Articles | Volume 22, issue 6
https://doi.org/10.5194/nhess-22-1795-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-1795-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model
Chung-Chieh Wang
Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan
Pi-Yu Chuang
CORRESPONDING AUTHOR
Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan
Shi-Ting Chen
Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan
Dong-In Lee
Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, South Korea
Kazuhisa Tsuboki
Institute for Space–Earth Environmental Research, Nagoya University, Nagoya, Japan
Related authors
Chung-Chieh Wang, Duc Van Nguyen, Thang Van Vu, Pham Thi Thanh Nga, Pi-Yu Chuang, and Kien Ba Truong
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-192, https://doi.org/10.5194/nhess-2023-192, 2023
Revised manuscript under review for NHESS
Short summary
Short summary
CReSS well predict the rainfall fields at the short-range forecast (less than 3 days) for 10 December. These good results are due to the model having good predicts of other meteorological variables, such as surface wind fields. These prediction skills are reducing at lead time longer than 3 days. The 24-hour rainfall is very sensitive with initial conditions, not only at the lower level but also at the upper level. The ensemble-based sensitivity is decreased with the increasing lead time.
Chung-Chieh Wang and Duc Van Nguyen
Nat. Hazards Earth Syst. Sci., 23, 771–788, https://doi.org/10.5194/nhess-23-771-2023, https://doi.org/10.5194/nhess-23-771-2023, 2023
Short summary
Short summary
A record-breaking rainfall event over central Vietnam is investigated. Key factors include the combined effect of northeasterly wind, easterly wind blowing to central Vietnam from the western North Pacific (WNP), southeasterly wind, local topography, and high sea surface temperature (SST) over WNP and the South China Sea (SCS). The cloud-resolving storm simulator (CReSS) is applied to simulate this event. The results show that the model mostly captured the quantitative rainfall of this event.
Chung-Chieh Wang, Ting-Yu Yeh, Chih-Sheng Chang, Ming-Siang Li, Kazuhisa Tsuboki, and Ching-Hwang Liu
Atmos. Chem. Phys., 23, 501–521, https://doi.org/10.5194/acp-23-501-2023, https://doi.org/10.5194/acp-23-501-2023, 2023
Short summary
Short summary
The extreme rainfall event (645 mm in 24 h) at the northern coast of Taiwan on 2 June 2017 is studied using a cloud model. Two 1 km experiments with peak amounts of 541 and 400 mm are compared to isolate the reasons for such a difference. It is found that the frontal rainband remains fixed in location for a longer period in the former run due to a low disturbance that acts to focus the near-surface convergence. Therefore, the rainfall is more concentrated and there is a higher total amount.
Chung-Chieh Wang, Pi-Yu Chuang, Chih-Sheng Chang, Kazuhisa Tsuboki, Shin-Yi Huang, and Guo-Chen Leu
Nat. Hazards Earth Syst. Sci., 22, 23–40, https://doi.org/10.5194/nhess-22-23-2022, https://doi.org/10.5194/nhess-22-23-2022, 2022
Short summary
Short summary
This study indicated that the Cloud-Resolving Storm Simulator (CReSS) model significantly improved heavy-rainfall quantitative precipitation forecasts in the Taiwan Mei-yu season. At high resolution, the model has higher threat scores and is more skillful in predicting larger rainfall events compared to smaller ones. And the strength of the model mainly lies in the topographic rainfall rather than less predictable and migratory events due to nonlinearity.
Chung-Chieh Wang, Bing-Kui Chiou, George Tai-Jen Chen, Hung-Chi Kuo, and Ching-Hwang Liu
Atmos. Chem. Phys., 16, 12359–12382, https://doi.org/10.5194/acp-16-12359-2016, https://doi.org/10.5194/acp-16-12359-2016, 2016
Short summary
Short summary
In this study, the back-building process of a quasistationary convective line with extreme rainfall is investigated using a cloud model. At the initiation stage of new cells, thermodynamic processes of near-surface latent heating coupled with adiabatic cooling above along the convergence line, rather than dynamic pressure perturbations, are found to be important. The stronger uplift and cooling aloft provided by old cells made their upstream areas more favorable for new cell development.
