Articles | Volume 22, issue 1
https://doi.org/10.5194/nhess-22-213-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-213-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Precipitation stable isotopic signatures of tropical cyclones in Metropolitan Manila, Philippines, show significant negative isotopic excursions
Dominik Jackisch
Earth Observatory of Singapore, Nanyang Technological University,
Singapore 639798
Bi Xuan Yeo
Asian School of the Environment, Nanyang Technological University,
Singapore 639798
Earth Observatory of Singapore, Nanyang Technological University,
Singapore 639798
Asian School of the Environment, Nanyang Technological University,
Singapore 639798
Shaoneng He
Earth Observatory of Singapore, Nanyang Technological University,
Singapore 639798
Danica Linda M. Cantarero
Marine Science Institute, University of the Philippines Diliman,
Quezon City 1101, Philippines
Fernando P. Siringan
Marine Science Institute, University of the Philippines Diliman,
Quezon City 1101, Philippines
Nathalie F. Goodkin
Earth Observatory of Singapore, Nanyang Technological University,
Singapore 639798
Asian School of the Environment, Nanyang Technological University,
Singapore 639798
American Museum of Natural History, New York, New York 10024, USA
Related authors
No articles found.
Rónadh Cox, Mary C. Bourke, Max Engel, Andrew B. Kennedy, Annie Lau, Serge Suanez, Sarah J. Boulton, Maria Alexandra Oliveira, Raphaël Paris, Dimitra Salmanidou, Michaela Spiske, Wayne Stephenson, Storm Roberts, Adam D. Switzer, Nadia Mhammdi, Niamh D. Cullen, and Masashi Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1913, https://doi.org/10.5194/egusphere-2025-1913, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Coastal boulder deposits record extreme wave events, both storm and tsunami. Fully understanding hazards as recorded in these deposits requires high-quality data for comparison among sites and over time. We analysed methodologies and constructed a comprehensive set of field measurements to improve data consistency and reproducibility. We aim to help geomorphologists produce of data that can be widely shared and used to build extensive analytic understanding of coastal boulder deposits.
Zhi Yang Koh, Benjamin S. Grandey, Dhrubajyoti Samanta, Adam D. Switzer, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Ocean Sci., 20, 1495–1511, https://doi.org/10.5194/os-20-1495-2024, https://doi.org/10.5194/os-20-1495-2024, 2024
Short summary
Short summary
Identifying tide–surge interaction (TSI) is a complex task. We enhance existing statistical methods with a more-robust test that accounts for complex tides. We also develop a semi-empirical model to investigate the influence of one mechanism of TSI, tidal-phase alteration. We apply these techniques to tide-gauge records from Singapore and the east coast of Peninsular Malaysia. We find TSI at all studied locations: tidal-phase alteration can change the timing of large surges.
Jun Yu Puah, Ivan D. Haigh, David Lallemant, Kyle Morgan, Dongju Peng, Masashi Watanabe, and Adam D. Switzer
Ocean Sci., 20, 1229–1246, https://doi.org/10.5194/os-20-1229-2024, https://doi.org/10.5194/os-20-1229-2024, 2024
Short summary
Short summary
Coastal currents have wide implications for port activities, transport of sediments, and coral reef ecosystems; thus a deeper understanding of their characteristics is needed. We collected data on current velocities for a year using current meters at shallow waters in Singapore. The strength of the currents is primarily affected by tides and winds and generally increases during the monsoon seasons across various frequencies.
Andrea Verolino, Su Fen Wee, Susanna F. Jenkins, Fidel Costa, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 24, 1203–1222, https://doi.org/10.5194/nhess-24-1203-2024, https://doi.org/10.5194/nhess-24-1203-2024, 2024
Short summary
Short summary
Submarine volcanic eruptions represent the majority of eruptions taking place on Earth. Still, they are vastly understudied worldwide. Here we compile a new dataset and assess the morphology, depth, and height of submarine volcanoes in Southeast Asia and its surroundings to understand their hazard-exposure potential in the region. This study will serve as a stepping stone for future quantitative hazard assessments from submarine eruptions in Southeast Asia and neighbouring countries.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Raquel P. Felix, Judith A. Hubbard, Kyle E. Bradley, Karen H. Lythgoe, Linlin Li, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 22, 1665–1682, https://doi.org/10.5194/nhess-22-1665-2022, https://doi.org/10.5194/nhess-22-1665-2022, 2022
Short summary
Short summary
The Flores Thrust lies along the north coasts of Bali and Lombok. We model how an earthquake on this fault could trigger a tsunami that would impact the regional capital cities of Mataram and Denpasar. We show that for 3–5 m of slip on the fault (a Mw 7.5–7.9+ earthquake), the cities would experience a wave ca. 1.6–2.7 and ca. 0.6–1.4 m high, arriving in < 9 and ca. 23–27 min, respectively. They would also experience subsidence of 20–40 cm, resulting in long-term exposure to coastal hazards.
Kai Wan Yuen, Adam D. Switzer, Paul P. S. Teng, and Janice Ser Huay Lee
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-4, https://doi.org/10.5194/nhess-2022-4, 2022
Manuscript not accepted for further review
Short summary
Short summary
Few databases provide standardized reporting of disaster-related agricultural damage and loss. We compiled cyclone-induced rice damage data from 1970–2018 in four countries in Asia (Bangladesh, Myanmar, Philippines and Vietnam). Of the 1,046 cyclone events recorded, 13 % or 138 events were associated with rice damage. Philippines and Vietnam accounted for 128 of these events. While higher cyclone intensity tend to cause most damage, lower intensity events were more frequent.
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021, https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary
Short summary
Port industries are extremely vulnerable to coastal hazards such as tsunamis. Despite their pivotal role in local and global economies, there has been little attention paid to tsunami impacts on port industries. For the first time, tsunami damage data are being extensively collected for port structures and catalogued into a database. The study also provides fragility curves which describe the probability of damage exceedance for different port industries given different tsunami intensities.
