24, 1091–1105, https://doi.org/10.1007/s10040-016-1395-x, 2016. a
Hilberg, S. and Riepler, F.: Interaction of various flow systems in small
alpine catchments: conceptual model of the upper Gurk Valley aquifer, Carinthia, Austria, Hydrogeol. J., 24, 1231–1244, https://doi.org/10.1007/s10040-016-1396-9, 2016. a, b
Hofmann, R. and Sausgruber, J. T.: Creep behaviour and remediation concept for a deep-seated landslide, Navistal, Tyrol, Austria, Geomech. Tunnel., 10, 59–73, https://doi.org/10.1002/geot.201600066, 2017. a
Humer, G., Herlicska, H., Rank, D., Trimborn, P., and Stichler, W.:
Niederschlagsisotopenmessnetz Österreich, Bundesministerium für Umwelt, ISBN 3-85457-223-9, 1995. a
Jasechko, S., Birks, S. J., Gleeson, T., Wada, Y., Fawcett, P. J., Sharp,
Z. D., McDonnell, J. J., and Welker, J. M.: The pronounced seasonality of
global groundwater recharge, Water Resour. Res., 50, 8845–8867,
https://doi.org/10.1002/2014WR015809, 2014. a
Jomard, H., Lebourg, T., and Tric, E.: Identification of the gravitational
boundary in weathered gneiss by geophysical survey: La Clapière landslide
(France), J. Appl. Geophys., 62, 47–57, https://doi.org/10.1016/j.jappgeo.2006.07.003, 2007. a
Koltai, G., Ostermann, M., Cheng, H., and Spötl, C.: Can vein-filling
speleothems constrain the timing of deep-seated gravitational slope
deformation? A case study from the Vinschgau (Italian Alps), Landslides, 15,
2243–2254, https://doi.org/10.1007/s10346-018-1032-y, 2018. a
Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri,
S. M., Basu, B., Basu, A. S., Bowyer, P., Charizopoulos, N., Gallotti, G.,
Jaakko, J., Leo, L. S., Loupis, M., Menenti, M., Mickovski, S. B., Mun,
S.-J., Gonzalez-Ollauri, A., Pfeiffer, J., Pilla, F., Pröll, J., Rutzinger, M., Santo, M. A., Sannigrahi, S., Spyrou, C., Tuomenvirta, H., and Zieher, T.: Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations, Sci. Total Environ., 784, 147058, https://doi.org/10.1016/j.scitotenv.2021.147058, 2021a. a
Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri,
S. M., Basu, B., Basu, A. S., Bowyer, P., Charizopoulos, N., Jaakko, J.,
Loupis, M., Menenti, M., Mickovski, S. B., Pfeiffer, J., Pilla, F., Pröll, J., Pulvirenti, B., Rutzinger, M., Sannigrahi, S., Spyrou, C., Tuomenvirta, H., Vojinovic, Z., and Zieher, T.: An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards, Earth-Sci. Rev., 217, 103603, https://doi.org/10.1016/j.earscirev.2021.103603, 2021b. a
Lacroix, P., Handwerger, A. L., and Bièvre, G.: Life and death of
slow-moving landslides, Nat. Rev. Earth Environ., 1, 404–419,
https://doi.org/10.1038/s43017-020-0072-8, 2020. a
Lajaunie, M., Gance, J., Nevers, P., Malet, J.-P., Bertrand, C., Garin, T., and Ferhat, G.: Structure of the Séchilienne unstable slope from large-scale three-dimensional electrical tomography using a Resistivity Distributed Automated System (R-DAS), Geophys. J. Int., 219, 129–147,
https://doi.org/10.1093/gji/ggz259, 2019. a
Liebminger, A., Haberhauer, G., Papesch, W., and Heiss, G.: Correlation of the isotopic composition in precipitation with local conditions in alpine
regions, J. Geophys. Res.-Atmos., 111, D05104, https://doi.org/10.1029/2005JD006258, 2006. a, b, c
McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L.,
Welker, J. M., and Seibert, J.: The role of topography on catchment-scale
water residence time, Water Resour. Res., 41, W05002, https://doi.org/10.1029/2004WR003657, 2005. a
Mikoš, M., Četina, M., and Brilly, M.: Hydrologic conditions responsible for triggering the Stože landslide, Slovenia, Eng. Geol., 73, 193–213, https://doi.org/10.1016/j.enggeo.2004.01.011, 2004. a
Montety, V. d., Marc, V., Emblanch, C., Malet, J.-P., Bertrand, C., Maquaire,
O., and Bogaard, T.: Identifying the origin of groundwater and flow processes in complex landslides affecting black marls: insights from a hydrochemical survey, Earth Surf. Proc. Land., 32, 32–48, https://doi.org/10.1002/esp.1370, 2007. a
Mook, W.: Introduction to Isotope Hydrology. Stable and Radioactive Isotopes of Hydrogen, Oxygen and Carbon., Taylo & Francis Group, ISBN 9780415398053, 2006. a
Pfeiffer, J., Zieher, T., Schmieder, J., Rutzinger, M., and Strasser, U.:
Spatio-temporal assessment of the hydrological drivers of an active
deep-seated gravitational slope deformation: The Vögelsberg landslide in