Jong-Hoon Jeong, Dong-In Lee, Chung-Chieh Wang, and In-Seong Han
Nat. Hazards Earth Syst. Sci., 16, 927–939, https://doi.org/10.5194/nhess-16-927-2016, https://doi.org/10.5194/nhess-16-927-2016, 2016
Short summary
Short summary
An extreme rainfall-producing mesoscale convective system (MCS) associated with the Changma front in south-eastern South Korea was investigated using observational data. The aim of the present study is to analyze and better understand the synoptic and mesoscale environment and the behaviour of the MCS causing natural hazards over South Korea.
C.-C. Wang, H.-C. Kuo, R. H. Johnson, C.-Y. Lee, S.-Y. Huang, and Y.-H. Chen
Atmos. Chem. Phys., 15, 11097–11115, https://doi.org/10.5194/acp-15-11097-2015, https://doi.org/10.5194/acp-15-11097-2015, 2015
Chung-Chieh Wang, Duc Van Nguyen, Thang Van Vu, Pham Thi Thanh Nga, Pi-Yu Chuang, and Kien Ba Truong
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-192, https://doi.org/10.5194/nhess-2023-192, 2023
Revised manuscript under review for NHESS
Short summary
Short summary
CReSS well predict the rainfall fields at the short-range forecast (less than 3 days) for 10 December. These good results are due to the model having good predicts of other meteorological variables, such as surface wind fields. These prediction skills are reducing at lead time longer than 3 days. The 24-hour rainfall is very sensitive with initial conditions, not only at the lower level but also at the upper level. The ensemble-based sensitivity is decreased with the increasing lead time.
Chung-Chieh Wang and Duc Van Nguyen
Nat. Hazards Earth Syst. Sci., 23, 771–788, https://doi.org/10.5194/nhess-23-771-2023, https://doi.org/10.5194/nhess-23-771-2023, 2023
Short summary
Short summary
A record-breaking rainfall event over central Vietnam is investigated. Key factors include the combined effect of northeasterly wind, easterly wind blowing to central Vietnam from the western North Pacific (WNP), southeasterly wind, local topography, and high sea surface temperature (SST) over WNP and the South China Sea (SCS). The cloud-resolving storm simulator (CReSS) is applied to simulate this event. The results show that the model mostly captured the quantitative rainfall of this event.
Chung-Chieh Wang, Ting-Yu Yeh, Chih-Sheng Chang, Ming-Siang Li, Kazuhisa Tsuboki, and Ching-Hwang Liu
Atmos. Chem. Phys., 23, 501–521, https://doi.org/10.5194/acp-23-501-2023, https://doi.org/10.5194/acp-23-501-2023, 2023
Short summary
Short summary
The extreme rainfall event (645 mm in 24 h) at the northern coast of Taiwan on 2 June 2017 is studied using a cloud model. Two 1 km experiments with peak amounts of 541 and 400 mm are compared to isolate the reasons for such a difference. It is found that the frontal rainband remains fixed in location for a longer period in the former run due to a low disturbance that acts to focus the near-surface convergence. Therefore, the rainfall is more concentrated and there is a higher total amount.
Chung-Chieh Wang, Pi-Yu Chuang, Chih-Sheng Chang, Kazuhisa Tsuboki, Shin-Yi Huang, and Guo-Chen Leu
Nat. Hazards Earth Syst. Sci., 22, 23–40, https://doi.org/10.5194/nhess-22-23-2022, https://doi.org/10.5194/nhess-22-23-2022, 2022
Short summary
Short summary
This study indicated that the Cloud-Resolving Storm Simulator (CReSS) model significantly improved heavy-rainfall quantitative precipitation forecasts in the Taiwan Mei-yu season. At high resolution, the model has higher threat scores and is more skillful in predicting larger rainfall events compared to smaller ones. And the strength of the model mainly lies in the topographic rainfall rather than less predictable and migratory events due to nonlinearity.