Kai Wan Yuen, Tang Thi Hanh, Vu Duong Quynh, Adam D. Switzer, Paul Teng, and Janice Ser Huay Lee
Nat. Hazards Earth Syst. Sci., 21, 1473–1493, https://doi.org/10.5194/nhess-21-1473-2021, https://doi.org/10.5194/nhess-21-1473-2021, 2021
Short summary
Short summary
We used flow diagrams to represent the ways in which anthropogenic land use and natural hazards have affected rice production in the two
mega-deltas of Vietnam. Anthropogenic developments meant to improve productivity may create negative feedbacks on rice production and quality. Natural hazards further amplify problems created by human activities. A systems-thinking approach can yield nuanced perspectives for tackling environmental challenges.
Qiang Qiu, Linlin Li, Ya-Ju Hsu, Yu Wang, Chung-Han Chan, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 19, 1565–1583, https://doi.org/10.5194/nhess-19-1565-2019, https://doi.org/10.5194/nhess-19-1565-2019, 2019
Short summary
Short summary
The accuracy of tsunami hazard assessments is highly dependent on the reliability of earthquake source models. In this study, we combine the most updated geological and geophysical data of the Manila subduction zone to propose a series of possible rupture scenarios. These rupture models facilitate an improved understanding of the potential tsunami hazard in the South China Sea. The results highlight the grave consequences faced by the SCS, one of the world's most densely populated coastlines.
Linlin Li, Jie Yang, Chuan-Yao Lin, Constance Ting Chua, Yu Wang, Kuifeng Zhao, Yun-Ta Wu, Philip Li-Fan Liu, Adam D. Switzer, Kai Meng Mok, Peitao Wang, and Dongju Peng
Nat. Hazards Earth Syst. Sci., 18, 3167–3178, https://doi.org/10.5194/nhess-18-3167-2018, https://doi.org/10.5194/nhess-18-3167-2018, 2018
Short summary
Short summary
Typhoon Hato was one of the most damaging natural disaster events in the western Pacific region in 2017. It caused the the worst flooding in Macau since its instrumental records began in 1925. We present a high-resolution survey map recording inundation depths and distances at 278 sites in Macau. We provide a series of inundation maps under different tidal and sea levels. The maps that highlight adaptive strategies are essential in order to keep up with the pace of rising sea level.
Related subject area
Atmospheric, Meteorological and Climatological Hazards
The probabilistic skill of extended-range heat wave forecasts over Europe
An appraisal of the value of simulated weather data for quantifying coastal flood hazard in the Netherlands
Insights into thunderstorm characteristics from geostationary lightning jump and dive observations
The unique features in the 4 d widespread extreme rainfall event over North China in July 2023
Classifying extratropical cyclones and their impact on Finland's electricity grid: insights from 92 damaging windstorms
Evaluation of machine learning approaches for large-scale agricultural drought forecasts to improve monitoring and preparedness in Brazil
Soil moisture–atmosphere coupling strength over central Europe in the recent warming climate
A data-driven framework for assessing climatic impact drivers in the context of food security
Soil conditioner mixtures as an agricultural management alternative to mitigate drought impacts: a proof of concept
Compound winter low-wind and cold events impacting the French electricity system: observed evolution and role of large-scale circulation
Probabilistic hazard analysis of the gas emission of Mefite d'Ansanto, southern Italy
Are heavy-rainfall events a major trigger of associated natural hazards along the German rail network?
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
The record-breaking precipitation event of December 2022 in Portugal
Compound events in Germany in 2018: drivers and case studies
Assimilation of temperature and relative humidity observations from personal weather stations in AROME-France
The anomalously thundery month of June 1925 in southwest Spain: description and synoptic analysis
Spatial identification of regions exposed to multi-hazards at the pan-European level
Classification of North Atlantic and European extratropical cyclones using multiple measures of intensity
Subseasonal forecasts of heat waves in West African cities
Impacts on and damage to European forests from the 2018–2022 heat and drought events
Brief communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Examining the Eastern European extreme summer temperatures of 2023 from a long-term perspective: the role of natural variability vs. anthropogenic factors
How well are hazards associated with derechos reproduced in regional climate simulations?
Is considering runs (in)consistency so useless for weather forecasting?
Reconstructing hail days in Switzerland with statistical models (1959–2022)
Exploring the interplay between observed warming, atmospheric circulation, and soil-atmosphere feedbacks on heatwaves in a temperate mountain region
High-Resolution Data Assimilation for Two Maritime Extreme Weather Events: A comparison between 3DVar and EnKF
Reask UTC: a machine learning modeling framework to generate climate connected tropical cyclone event sets globally
Historical changes in drought characteristics and its impact on vegetation cover over Madagascar
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Invited perspectives: Thunderstorm Intensification from Mountains to Plains
Intense rains in Israel associated with the train effect
Review article: The growth in compound weather events research in the decade since SREX
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Impact-based temporal clustering of multiple meteorological hazard types in southwestern Germany
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
Surprise floods: the role of our imagination in preparing for disasters
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Insights into ground strike point properties in Europe through the EUCLID lightning location system
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
Precipitation extremes in Ukraine from 1979 to 2019: climatology, large-scale flow conditions, and moisture sources
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Aircraft engine dust ingestion at global airports
Catchment-scale assessment of drought impact on environmental flow in the Indus Basin, Pakistan
The risk of synoptic-scale Arctic cyclones to shipping
Natalia Korhonen, Otto Hyvärinen, Virpi Kollanus, Timo Lanki, Juha Jokisalo, Risto Kosonen, David S. Richardson, and Kirsti Jylhä
Nat. Hazards Earth Syst. Sci., 25, 1865–1879, https://doi.org/10.5194/nhess-25-1865-2025, https://doi.org/10.5194/nhess-25-1865-2025, 2025
Short summary
Short summary
The skill of hindcasts from the European Centre for Medium-Range Weather Forecasts in forecasting heat wave days, defined as periods with the 5 d moving average temperature exceeding its local summer 90th percentile over Europe 1 to 4 weeks ahead, is examined. Forecasts of heat wave days show potential for warning of heat risk 1 to 2 weeks in advance and enhanced accuracy in forecasting prolonged heat waves up to 3 weeks ahead, when the heat wave had already begun before forecast issuance.
Cees de Valk and Henk van den Brink
Nat. Hazards Earth Syst. Sci., 25, 1769–1788, https://doi.org/10.5194/nhess-25-1769-2025, https://doi.org/10.5194/nhess-25-1769-2025, 2025
Short summary
Short summary
Estimates of the risk posed by rare and catastrophic weather events are often derived from relatively short measurement records, which renders them highly uncertain. We investigate if (and by how much) this uncertainty can be reduced by making use of large datasets of simulated weather. More specifically, we focus on coastal flood hazard in the Netherlands and on the challenge of estimating the once in 10 million years coastal water level and wind stress as accurately as possible.
