Articles | Volume 22, issue 7
https://doi.org/10.5194/nhess-22-2219-2022
https://doi.org/10.5194/nhess-22-2219-2022
Research article
 | 
06 Jul 2022
Research article |  | 06 Jul 2022

Spatial assessment of probable recharge areas – investigating the hydrogeological controls of an active deep-seated gravitational slope deformation

Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl

Related authors

Machine-learning-based nowcasting of the Vögelsberg deep-seated landslide: why predicting slow deformation is not so easy
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
Nat. Hazards Earth Syst. Sci., 23, 3723–3745, https://doi.org/10.5194/nhess-23-3723-2023,https://doi.org/10.5194/nhess-23-3723-2023, 2023
Short summary
SIMULATING UNMANNED-AERIAL-VEHICLE BASED LASER SCANNING DATA FOR EFFICIENT MISSION PLANNING IN COMPLEX TERRAIN
M. Bremer, V. Wichmann, M. Rutzinger, T. Zieher, and J. Pfeiffer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 943–950, https://doi.org/10.5194/isprs-archives-XLII-2-W13-943-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-943-2019, 2019
COMPARISON AND TIME SERIES ANALYSIS OF LANDSLIDE DISPLACEMENT MAPPED BY AIRBORNE, TERRESTRIAL AND UNMANNED AERIAL VEHICLE BASED PLATFORMS
J. Pfeiffer, T. Zieher, M. Rutzinger, M. Bremer, and V. Wichmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 421–428, https://doi.org/10.5194/isprs-annals-IV-2-W5-421-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-421-2019, 2019
ASSESSMENT OF LANDSLIDE-INDUCED DISPLACEMENT AND DEFORMATION OF ABOVE-GROUND OBJECTS USING UAV-BORNE AND AIRBORNE LASER SCANNING DATA
T. Zieher, M. Bremer, M. Rutzinger, J. Pfeiffer, P. Fritzmann, and V. Wichmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 461–467, https://doi.org/10.5194/isprs-annals-IV-2-W5-461-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-461-2019, 2019

Related subject area

Landslides and Debris Flows Hazards
Morphological characteristics and conditions of drainage basins contributing to the formation of debris flow fans: an examination of regions with different rock strength using decision tree analysis
Ken'ichi Koshimizu, Satoshi Ishimaru, Fumitoshi Imaizumi, and Gentaro Kawakami
Nat. Hazards Earth Syst. Sci., 24, 1287–1301, https://doi.org/10.5194/nhess-24-1287-2024,https://doi.org/10.5194/nhess-24-1287-2024, 2024
Short summary
Comparison of debris flow observations, including fine-sediment grain size and composition and runout model results, at Illgraben, Swiss Alps
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024,https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Simulation analysis of 3D stability of a landslide with a locking segment: a case study of the Tizicao landslide in Maoxian County, southwest China
Yuntao Zhou, Xiaoyan Zhao, Guangze Zhang, Bernd Wünnemann, Jiajia Zhang, and Minghui Meng
Nat. Hazards Earth Syst. Sci., 24, 891–906, https://doi.org/10.5194/nhess-24-891-2024,https://doi.org/10.5194/nhess-24-891-2024, 2024
Short summary
Space–time landslide hazard modeling via Ensemble Neural Networks
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024,https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Optimization strategy for flexible barrier structures: investigation and back analysis of a rockfall disaster case in southwestern China
Li-Ru Luo, Zhi-Xiang Yu, Li-Jun Zhang, Qi Wang, Lin-Xu Liao, and Li Peng
Nat. Hazards Earth Syst. Sci., 24, 631–649, https://doi.org/10.5194/nhess-24-631-2024,https://doi.org/10.5194/nhess-24-631-2024, 2024
Short summary

Cited articles

Binet, S., Jomard, H., Lebourg, T., Guglielmi, Y., Tric, E., Bertrand, C., and Mudry, J.: Experimental analysis of groundwater flow through a landslide slip surface using natural and artificial water chemical tracers, Hydrol. Process., 21, 3463–3472, https://doi.org/10.1002/hyp.6579, 2007. a, b
Blasch, K. W. and Bryson, J. R.: Distinguishing Sources of Ground Water Recharge by Using δ2H and δ18O, Groundwater, 45, 294–308, https://doi.org/10.1111/j.1745-6584.2006.00289.x, 2007. a, b
Bogaard, T., Guglielmi, Y., Marc, V., Emblanch, C., Bertrand, C., and Mudry, J.: Hydrogeochemistry in landslide research: a review, Bulletin de la Société Géologique de France, 178, 113–126, https://doi.org/10.2113/gssgfbull.178.2.113, 2007. a
Bogaard, T. A. and Greco, R.: Landslide hydrology: from hydrology to pore pressure, WIREs Water, 3, 439–459, https://doi.org/10.1002/wat2.1126, 2016. a
Bonzanigo, L., Eberhardt, E., and Loew, S.: Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part I. Geological and hydromechanical factors controlling the Campo Vallemaggia landslide, Can. Geotech. J., 44, 1157–1180, https://doi.org/10.1139/T07-043, 2007. a
Download
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Altmetrics
Final-revised paper
Preprint