Sung-Ho Suh, Masayuki Maki, Masato Iguchi, Dong-In Lee, Akihiko Yamaji, and Tatsuya Momotani
Atmos. Meas. Tech., 12, 5363–5379, https://doi.org/10.5194/amt-12-5363-2019, https://doi.org/10.5194/amt-12-5363-2019, 2019
Short summary
Short summary
This is a fundamental study on the features of aerodynamic parameters: terminal velocity, axis ratio, and canting angle. These are necessary for developing a quantitative ash fall estimation method based on weather radar. They were analyzed under controlled conditions from laboratory free-fall experiments, since the aerodynamic properties of the particles are highly dependent on external conditions. These results will help in the development of quantitative ash estimation.
Chung-Chieh Wang, Bing-Kui Chiou, George Tai-Jen Chen, Hung-Chi Kuo, and Ching-Hwang Liu
Atmos. Chem. Phys., 16, 12359–12382, https://doi.org/10.5194/acp-16-12359-2016, https://doi.org/10.5194/acp-16-12359-2016, 2016
Short summary
Short summary
In this study, the back-building process of a quasistationary convective line with extreme rainfall is investigated using a cloud model. At the initiation stage of new cells, thermodynamic processes of near-surface latent heating coupled with adiabatic cooling above along the convergence line, rather than dynamic pressure perturbations, are found to be important. The stronger uplift and cooling aloft provided by old cells made their upstream areas more favorable for new cell development.
Cheol-Hwan You, Mi-Young Kang, Dong-In Lee, and Jung-Tae Lee
Atmos. Meas. Tech., 9, 2043–2053, https://doi.org/10.5194/amt-9-2043-2016, https://doi.org/10.5194/amt-9-2043-2016, 2016
Short summary
Short summary
This paper proposed three methods for determining the reflectivity bias of single polarization radar using dual polarization radar reflectivity and disdrometer data (i.e., the equidistance line, overlapping area, and disdrometer methods), and we evaluated for two low-pressure rainfall events that occurred over the Korean Peninsula on 25 August 2014 and 8 September 2012. Overall, the most accurate rainfall estimates were obtained using the overlapping area method to correct radar reflectivity.
Jong-Hoon Jeong, Dong-In Lee, Chung-Chieh Wang, and In-Seong Han
Nat. Hazards Earth Syst. Sci., 16, 927–939, https://doi.org/10.5194/nhess-16-927-2016, https://doi.org/10.5194/nhess-16-927-2016, 2016
Short summary
Short summary
An extreme rainfall-producing mesoscale convective system (MCS) associated with the Changma front in south-eastern South Korea was investigated using observational data. The aim of the present study is to analyze and better understand the synoptic and mesoscale environment and the behaviour of the MCS causing natural hazards over South Korea.
S.-H. Suh, C.-H. You, and D.-I. Lee
Hydrol. Earth Syst. Sci., 20, 193–207, https://doi.org/10.5194/hess-20-193-2016, https://doi.org/10.5194/hess-20-193-2016, 2016
Short summary
Short summary
This paper was written to find the climatological characteristics of raindrop size distribution (DSD) with respect to the wind direction in Busan, Korea. The data were collected by POSS disdrometer during 4 years (2001–2004).
Busan shows the tendency of land-sea breeze. When sea wind blows during rainfall period, mean size and number concentration of raindrop are smaller and larger than that of land wind blows, respectively. It means that the features of DSD depend on the wind direction.
C.-H. You, M.-Y. Kang, and D.-I. Lee
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2015-515, https://doi.org/10.5194/hess-2015-515, 2016
Manuscript not accepted for further review
Short summary
Short summary
This paper is dealing with polarimetric rainfall estimation using combined polarimetric variables include specific attenuation for a heavy rainfall case in Korea. It also describes how we could improve differential reflectivity (ZDR) quality for operational use. We discussed the possibility of drop size distributions to correct ZDR and usage of R(Z,ZDR,KDP,AH) relation. The reason why we did the research is that we would like to get a representative relation without considering rainrate regime.
C.-C. Wang, H.-C. Kuo, R. H. Johnson, C.-Y. Lee, S.-Y. Huang, and Y.-H. Chen
Atmos. Chem. Phys., 15, 11097–11115, https://doi.org/10.5194/acp-15-11097-2015, https://doi.org/10.5194/acp-15-11097-2015, 2015
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Subseasonal forecasts of heat waves in West African cities
Impacts on and damage to European forests from the 2018–2022 heat and drought events
Brief communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Examining the Eastern European extreme summer temperatures of 2023 from a long-term perspective: the role of natural variability vs. anthropogenic factors
How well are hazards associated with derechos reproduced in regional climate simulations?