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025, https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary
Short summary
This study provides detailed insight into the thunderstorm characteristics associated with abrupt changes in the lightning activity of a thunderstorm – lightning jumps (LJs) and lightning dives (LDs) – using geostationary satellite observations. Thunderstorms exhibiting one or multiple LJs or LDs feature characteristics similar to severe thunderstorms. Storms with multiple LJs contain strong convective updrafts and are prone to produce high rain rates, large hail, or tornadoes.
Jinfang Yin, Feng Li, Mingxin Li, Rudi Xia, Xinghua Bao, Jisong Sun, and Xudong Liang
Nat. Hazards Earth Syst. Sci., 25, 1719–1735, https://doi.org/10.5194/nhess-25-1719-2025, https://doi.org/10.5194/nhess-25-1719-2025, 2025
Short summary
Short summary
A persistent severe rainfall event occurred over North China in July 2023, which was regarded as one of the most extreme episodes globally during that year. The extreme rainfall was significantly underestimated by forecasters at that time. Flooding from this event affected 1.3 million people, causing severe human casualties and economic losses. We examined the convective initiation and subsequent persistent heavy rainfall based on simulations with the Weather Research and Forecasting model.
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and Victoria Anne Sinclair
Nat. Hazards Earth Syst. Sci., 25, 1697–1717, https://doi.org/10.5194/nhess-25-1697-2025, https://doi.org/10.5194/nhess-25-1697-2025, 2025
Short summary
Short summary
We present a classification method for extratropical cyclones and windstorms and show their impacts on Finland's electricity grid by analysing the 92 most damaging windstorms (2005–2018). The south-west- and north-west-arriving windstorms cause the most damage to the power grid. The most relevant parameters for damage are the wind gust speed and extent of wind gusts. Windstorms are more frequent and damaging in autumn and winter, but weaker wind speeds in summer also cause significant damage.
Joseph W. Gallear, Marcelo Valadares Galdos, Marcelo Zeri, and Andrew Hartley
Nat. Hazards Earth Syst. Sci., 25, 1521–1541, https://doi.org/10.5194/nhess-25-1521-2025, https://doi.org/10.5194/nhess-25-1521-2025, 2025
Short summary
Short summary
In Brazil, drought is of national concern and can have major consequences for agriculture. Here, we determine how to develop forecasts for drought stress on vegetation health using machine learning. Results aim to inform future developments in operational drought monitoring at the National Centre for Monitoring and Early Warning of Natural Disasters (CEMADEN) in Brazil. This information is essential for disaster preparedness and planning of future actions to support areas affected by drought.
Thomas Schwitalla, Lisa Jach, Volker Wulfmeyer, and Kirsten Warrach-Sagi
Nat. Hazards Earth Syst. Sci., 25, 1405–1424, https://doi.org/10.5194/nhess-25-1405-2025, https://doi.org/10.5194/nhess-25-1405-2025, 2025
Short summary
Short summary
During recent decades, Europe has experienced increasing periods of severe drought and heatwave. To provide an overview of how land-surface conditions shape land–atmosphere (LA) coupling, the interannual LA coupling strength variability for the summer seasons of 1991–2022 is investigated by means of ERA5 data. The results clearly reflect ongoing climate change by a shift in the coupling relationships towards reinforced heating and drying by the land surface.
Marcos Roberto Benso, Roberto Fray Silva, Gabriela Chiquito Gesualdo, Antonio Mauro Saraiva, Alexandre Cláudio Botazzo Delbem, Patricia Angélica Alves Marques, José Antonio Marengo, and Eduardo Mario Mendiondo
Nat. Hazards Earth Syst. Sci., 25, 1387–1404, https://doi.org/10.5194/nhess-25-1387-2025, https://doi.org/10.5194/nhess-25-1387-2025, 2025
Short summary
Short summary
This study applies climate extreme indices to assess climate risks to food security. Using an explainable machine learning analysis, key climate indices affecting maize and soybean yields in Brazil were identified. Results reveal the temporal sensitivity of these indices and critical yield loss thresholds, informing policy and adaptation strategies.
Juan F. Dueñas, Edda Kunze, Huiying Li, and Matthias C. Rillig
Nat. Hazards Earth Syst. Sci., 25, 1377–1386, https://doi.org/10.5194/nhess-25-1377-2025, https://doi.org/10.5194/nhess-25-1377-2025, 2025
Short summary
Short summary
We investigated the potential of adding mixtures composed of minimum dosages of several popular amendment types to soil. Our goal was to increase the resistance of agricultural soil to drought stress. We found that adding mixtures of three to five amendment types increased the capacity of soil to retain water, reduced soil erosion, and increased fungal abundance while buffering soil from drastic changes in pH. More research is encouraged to validate this approach.
François Collet, Margot Bador, Julien Boé, Laurent Dubus, and Bénédicte Jourdier
Nat. Hazards Earth Syst. Sci., 25, 843–856, https://doi.org/10.5194/nhess-25-843-2025, https://doi.org/10.5194/nhess-25-843-2025, 2025
Short summary
Short summary
Our aim is to characterize the observed evolution of compound winter low-wind and cold events impacting the French electricity system. The frequency of compound events exhibits a decrease over the 1950–2022 period, which is likely due to a decrease in cold days. Large-scale atmospheric circulation is an important driver of compound event occurrence and has likely contributed to the decrease in cold days, while we cannot draw conclusions on its influence on the decrease in compound events.
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025, https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Short summary
We present results of non-volcanic-gas (CO2) hazard assessment at the Mefite d’Ansanto area (Italy) where a cold-gas stream, which has already been lethal to humans and animals, forms in the valleys surrounding the emission zone. We took the uncertainty related to the gas emission and meteorological conditions into account. Results include maps of CO2 concentrations at defined probability levels and the probability of overcoming specified CO2 concentrations over specified time intervals.