Tyrol (Austria), Earth Surf. Proc. Land., 46, 1865–1881, https://doi.org/10.1002/esp.5129, 2021. a, b, c, d, e, f, g, h, i, j, k
Pfeiffer, J, Zieher, T., Schmieder, J., Bogaard, T., Rutzinger, M., and Spötl, C.: Hydrogeological data of groundwater and precipitation monitored in the Vögelsberg landslide catchment (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.5817141, 2022. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/, last access: 30 November 2021. a
Rockenschaub, M., Kolenprat, B., and Nowotny, A.: Innsbrucker
Quarzphyllitkomplex, Tarntaler Mesozoikum, Patscherkofelkristallin,
Geologische Bundesanstalt – Arbeitstagung 2003: Blatt 148 Brenner, 41–58, https://opac.geologie.ac.at/wwwopacx/wwwopac.ashx?command=getcontent&server=images&value=ATA_2003_Seite_001_282.pdf (last access: 28 June 2021), 2003. a
Rodgers, P., Soulsby, C., and Waldron, S.: Stable isotope tracers as diagnostic tools in upscaling flow path understanding and residence time estimates in a mountainous mesoscale catchment, Hydrol. Process., 19, 2291–2307, https://doi.org/10.1002/hyp.5677, 2005a. a
Rodgers, P., Soulsby, C., Waldron, S., and Tetzlaff, D.: Using stable isotope
tracers to assess hydrological flow paths, residence times and landscape
influences in a nested mesoscale catchment, Hydrol. Earth Syst. Sci., 9, 139–155, https://doi.org/10.5194/hess-9-139-2005, 2005b. a
Ronchetti, F., Piccinini, L., Deiana, M., Ciccarese, G., Vincenzi, V.,
Aguzzoli, A., Malavasi, G., Fabbri, P., and Corsini, A.: Tracer test to
assess flow and transport parameters of an earth slide: The Montecagno
landslide case study (Italy), Eng. Geol., 275, 105749,
https://doi.org/10.1016/j.enggeo.2020.105749, 2020. a, b, c, d
Scanlon, B. R., Healy, R. W., and Cook, P. G.: Choosing appropriate techniques for quantifying groundwater recharge, Hydrogeol. J., 10, 18–39,
https://doi.org/10.1007/s10040-001-0176-2, 2002. a
Schmieder, J., Hanzer, F., Marke, T., Garvelmann, J., Warscher, M., Kunstmann, H., and Strasser, U.: The importance of snowmelt spatiotemporal variability for isotope-based hydrograph separation in a high-elevation catchment, Hydrol. Earth Syst. Sci., 20, 5015–5033,
https://doi.org/10.5194/hess-20-5015-2016, 2016. a
Siemon, B., Christiansen, A. V., and Auken, E.: A review of helicopter-borne
electromagnetic methods for groundwater exploration, Near Surf. Geophys., 7, 629–646, https://doi.org/10.3997/1873-0604.2009043, 2009. a
Strauhal, T., Prager, C., Millen, B., Spoetl, C., Zangerl, C., and Brandner,
R.: Aquifer geochemistry of crystalline rocks and Quaternary deposits in a
high altitude alpine environment (Kauner Valley, Austria), Aust. J. Earth Sci., 109, 29–44, https://doi.org/10.17738/ajes.2016.0002, 2016.
a
Tetzlaff, D., Soulsby, C., Waldron, S., Malcolm, I. A., Bacon, P. J., Dunn,
S. M., Lilly, A., and Youngson, A. F.: Conceptualization of runoff processes
using a geographical information system and tracers in a nested mesoscale
catchment, Hydrol. Process., 21, 1289–1307, https://doi.org/10.1002/hyp.6309, 2007. a
Vallet, A., Bertrand, C., Mudry, J., Bogaard, T., Fabbri, O., Baudement, C.,
and Régent, B.: Contribution of time-related environmental tracing
combined with tracer tests for characterization of a groundwater conceptual
model: a case study at the Séchilienne landslide, western Alps (France),
Hydrogeol. J., 23, 1761–1779, 2015. a, b, c, d, e, f
van Geldern, R. and Barth, J. A.: Optimization of instrument setup and post-run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS), Limnol. Oceanogr.:
Meth., 10, 1024–1036, https://doi.org/10.4319/lom.2012.10.1024, 2012. a
Welch, L. A. and Allen, D. M.: Hydraulic conductivity characteristics in
mountains and implications for conceptualizing bedrock groundwater flow,
Hydrogeol. J., 22, 1003–1026, https://doi.org/10.1007/s10040-014-1121-5, 2014. a
Zieher, T., Markart, G., Ottowitz, D., Römer, A., Rutzinger, M., Meißl, G., and Geitner, C.: Water content dynamics at plot scale – comparison of time-lapse electrical resistivity tomography monitoring and pore pressure modelling, J. Hydrol., 544, 195–209,
https://doi.org/10.1016/j.jhydrol.2016.11.019, 2017. a
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure...
Altmetrics
Final-revised paper
Preprint