Reconstructing hail days in Switzerland with statistical models (1959–2022)
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Intense rains in Israel associated with the train effect
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
Surprise floods: the role of our imagination in preparing for disasters
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Insights into ground strike point properties in Europe through the EUCLID lightning location system
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
The Record-Breaking Precipitation Event of December 2022 in Portugal
Precipitation extremes in Ukraine from 1979 to 2019: climatology, large-scale flow conditions, and moisture sources
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Aircraft engine dust ingestion at global airports
Assimilation of temperature and relative humidity observations from personal weather stations in AROME-France
Catchment-scale assessment of drought impact on environmental flow in the Indus Basin, Pakistan
The risk of synoptic-scale Arctic cyclones to shipping
Classification of North Atlantic and European extratropical cyclones using multiple measures of intensity
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020
Application of the teaching–learning-based optimization algorithm to an analytical model of thunderstorm outflows to analyze the variability of the downburst kinematic and geometric parameters
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Improving seasonal predictions of German Bight storm activity
A satellite view of the exceptionally warm summer of 2022 over Europe
Application of machine learning to forecast agricultural drought impacts for large scale sub-seasonal drought monitoring in Brazil
Demographic yearbooks as a source of weather-related fatalities: the Czech Republic, 1919–2022
FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
Assessment of wind–damage relations for Norway using 36 years of daily insurance data
Compound winter low wind and cold events impacting the French electricity system: observed evolution and role of large-scale circulation
Interannual variations in the seasonal cycle of extreme precipitation in Germany and the response to climate change
Climatology of large hail in Europe: characteristics of the European Severe Weather Database
Amplified potential for vegetation stress under climate-change-induced intensifying compound extreme events in the Greater Mediterranean Region
Assimilation of surface pressure observations from personal weather stations in AROME-France
An open-source radar-based hail damage model for buildings and cars
Linkages between atmospheric rivers and humid heat across the United States
A data-driven framework for assessing climatic impact-drivers in the context of food security
Evaluating pySTEPS optical flow algorithms for convection nowcasting over the Maritime Continent using satellite data
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
High-resolution projections of ambient heat for major European cities using different heat metrics
Heat wave characteristics: evaluation of regional climate model performances for Germany
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Cedric G. Ngoungue Langue, Christophe Lavaysse, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 25, 147–168, https://doi.org/10.5194/nhess-25-147-2025, https://doi.org/10.5194/nhess-25-147-2025, 2025
Short summary
Short summary
The present study addresses the predictability of heat waves at subseasonal timescales in West African cities over the period 2001–2020. Two models, the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office models, were evaluated using two reanalyses: ERA5 and MERRA. The results suggest that at subseasonal timescales, the forecast models provide a better forecast than climatology, but the hit rate and false alarm rate are sub-optimal.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025, https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
Georgy Ayzel and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 41–47, https://doi.org/10.5194/nhess-25-41-2025, https://doi.org/10.5194/nhess-25-41-2025, 2025
Short summary
Short summary
Forecasting rainfall over the next hour is an essential feature of early warning systems. Deep learning (DL) has emerged as a powerful alternative to conventional nowcasting technologies, but it still struggles to adequately predict impact-relevant heavy rainfall. We think that DL could do much better if the training tasks were defined more specifically and that such specification presents an opportunity to better align the output of nowcasting models with actual user requirements.
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 24, 4683–4706, https://doi.org/10.5194/nhess-24-4683-2024, https://doi.org/10.5194/nhess-24-4683-2024, 2024
Short summary
Short summary
Eastern Europe's heat wave history is explored from 1885 to 2023, with a focus on pre-1960 events. The study reveals two periods with more frequent and intense heat waves (HWs): 1920s–1960s and 1980s–present. The research highlights the importance of a long-term perspective, revealing that extreme heat events have occurred throughout the entire study period, and it emphasizes the combined influence of climate change and natural variations on increasing HW severity.