Sonja Szymczak, Frederick Bott, Vigile Marie Fabella, and Katharina Fricke
Nat. Hazards Earth Syst. Sci., 25, 683–707, https://doi.org/10.5194/nhess-25-683-2025, https://doi.org/10.5194/nhess-25-683-2025, 2025
Short summary
Short summary
We investigate the correlation between heavy-rainfall events and three associated natural hazards along the German rail network using GIS analyses and random-effects logistic models. The results show that 23 % of floods, 14 % of gravitational mass movements, and 2 % of tree fall events between 2017 and 2020 occurred after a heavy-rainfall event, and the probability of occurrence of flood and tree fall events significantly increased. This study contributes to more resilient rail transport.
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 25, 675–682, https://doi.org/10.5194/nhess-25-675-2025, https://doi.org/10.5194/nhess-25-675-2025, 2025
Short summary
Short summary
Extreme rainfall comprises a major hydrohazard for New Zealand and is commonly associated with atmospheric rivers – narrow plumes of very high atmospheric moisture transport. Here, we focus on improved forecasting of these events by testing a forecasting tool previously applied to similar situations in western Europe. However, our results for New Zealand suggest the performance of this forecasting tool may vary depending on geographical setting.
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci., 25, 609–623, https://doi.org/10.5194/nhess-25-609-2025, https://doi.org/10.5194/nhess-25-609-2025, 2025
Short summary
Short summary
We investigate the synoptic evolution associated with the occurrence of an atmospheric river that led to a 24 h record-breaking extreme precipitation event (120.3 mm) in Lisbon, Portugal, on 13 December 2022. The synoptic background allowed the formation, on 10 December, of an atmospheric river associated with a deep extratropical cyclone and with a high moisture content and an inflow of moisture, due to the warm conveyor belt, throughout its life cycle. The system made landfall on 12 December.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 25, 429–449, https://doi.org/10.5194/nhess-25-429-2025, https://doi.org/10.5194/nhess-25-429-2025, 2025
Short summary
Short summary
The use of numerical weather prediction models enables the forecasting of hazardous weather situations. The incorporation of new temperature and relative humidity observations from personal weather stations into the French limited-area model is evaluated in this study. This leads to the improvement of the associated near-surface variables of the model during the first hours of the forecast. Examples are provided for a sea breeze case during a heatwave and a fog episode.
Francisco Javier Acero, Manuel Antón, Alejandro Jesús Pérez Aparicio, Nieves Bravo-Paredes, Víctor Manuel Sánchez Carrasco, María Cruz Gallego, José Agustín García, Marcelino Núñez, Irene Tovar, Javier Vaquero-Martínez, and José Manuel Vaquero
Nat. Hazards Earth Syst. Sci., 25, 305–320, https://doi.org/10.5194/nhess-25-305-2025, https://doi.org/10.5194/nhess-25-305-2025, 2025
Short summary
Short summary
The month of June 1925 was found to be exceptional in the southwest interior of the Iberian Peninsula due to the large number of thunderstorms and their significant impacts, with serious losses of human lives and material resources. We analyzed this event from different, complementary perspectives: reconstruction of the history of the events from newspapers, study of monthly meteorological variables of the longest series available, and the analysis of the meteorological synoptic situation.
Tiberiu-Eugen Antofie, Stefano Luoni, Aloïs Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci., 25, 287–304, https://doi.org/10.5194/nhess-25-287-2025, https://doi.org/10.5194/nhess-25-287-2025, 2025
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hotspots) and meta-analysis in order to identify the regions at a European level at risk of multi-hazards. The findings point out the socioeconomic dimension as a determining factor in the potential risk of multi-hazards. The outcome provides valuable input for the disaster risk management policy support and will assist national authorities on the implementation of a multi-hazard approach in national risk assessment preparation.
Joona Cornér, Clément Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria A. Sinclair
Nat. Hazards Earth Syst. Sci., 25, 207–229, https://doi.org/10.5194/nhess-25-207-2025, https://doi.org/10.5194/nhess-25-207-2025, 2025
Short summary
Short summary
Classification reduces the considerable variability between extratropical cyclones (ETCs) and thus simplifies studying their representation in climate models and changes in the future climate. In this paper we present an objective classification of ETCs using measures of ETC intensity. This is motivated by the aim of finding a set of ETC intensity measures which together comprehensively describe both the dynamical and impact-relevant nature of ETC intensity.
Cedric G. Ngoungue Langue, Christophe Lavaysse, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 25, 147–168, https://doi.org/10.5194/nhess-25-147-2025, https://doi.org/10.5194/nhess-25-147-2025, 2025
Short summary
Short summary
The present study addresses the predictability of heat waves at subseasonal timescales in West African cities over the period 2001–2020. Two models, the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office models, were evaluated using two reanalyses: ERA5 and MERRA. The results suggest that at subseasonal timescales, the forecast models provide a better forecast than climatology, but the hit rate and false alarm rate are sub-optimal.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025, https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
Georgy Ayzel and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 41–47, https://doi.org/10.5194/nhess-25-41-2025, https://doi.org/10.5194/nhess-25-41-2025, 2025
Short summary
Short summary
Forecasting rainfall over the next hour is an essential feature of early warning systems. Deep learning (DL) has emerged as a powerful alternative to conventional nowcasting technologies, but it still struggles to adequately predict impact-relevant heavy rainfall. We think that DL could do much better if the training tasks were defined more specifically and that such specification presents an opportunity to better align the output of nowcasting models with actual user requirements.
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 24, 4683–4706, https://doi.org/10.5194/nhess-24-4683-2024, https://doi.org/10.5194/nhess-24-4683-2024, 2024
Short summary
Short summary
Eastern Europe's heat wave history is explored from 1885 to 2023, with a focus on pre-1960 events. The study reveals two periods with more frequent and intense heat waves (HWs): 1920s–1960s and 1980s–present. The research highlights the importance of a long-term perspective, revealing that extreme heat events have occurred throughout the entire study period, and it emphasizes the combined influence of climate change and natural variations on increasing HW severity.
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024, https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary
Short summary
A historic derecho in the USA is presented. The 29 June 2012 derecho caused more than 20 deaths and millions of US dollars of damage. We use a regional climate model to understand how model fidelity changes under different initial conditions. We find changes drive different convective conditions, resulting in large variation in the simulated hazards. The variation using different reanalysis data shows that framing these results in the context of contemporary and future climate is a challenge.
