Articles | Volume 22, issue 7
https://doi.org/10.5194/nhess-22-2219-2022
https://doi.org/10.5194/nhess-22-2219-2022
Research article
 | 
06 Jul 2022
Research article |  | 06 Jul 2022

Spatial assessment of probable recharge areas – investigating the hydrogeological controls of an active deep-seated gravitational slope deformation

Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl

Related authors

Machine-learning-based nowcasting of the Vögelsberg deep-seated landslide: why predicting slow deformation is not so easy
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
Nat. Hazards Earth Syst. Sci., 23, 3723–3745, https://doi.org/10.5194/nhess-23-3723-2023,https://doi.org/10.5194/nhess-23-3723-2023, 2023
Short summary
SIMULATING UNMANNED-AERIAL-VEHICLE BASED LASER SCANNING DATA FOR EFFICIENT MISSION PLANNING IN COMPLEX TERRAIN
M. Bremer, V. Wichmann, M. Rutzinger, T. Zieher, and J. Pfeiffer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 943–950, https://doi.org/10.5194/isprs-archives-XLII-2-W13-943-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-943-2019, 2019
COMPARISON AND TIME SERIES ANALYSIS OF LANDSLIDE DISPLACEMENT MAPPED BY AIRBORNE, TERRESTRIAL AND UNMANNED AERIAL VEHICLE BASED PLATFORMS
J. Pfeiffer, T. Zieher, M. Rutzinger, M. Bremer, and V. Wichmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 421–428, https://doi.org/10.5194/isprs-annals-IV-2-W5-421-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-421-2019, 2019
ASSESSMENT OF LANDSLIDE-INDUCED DISPLACEMENT AND DEFORMATION OF ABOVE-GROUND OBJECTS USING UAV-BORNE AND AIRBORNE LASER SCANNING DATA
T. Zieher, M. Bremer, M. Rutzinger, J. Pfeiffer, P. Fritzmann, and V. Wichmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 461–467, https://doi.org/10.5194/isprs-annals-IV-2-W5-461-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-461-2019, 2019

Related subject area

Landslides and Debris Flows Hazards
Addressing class imbalance in soil movement predictions
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024,https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary
Assessing the impact of climate change on landslides near Vejle, Denmark, using public data
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci., 24, 1897–1911, https://doi.org/10.5194/nhess-24-1897-2024,https://doi.org/10.5194/nhess-24-1897-2024, 2024
Short summary
Analysis of three-dimensional slope stability combined with rainfall and earthquake
Jiao Wang, Zhangxing Wang, Guanhua Sun, and Hongming Luo
Nat. Hazards Earth Syst. Sci., 24, 1741–1756, https://doi.org/10.5194/nhess-24-1741-2024,https://doi.org/10.5194/nhess-24-1741-2024, 2024
Short summary
Assessing landslide damming susceptibility in Central Asia
Carlo Tacconi Stefanelli, William Frodella, Francesco Caleca, Zhanar Raimbekova, Ruslan Umaraliev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 1697–1720, https://doi.org/10.5194/nhess-24-1697-2024,https://doi.org/10.5194/nhess-24-1697-2024, 2024
Short summary
Assessing locations susceptible to shallow landslide initiation during prolonged intense rainfall in the Lares, Utuado, and Naranjito municipalities of Puerto Rico
Rex L. Baum, Dianne L. Brien, Mark E. Reid, William H. Schulz, and Matthew J. Tello
Nat. Hazards Earth Syst. Sci., 24, 1579–1605, https://doi.org/10.5194/nhess-24-1579-2024,https://doi.org/10.5194/nhess-24-1579-2024, 2024
Short summary

Cited articles

Binet, S., Jomard, H., Lebourg, T., Guglielmi, Y., Tric, E., Bertrand, C., and Mudry, J.: Experimental analysis of groundwater flow through a landslide slip surface using natural and artificial water chemical tracers, Hydrol. Process., 21, 3463–3472, https://doi.org/10.1002/hyp.6579, 2007. a, b
Blasch, K. W. and Bryson, J. R.: Distinguishing Sources of Ground Water Recharge by Using δ2H and δ18O, Groundwater, 45, 294–308, https://doi.org/10.1111/j.1745-6584.2006.00289.x, 2007. a, b
Bogaard, T., Guglielmi, Y., Marc, V., Emblanch, C., Bertrand, C., and Mudry, J.: Hydrogeochemistry in landslide research: a review, Bulletin de la Société Géologique de France, 178, 113–126, https://doi.org/10.2113/gssgfbull.178.2.113, 2007. a
Bogaard, T. A. and Greco, R.: Landslide hydrology: from hydrology to pore pressure, WIREs Water, 3, 439–459, https://doi.org/10.1002/wat2.1126, 2016. a
Bonzanigo, L., Eberhardt, E., and Loew, S.: Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part I. Geological and hydromechanical factors controlling the Campo Vallemaggia landslide, Can. Geotech. J., 44, 1157–1180, https://doi.org/10.1139/T07-043, 2007. a
Download
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Altmetrics
Final-revised paper
Preprint