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024, https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary
Short summary
A historic derecho in the USA is presented. The 29 June 2012 derecho caused more than 20 deaths and millions of US dollars of damage. We use a regional climate model to understand how model fidelity changes under different initial conditions. We find changes drive different convective conditions, resulting in large variation in the simulated hazards. The variation using different reanalysis data shows that framing these results in the context of contemporary and future climate is a challenge.
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024, https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past hail days in Switzerland from 1959–2022. This new time series reveals a significant increase in hail day occurrences over the last 7 decades. We link this trend to increases in moisture and instability variables in the models. This time series can now be used to unravel the complexities of Swiss hail occurrence and to understand what drives its year-to-year variability.
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024, https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance compared to a single meteorological drought index or agricultural drought index in terms of drought identification.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024, https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Short summary
The train effect is related to convective cells that pass over the same place. Trains produce heavy rainfall and sometimes floods and are reported in North America during spring and summer. In Israel, 17 trains associated with Cyprus lows were identified by radar images and were found within the cold sector south of the low center and in the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km; last 1–3 h; and yield 35 mm of rainfall up to 60 mm.
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024, https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024, https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the vapor pressure deficit (VPD), an important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal shows the potential for using smartphone data to compliment the regular weather station network while also providing high spatial resolution of the VPD index.
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-130, https://doi.org/10.5194/nhess-2024-130, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Here we investigate the synoptic evolution associated with the occurrence of an atmospheric river leading to a 24 h record-breaking extreme precipitation event (120.3 mm) in Lisbon, Portugal, on 13 December 2022. The synoptic background allowed the formation, on 10 December, of an atmospheric river associated with a deep extratropical cyclone and with a high moisture content and an inflow of moisture, due to the warm conveyor belt, throughout its life cycle. The system made landfall on day 12.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
EGUsphere, https://doi.org/10.5194/egusphere-2024-1673, https://doi.org/10.5194/egusphere-2024-1673, 2024
Short summary
Short summary
The use of numerical weather prediction models enables the forecasting of hazardous weather situations. The incorporation of new temperature and relative humidity observations from personal weather stations into the French limited-area model is evaluated in this study. This leads to the improvement of the associated near-surface variables of the model during the first hours of the forecast. Examples are provided for a sea breeze case during a heatwave and a fog episode.
Khalil Ur Rahman, Songhao Shang, Khaled Saeed Balkhair, Hamza Farooq Gabriel, Khan Zaib Jadoon, and Kifayat Zaman
Nat. Hazards Earth Syst. Sci., 24, 2191–2214, https://doi.org/10.5194/nhess-24-2191-2024, https://doi.org/10.5194/nhess-24-2191-2024, 2024
Short summary
Short summary
This paper assesses the impact of drought (meteorological drought) on the hydrological alterations in major rivers of the Indus Basin. Threshold regression and range of variability analysis are used to determine the drought severity and times where drought has caused low flows and extreme low flows (identified using indicators of hydrological alterations). Moreover, this study also examines the degree of alterations in river flows due to drought using the hydrological alteration factor.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Joona Samuel Cornér, Clément Gael Francis Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria Anne Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-1749, https://doi.org/10.5194/egusphere-2024-1749, 2024
Short summary
Short summary
Classification reduces the considerable variability between extratropical cyclones (ETC) and thus simplifies studying their representation in climate models and changes in the future climate. In this paper we present an objective classification of ETCs using measures of ETC intensity. This is motivated by the aim of finding a set of ETC intensity measures which together comprehensively describe both the dynamical and impact-relevant nature of ETC intensity.
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1742, https://doi.org/10.5194/egusphere-2024-1742, 2024
Short summary
Short summary
Extreme rainfall comprises a major hydro-hazard for New Zealand, and is commonly associated with atmospheric rivers – narrow plumes of very high atmospheric moisture transport. Here, we focus on improved forecasting of these events by testing a forecasting tool previously applied to similar situations in western Europe. However, our results for New Zealand suggest the performance of this forecasting tool may vary depending on geographic setting.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Ran Zhu and Lei Chen
Nat. Hazards Earth Syst. Sci., 24, 1937–1950, https://doi.org/10.5194/nhess-24-1937-2024, https://doi.org/10.5194/nhess-24-1937-2024, 2024
Short summary
Short summary
There is a positive correlation between the frequency of Jianghuai cyclone activity and precipitation during the Meiyu period. Its occurrence frequency has an obvious decadal variation, which corresponds well with the quasi-periodic and decadal variation in precipitation during the Meiyu period. This study provides a reference for the long-term and short-term forecasting of precipitation during the Meiyu period.