Hugo Marchal, François Bouttier, and Olivier Nuissier
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-208, https://doi.org/10.5194/nhess-2024-208, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This paper investigates the relationship between changes in weather forecasts and predictability, which has so far been considered weak. By focusing on the persistence of weather scenarios over successive forecasts, we found that it significantly affects the reliability of forecasts.
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024, https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past hail days in Switzerland from 1959–2022. This new time series reveals a significant increase in hail day occurrences over the last 7 decades. We link this trend to increases in moisture and instability variables in the models. This time series can now be used to unravel the complexities of Swiss hail occurrence and to understand what drives its year-to-year variability.
Marc Lemus-Canovas, Sergi Gonzalez-Herrero, Laura Trapero, Anna Albalat, Damian Insua-Costa, Martin Senande-Rivera, and Gonzalo Miguez-Macho
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-192, https://doi.org/10.5194/nhess-2024-192, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study explores the 2022 heatwaves in the Pyrenees, examining the factors that contributed to their intensity and distribution. The June event was driven by strong winds that created uneven temperature patterns, while the July heatwave featured calmer conditions and more uniform temperatures. Human-driven climate change has made these heatwaves more severe compared to the past. This research helps us better understand how climate change affects extreme weather in mountainous regions.
Diego Saúl Carrió, Vincenzo Mazzarella, and Rossella Ferretti
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-177, https://doi.org/10.5194/nhess-2024-177, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Populated coastal regions in the Mediterranean are known to be severely affected by extreme weather events that are initiated over maritime regions. These weather events are known to pose a serious problem in terms of numerical predictability. Different Data Assimilation techniques are used in this study with the main aim of enhancing short-range forecasts of two challenging severe weather events.
Thomas Loridan and Nicolas Bruneau
EGUsphere, https://doi.org/10.5194/egusphere-2024-3253, https://doi.org/10.5194/egusphere-2024-3253, 2024
Short summary
Short summary
Tropical Cyclone (TC) risk models have been used by the insurance industry to quantify occurrence and severity risk since the 90s. To date these models are mostly built from backward looking statistics and portray risk under a static view of the climate. We here introduce a novel approach, based on machine learning, that allows sampling of climate variability when assessing TC risk globally. This is of particular importance when computing forward looking views of TC risk.
Herijaona Hani-Roge Hundilida Randriatsara, Eva Holtanova, Karim Rizwan, Hassen Babaousmail, Mirindra Finaritra Tanteliniaina Rabezanahary, Kokou Romaric Posset, Donnata Alupot, and Brian Odhiambo Ayugi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-191, https://doi.org/10.5194/nhess-2024-191, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study aims to analyze the spatiotemporal characteristics of drought (duration, frequency, severity, intensity) over Madagascar during 1981–2022 by using Standardized Precipitation Index (SPI-3, -6 and -12). Additionally, the impact of drought on vegetation over the studied area was assessed based on the relationship evaluation between SPI and the Normalized Difference Vegetation Index (NDVI) during 2000–2022.
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024, https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance compared to a single meteorological drought index or agricultural drought index in terms of drought identification.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Jannick Fischer, Pieter Groenemeijer, Alois Holzer, Monika Feldmann, Katharina Schröer, Francesco Battaglioli, Lisa Schielicke, Tomáš Púčik, Christoph Gatzen, Bogdan Antonescu, and the TIM Partners
EGUsphere, https://doi.org/10.5194/egusphere-2024-2798, https://doi.org/10.5194/egusphere-2024-2798, 2024
Short summary
Short summary
Strong thunderstorms have been studied mainly over flat terrain and in computer simulations in the past. However, they are particularly frequent near mountain ranges, which emphasizes the need to study storms near mountains. This article gives an overview about our existing knowledge on this topic and presents plans for a large European field campaign with the goals to fill these knowledge gaps, validate tools for thunderstorm warnings, and improve numerical weather prediction near mountains.
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024, https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Short summary
The train effect is related to convective cells that pass over the same place. Trains produce heavy rainfall and sometimes floods and are reported in North America during spring and summer. In Israel, 17 trains associated with Cyprus lows were identified by radar images and were found within the cold sector south of the low center and in the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km; last 1–3 h; and yield 35 mm of rainfall up to 60 mm.
Lou Brett, Christopher J. White, Daniela I.V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-182, https://doi.org/10.5194/nhess-2024-182, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events and compounding flooding. The review also highlights opportunities for research in the coming years.
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024, https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Katharina Küpfer, Alexandre Tuel, and Michael Kunz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2803, https://doi.org/10.5194/egusphere-2024-2803, 2024
Short summary
Short summary
Using loss data, we assess when and how single and multiple types of meteorological extremes (river floods and heavy rainfall events, windstorms and convective gusts, and hail). We find that the combination of several types of hazards clusters robustly on a seasonal scale, whereas only some single hazard types occur in clusters. This can be associated with higher losses compared to isolated events. We argue for the relevance of jointly considering multiple types of hazards.
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024, https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the vapor pressure deficit (VPD), an important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal shows the potential for using smartphone data to compliment the regular weather station network while also providing high spatial resolution of the VPD index.
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
Khalil Ur Rahman, Songhao Shang, Khaled Saeed Balkhair, Hamza Farooq Gabriel, Khan Zaib Jadoon, and Kifayat Zaman
Nat. Hazards Earth Syst. Sci., 24, 2191–2214, https://doi.org/10.5194/nhess-24-2191-2024, https://doi.org/10.5194/nhess-24-2191-2024, 2024
Short summary
Short summary
This paper assesses the impact of drought (meteorological drought) on the hydrological alterations in major rivers of the Indus Basin. Threshold regression and range of variability analysis are used to determine the drought severity and times where drought has caused low flows and extreme low flows (identified using indicators of hydrological alterations). Moreover, this study also examines the degree of alterations in river flows due to drought using the hydrological alteration factor.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Cited articles
Aggarwal, P. K., Alduchov, O. A., Froehlich, K. O., Araguas-Araguas, L. J.,
Sturchio, N. C., and Kurita, N.: Stable isotopes in global precipitation: A
unified interpretation based on atmospheric moisture residence time,
Geophys. Res. Lett., 39, 1–6, https://doi.org/10.1029/2012GL051937, 2012.
Alojado, D. and Padua, D. M.: Costliest Typhoons of the Philippines (1947–2014), available at:
https://www.typhoon2000.ph/stormstats/WPF_CostliestTyphoonsPhilippines_2015Ed.pdf (last access: 17 September 2019), 2015.
Belgaman, H., Ichiyanagi, K., Tanoue, M., and Suwarman, R.: Observational
Research on Stable Isotopes in Precipitation over Indonesian Maritime
Continent, J. Japanese Assoc. Hydrol. Sci., 46, 7–28,
https://doi.org/10.4145/jahs.46.7, 2016.
Bony, S., Risi, C., and Vimeux, F.: Influence of convective processes on the
isotopic composition (δ18O and δD) of precipitation and
water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical
Ocean-Global Atmosphere-Coupled Ocean-Atmosphere Response Experiment, J.
Geophys. Res.-Atmos., 113, 1–21, https://doi.org/10.1029/2008JD009942, 2008.
Bowen, G. J.: Spatial analysis of the intra-annual variation of
precipitation isotope ratios and its climatological corollaries, J. Geophys.
Res.-Atmos., 113, 1–10, https://doi.org/10.1029/2007JD009295, 2008.
Chakraborty, S., Sinha, N., Chattopadhyay, R., Sengupta, S., Mohan, P. M.,
and Datye, A.: Atmospheric controls on the precipitation isotopes over the
Andaman Islands, Bay of Bengal, Sci. Rep.-UK, 6, 1–11, https://doi.org/10.1038/srep19555,
2016.
Cinco, T. A., de Guzman, R. G., Hilario, F. D., and Wilson, D. M.: Long-term
trends and extremes in observed daily precipitation and near surface air
temperature in the Philippines for the period 1951–2010, Atmos. Res.,
145–146, 12–26, https://doi.org/10.1016/j.atmosres.2014.03.025, 2014.
Cinco, T. A., de Guzman, R. G., Ortiz, A. M. D., Delfino, R. J. P., Lasco,
R. D., Hilario, F. D., Juanillo, E. L., Barba, R., and Ares, E. D.: Observed
trends and impacts of tropical cyclones in the Philippines, Int. J.
Climatol., 36, 4638–4650, https://doi.org/10.1002/joc.4659, 2016.
Conroy, J. L., Noone, D., Cobb, K. M., Moerman, J. W., and Konecky, B. L.:
Paired stable isotopologues in precipitation and vapor: A case study of the
amount effect within western tropical Pacific storms, J. Geophys. Res.,
121, 3290–3303, https://doi.org/10.1002/2015JD023844, 2016.
Craig, H.: Isotopic variations in meteoric waters, Science,
133, 1702–1703, https://doi.org/10.1126/science.133.3465.1702, 1961.
Cruz, F. T., Narisma, G. T., Villafuerte, M. Q., Cheng Chua, K. U., and
Olaguera, L. M.: A climatological analysis of the southwest monsoon rainfall
in the Philippines, Atmos. Res., 122, 609–616,
https://doi.org/10.1016/j.atmosres.2012.06.010, 2013.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
https://doi.org/10.3402/tellusa.v16i4.8993, 1964.
Emanuel, K.: Increasing destructiveness of tropical cyclones over the past
30 years, Nature, 436, 686–688, https://doi.org/10.1038/nature03906, 2005.
Frappier, A. B.: Masking of interannual climate proxy signals by residual
tropical cyclone rainwater: Evidence and challenges for low-latitude
speleothem paleoclimatology, Geochem. Geophys. Geosyst., 14,
3632–3647, https://doi.org/10.1002/ggge.20218, 2013.
Frappier, A. B., Sahagian, D., Carpenter, S. J., González, L. A., and
Frappier, B. R.: Stalagmite stable isotope record of recent tropic cyclone
events, Geology, 35, 111–114, https://doi.org/10.1130/G23145A.1, 2007.
Fudeyasu, H., Ichiyanagi, K., Sugimoto, A., Yoshimura, K., Ueta, A.,
Yamanaka, M. D., and Ozawa, K.: Isotope ratios of precipitation and water
vapor observed in typhoon Shanshan, J. Geophys. Res.-Atmos., 113, 1–9,
https://doi.org/10.1029/2007JD009313, 2008.
Gedzelman, S., Lawrence, J., Gamache, J., Black, M., Hindman, E., Black, R.,
Dunion, J., Willoughby, H., and Zhang, X.: Probing Hurricanes with Stable
Isotopes of Rain and Water Vapor, Mon. Weather Rev., 131, 1112–1127,
https://doi.org/10.1175/1520-0493(2003)131<1112:PHWSIO>2.0.CO;2,
2003.
Good, S. P., Mallia, D. V., Lin, J. C., and Bowen, G. J.: Stable isotope
analysis of precipitation samples obtained via crowdsourcing reveals the
spatiotemporal evolution of superstorm sandy, PLoS One, 9, 3,
https://doi.org/10.1371/journal.pone.0091117, 2014.
Gröning, M., Lutz, H. O., Roller-Lutz, Z., Kralik, M., Gourcy, L., and
Pöltenstein, L.: A simple rain collector preventing water re-evaporation
dedicated for δ 18O and δ2H analysis of cumulative
precipitation samples, J. Hydrol., 448–449, 195–200,
https://doi.org/10.1016/j.jhydrol.2012.04.041, 2012.
Guan, S., Li, S., Hou, Y., Hu, P., Liu, Z., and Feng, J.: Increasing threat
of landfalling typhoons in the western North Pacific between 1974 and 2013,
Int. J. Appl. Earth Obs. Geoinf., 68, 279–286,
https://doi.org/10.1016/j.jag.2017.12.017, 2018.
He, S., Goodkin, N. F., Jackisch, D., Ong, M. R., and Samanta, D.: Continuous
real-time analysis of the isotopic composition of precipitation during
tropical rain events: Insights into tropical convection, Hydrol. Process.,
32, 1531–1545, https://doi.org/10.1002/hyp.11520, 2018.
Huffman, G. J., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C.,
Nelkin, E. J., Sorooshian, S., Tan, J., and Xie, P.: Algorithm Theoretical
Basis Document (ATBD) of Integrated Multi-satellitE Retrievals for GPM
(IMERG), version 4.6, Nasa, available at:
https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.6.pdf (last access: 11 September 2019), 2017.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J, and Tan, J.: GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V05, edited by: Savtchenko, A., Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/GPM/IMERGDF/DAY/06 (last access: 14 December 2018), 2019.