Andi Xhelaj and Massimiliano Burlando
Nat. Hazards Earth Syst. Sci., 24, 1657–1679, https://doi.org/10.5194/nhess-24-1657-2024, https://doi.org/10.5194/nhess-24-1657-2024, 2024
Short summary
Short summary
The study provides an in-depth analysis of a severe downburst event in Sânnicolau Mare, Romania, utilizing an analytical model and optimization algorithm. The goal is to explore a multitude of generating solutions and to identify potential alternatives to the optimal solution. Advanced data analysis techniques help to discern three main distinct storm scenarios. For this particular event, the best overall solution from the optimization algorithm shows promise in reconstructing the downburst.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
João P. A. Martins, Sara Caetano, Carlos Pereira, Emanuel Dutra, and Rita M. Cardoso
Nat. Hazards Earth Syst. Sci., 24, 1501–1520, https://doi.org/10.5194/nhess-24-1501-2024, https://doi.org/10.5194/nhess-24-1501-2024, 2024
Short summary
Short summary
Over Europe, 2022 was truly exceptional in terms of extreme heat conditions, both in terms of temperature anomalies and their temporal and spatial extent. The satellite all-sky land surface temperature (LST) is used to provide a climatological context to extreme heat events. Where drought conditions prevail, LST anomalies are higher than 2 m air temperature anomalies. ERA5-Land does not represent this effect correctly due to a misrepresentation of vegetation anomalies.
Joseph William Gallear, Marcelo Valadares Galdos, Marcelo Zeri, and Andrew Hartley
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-60, https://doi.org/10.5194/nhess-2024-60, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
In Brazil, drought is of national concern and can have major consequences for agriculture. Here, we determine how to develop forecasts for drought impacts on vegetation health using machine learning. Results aim to inform future developments in operational drought monitoring at the National Center for Monitoring and Early Warning of Natural Disasters in Brazil (CEMADEN). This information is essential for disaster preparedness and planning of future actions to support areas affected by drought.
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024, https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary
Short summary
The official mortality data in the Czech Republic in 1919–2022 are used to show long-term fluctuations in the number of fatalities caused by excessive natural cold and heat, lightning, natural disasters, and falls on ice/snow, as well as the sex and age of the deceased, based on certain meteorological, historical, and socioeconomic factors that strongly influence changes in the number and structure of such fatalities. Knowledge obtained is usable in risk management for the preservation of lives.
Ben Maybee, Cathryn E. Birch, Steven J. Böing, Thomas Willis, Linda Speight, Aurore N. Porson, Charlie Pilling, Kay L. Shelton, and Mark A. Trigg
Nat. Hazards Earth Syst. Sci., 24, 1415–1436, https://doi.org/10.5194/nhess-24-1415-2024, https://doi.org/10.5194/nhess-24-1415-2024, 2024
Short summary
Short summary
This paper presents the development and verification of FOREWARNS, a novel method for regional-scale forecasting of surface water flooding. We detail outcomes from a workshop held with UK forecast users, who indicated they valued the forecasts and would use them to complement national guidance. We use results of objective forecast tests against flood observations over northern England to show that this confidence is justified and that FOREWARNS meets the needs of UK flood responders.
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355, https://doi.org/10.5194/nhess-24-1341-2024, https://doi.org/10.5194/nhess-24-1341-2024, 2024
Short summary
Short summary
The present study uses daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns. However, there is no single damage function that performs better than another. A newly devised damage–no-damage classifier shows some skill in predicting extreme damaging events.