Knapp, K. R., Applequist, S., Diamond, H. J., Kossin, J. P., Kruk, M., and Schreck, C.: NCDC International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 3, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5NK3BZP (last access: 18 September 2019), 2010a.
Knapp, K. R., Levinson, D. H., Kruk, M. C., Howard, J. H., and Kossin, J. P.:
The International Best Track Archive for Climate Stewardship (IBTrACS),
B. Am. Meteorol. Soc., 91, 363–376,
https://doi.org/10.1007/978-90-481-3109-9_26, 2010b.
Kurita, N.: Water isotopic variability in response to mesoscale convective
system over the tropical ocean, J. Geophys. Res.-Atmos., 118,
10376–10390, https://doi.org/10.1002/jgrd.50754, 2013.
Kurita, N., Ichiyanagi, K., Matsumoto, J., Yamanaka, M. D., and Ohata, T.:
The relationship between the isotopic content of precipitation and the
precipitation amount in tropical regions, J. Geochem. Explor., 102,
113–122, https://doi.org/10.1016/j.gexplo.2009.03.002, 2009.
Lagmay, A. M. F., Agaton, R. P., Bahala, M. A. C., Briones, J. B. L. T.,
Cabacaba, K. M. C., Caro, C. V. C., Dasallas, L. L., Gonzalo, L. A. L.,
Ladiero, C. N., Lapidez, J. P., Mungcal, M. T. F., Puno, J. V. R., Ramos, M.
M. A. C., Santiago, J., Suarez, J. K., and Tablazon, J. P.: Devastating storm
surges of Typhoon Haiyan, Int. J. Disaster Risk Reduct., 11, 1–12,
https://doi.org/10.1016/j.ijdrr.2014.10.006, 2015.
Lawrence, J. R.: Isotopic spikes from tropical cyclones in surface waters:
Opportunities in hydrology and paleoclimatology, Chem. Geol., 144,
153–160, https://doi.org/10.1016/S0009-2541(97)00090-9, 1998.
Lawrence, J. R. and Gedzelman, S. D.: Low stable isotope ratios of tropical
cyclone rains, Geophys. Res. Lett., 23, 527–530, 1996.
Lawrence, J. R., Gedzelman, S. D., Gamache, J., and Black, M.: Stable isotope
ratios: Hurricane Olivia, J. Atmos. Chem., 41, 67–82,
https://doi.org/10.1023/A:1013808530364, 2002.
Li, Z. H., Labbé, N., Driese, S. G., and Grissino-Mayer, H. D.:
Micro-scale analysis of tree-ring δ18O and δ13C on α-cellulose spline reveals high-resolution intra-annual climate variability
and tropical cyclone activity, Chem. Geol., 284, 138–147,
https://doi.org/10.1016/j.chemgeo.2011.02.015, 2011.
Marryanna, L., Kosugi, Y., Itoh, M., Noguchi, S., Takanashi, S., Katsuyama,
M., Tani, M., and Siti-Aisah, S.: Temporal variation in the stable isotopes
in precipitation related to the rainfall pattern in a tropical rainforest in
Peninsular Malaysia, J. Trop. For. Sci., 29, 349–362,
https://doi.org/10.26525/jtfs2017.29.3.349362, 2017.
Mei, W., Xie, S. P., Primeau, F., McWilliams, J. C., and Pasquero, C.:
Northwestern Pacific typhoon intensity controlled by changes in ocean
temperatures, Sci. Adv., 1, 1–8, https://doi.org/10.1126/sciadv.1500014, 2015.
Miller, D. L., Mora, C. I., Grissino-Mayer, H. D., Mock, C. J., Uhle, M. E.,
and Sharp, Z.: Tree-ring isotope records of tropical cyclone activity,
P. Natl. Acad. Sci. USA, 103, 14294–14297,
https://doi.org/10.1073/pnas.0606549103, 2006.
Moerman, J. W., Cobb, K. M., Adkins, J. F., Sodemann, H., Clark, B., and
Tuen, A. A.: Diurnal to interannual rainfall δ18O variations in
northern Borneo driven by regional hydrology, Earth Planet. Sci. Lett.,
369–370, 108–119, https://doi.org/10.1016/j.epsl.2013.03.014, 2013.
Munksgaard, N. C., Zwart, C., Kurita, N., Bass, A., Nott, J., and Bird, M.
I.: Stable Isotope Anatomy of Tropical Cyclone Ita, North-Eastern Australia,
April 2014, PLoS One, 10, 1–15, https://doi.org/10.1371/journal.pone.0119728, 2015.
NDRRMC: SitRep No. 38 re Effects of Typhoon “Pablo” (Bopha), available at:
http://www.ndrrmc.gov.ph/attachments/article/2245/SitRep_No_38_Effects_of_Typhoon_PABLO_as_of_25DEC2012_0600H.pdf (last access: 18 September 2019), 2012.
NDRRMC: Final Report re Effects of Typhoon “Glenda” (RAMMASUN), available at:
http://ndrrmc.gov.ph/attachments/article/1293/Effects_of_Typhoon_Glenda_(RAMMASUN)_Final_Report_16SEP2014.pdf (last access: 17 September 2019), 2014.
NDRRMC: Final Report re Preparedness Measures and Effects of Typhoon
“Lando” (I.N. Koppu), available at:
http://ndrrmc.gov.ph/attachments/article/2607/FINAL_REPORT_re_Preparedness_Measures_and_Effects_of_Typhoon_LANDO_KOPPU_as_of_14_-_21OCT2015.pdf (last access: 17 September 2019), 2015.
Nott, J., Haig, J., Neil, H., and Gillieson, D.: Greater frequency
variability of landfalling tropical cyclones at centennial compared to
seasonal and decadal scales, Earth Planet. Sci. Lett., 255, 367–372,
https://doi.org/10.1016/j.epsl.2006.12.023, 2007.
Oliva, F., Peros, M., and Viau, A.: A review of the spatial distribution of
and analytical techniques used in paleotempestological studies in the
western North Atlantic Basin, Prog. Phys. Geogr., 41, 171–190,
https://doi.org/10.1177/0309133316683899, 2017.
Pape, J. R., Banner, J. L., Mack, L. E., Musgrove, M. L., and Guilfoyle, A.:
Controls on oxygen isotope variability in precipitation and cave drip
waters, central Texas, USA, J. Hydrol., 385, 203–215,
https://doi.org/10.1016/j.jhydrol.2010.02.021, 2010.
Park, M. S., Lee, M. I., Kim, D., Bell, M. M., Cha, D. H., and Elsberry, R.
L.: Land-based convection effects on formation of tropical cyclone Mekkhala
(2008), Mon. Weather Rev., 145, 1315–1337, https://doi.org/10.1175/MWR-D-16-0167.1,
2017.
Permana, D. S., Thompson, L. G., and Setyadi,
G.: Tropical West Pacific moisture dynamics and climate controls on rainfall isotopic ratios in southern Papua, Indonesia, J. Geophys. Res.-Atmos., 121, 2222–2245, https://doi.org/10.1002/2015JD023893, 2016.
Philippine Statistics Authority: Philippine Population Surpassed the 100
Million Mark (Results from the 2015 Census of Population), available at: http://www.psa.gov.ph/population-and-housing/node/120080
(last access: 15 September 2019), 2017.
Poméon, T., Jackisch, D., and Diekkrüger, B.: Evaluating the
performance of remotely sensed and reanalysed precipitation data over West
Africa using HBV light, J. Hydrol., 547, 222–235, https://doi.org/10.1016/j.jhydrol.2017.01.055,
2017.
Rios Gaona, M. F., Villarini, G., Zhang, W., and Vecchi, G. A.: The added
value of IMERG in characterizing rainfall in tropical cyclones, Atmos. Res.,
209, 95–102, https://doi.org/10.1016/j.atmosres.2018.03.008, 2018.
Risi, C., Bony, S., Vimeux, F., Descroix, L., Ibrahim, B., Lebreton, E.,
Mamadou, I., and Sultan, B.: What controls the isotopic composition of the
African monsoon precipitation? Insights from event-based precipitation
collected during the 2006 AMMA field campaign, Geophys. Res. Lett., 35,
1–6, https://doi.org/10.1029/2008GL035920, 2008.
Soria, J. L. A., Switzer, A. D., Villanoy, C. L., Fritz, H. M., Bilgera, P.
H. T., Cabrera, O. C., Siringan, F. P., Maria, Y. Y. S., Ramos, R. D., and
Fernandez, I. Q.: Repeat storm surge disasters of typhoon haiyan and its
1897 predecessor in the Philippines, B. Am. Meteorol. Soc., 97,
31–48, https://doi.org/10.1175/BAMS-D-14-00245.1, 2016.
Takagi, H. and Esteban, M.: Statistics of tropical cyclone landfalls in the
Philippines: unusual characteristics of 2013 Typhoon Haiyan, Nat. Hazards,
80, 211–222, https://doi.org/10.1007/s11069-015-1965-6, 2016.
Tremoy, G., Vimeux, F., Soumana, S., Souley, I., and Risi, C.: Clustering
mesoscale convective systems with laser-based water vapor δ18O monitoring in
Niamey (Niger), J. Geophys. Res.-Atmos., 119, 5079–5103, https://doi.org/10.1002/2013JD020968, 2014.
Van Geldern, R. and Barth, J. A. C.: Optimization of instrument setup and
post-run corrections for oxygen and hydrogen stable isotope measurements of
water by isotope ratio infrared spectroscopy (IRIS), Limnol. Oceanogr.
Methods, 10, 1024–1036, https://doi.org/10.4319/lom.2012.10.1024, 2012.
Villafuerte, M. Q., Matsumoto, J., Akasaka, I., Takahashi, H. G., Kubota, H.,
and Cinco, T. A.: Long-term trends and variability of rainfall extremes in
the Philippines, Atmos. Res., 137, 1–13,
https://doi.org/10.1016/j.atmosres.2013.09.021, 2014.
Villarini, G., Smith, J. A., Baeck, M. L., Marchok, T., and Vecchi, G. A.:
Characterization of rainfall distribution and flooding associated with U.S.
landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and
Jeanne (2004), J. Geophys. Res.-Atmos., 116, 1–19,
https://doi.org/10.1029/2011JD016175, 2011.
Weatherford, C. L. and Gray, W. M.: Typhoon Structure as Revealed by
Aircraft Reconnaissance. Part I: Data Analysis and Climatology, Mon. Weather
Rev., 116, 1032–1043, https://doi.org/10.1175/1520-0493(1988)116<1032:TSARBA>2.0.CO;2, 1988.
Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H.-R.: Changes in
Tropical Cyclone Number, Duration, and Intensity in a Warming Environment,
Science, 309, 1844–1846, https://doi.org/10.1126/science.1116448, 2005.
Woodruff, J. D., Irish, J. L., and Camargo, S. J.: Coastal flooding by
tropical cyclones and sea-level rise, Nature, 504, 44–52,
https://doi.org/10.1038/nature12855, 2013.
Xie, B. and Zhang, F.: Impacts of typhoon track and Island topography on the
heavy rainfalls in Taiwan associated with Morakot (2009), Mon. Weather Rev.,
140, 3379–3394, https://doi.org/10.1175/MWR-D-11-00240.1, 2012.
Xu, T., Sun, X., Hong, H., Wang, X., Cui, M., Lei, G., Gao, L., Liu, J.,
Lone, M. A., and Jiang, X.: Stable isotope ratios of typhoon rains in Fuzhou, Southeast China, during 2013–2017, J. Hydrol., 570, 445–453,
https://doi.org/10.1016/j.jhydrol.2019.01.017, 2019.
Short summary
The Philippines is a nation very vulnerable to devastating typhoons. We investigate if stable isotopes of precipitation can be used to detect typhoon activities in the Philippines based on daily isotope measurements from Metropolitan Manila. We find that strong typhoons such as Rammasun, which occurred in July 2014, leave detectable isotopic signals in precipitation. Besides other factors, the distance of the typhoon to the sampling site plays a key role in influencing the signal.
The Philippines is a nation very vulnerable to devastating typhoons. We investigate if stable...
Altmetrics
Final-revised paper
Preprint