François Collet, Margot Bador, Julien Boé, Laurent Dubus, and Bénédicte Jourdier
EGUsphere, https://doi.org/10.5194/egusphere-2024-903, https://doi.org/10.5194/egusphere-2024-903, 2024
Short summary
Short summary
The objective of this study is to characterize the observed evolution of compound winter low wind and cold events impacting the French electricity system. The frequency of compound events exhibits a high interannual variability and a decrease over the 1950–2022 period. We further show that the regional atmospheric circulation is an important driver of compound events occurence, but do not strongly contributes to the observed decrease.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Faye Hulton and David M. Schultz
Nat. Hazards Earth Syst. Sci., 24, 1079–1098, https://doi.org/10.5194/nhess-24-1079-2024, https://doi.org/10.5194/nhess-24-1079-2024, 2024
Short summary
Short summary
Large hail devastates crops and property and can injure and kill people and livestock. Hail reports are collected by individual countries, so understanding where and when large hail occurs across Europe is an incomplete undertaking. We use the European Severe Weather Database to evaluate the quality of reports by year and by country since 2000. Despite its short record, the dataset appears to represent aspects of European large-hail climatology reliably.
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 24, 907–927, https://doi.org/10.5194/nhess-24-907-2024, https://doi.org/10.5194/nhess-24-907-2024, 2024
Short summary
Short summary
Improvements in numerical weather prediction models make it possible to warn of hazardous weather situations. The incorporation of new observations from personal weather stations into the French limited-area model is evaluated. It leads to a significant improvement in the modelling of the surface pressure field up to 9 h ahead. Their incorporation improves the location and intensity of the heavy precipitation event that occurred in the South of France in September 2021.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024, https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Short summary
How can we systematically understand what causes high levels of atmospheric humidity and thus heat stress? Here we argue that atmospheric rivers can be a useful tool, based on our finding that in several US regions, atmospheric rivers and humid heat occur close together in space and time. Most typically, an atmospheric river transports moisture which heightens heat stress, with precipitation following a day later. These effects tend to be larger for stronger and more extensive systems.
Marcos Roberto Benso, Roberto Fray Silva, Gabriela Gesualdo Chiquito, Antonio Mauro Saraiva, Alexandre Cláudio Botazzo Delbem, Patricia Angélica Alves Marques, and Eduardo Mario Mendiondo
EGUsphere, https://doi.org/10.5194/egusphere-2023-3002, https://doi.org/10.5194/egusphere-2023-3002, 2024
Short summary
Short summary
The production of food is susceptible to several climate hazards such as droughts, excessive rainfall, and heat waves. In this paper, we present a methodology that uses artificial intelligence for assessing the impact of climate risks on food production. Our methodology helps us to automatically select the most relevant indices and critical thresholds of these indices that when surpassed can increase the danger of crop yield loss.
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024, https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Short summary
Nowcasting uses observations to make predictions of the atmosphere on short timescales and is particularly applicable to the Maritime Continent, where storms rapidly develop and cause natural disasters. This paper evaluates probabilistic and deterministic satellite nowcasting algorithms over the Maritime Continent. We show that the probabilistic approach is most skilful at small scales (~ 60 km), whereas the deterministic approach is most skilful at larger scales (~ 200 km).
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Cited articles
Akaeda, K., Reisner, J., and Parsons, D.:
The role of mesoscale and topographically induced circulations in initiating a flash flood observed during the TAMEX project, Mon. Weather Rev., 123, 1720–1739, https://doi.org/10.1175/1520-0493(1995)123%3C1720:TROMAT%3E2.0.CO;2, 1995.
Baines, P. G.:
Topographic Effects in Stratified Flows, 1st edn., Cambridge University Press, Cambridge, England, UK, 1995.
Banta, R. M.:
The Role of Mountain Flows in Making Clouds, in: Atmospheric Processes over Complex Terrain, edited by: Blumen, W., Meteorological Monographs, 23, Am. Meteorol. Soc., Boston, Massachusetts, US, 229–284, https://doi.org/10.1007/978-1-935704-25-6_9, 1990.
Bell, G. D. and Bosart, L. F.:
Appalachian cold-air damming, Mon. Weather Rev., 116, 137–161, https://doi.org/10.1175/1520-0493(1988)116%3C0137:ACAD%3E2.0.CO;2, 1988.
Chen, G. T.-J.:
Observational aspects of the Mei-Yu phenomenon in subtropical China, J. Meteorol. Soc. Jpn., 61, 306–312, https://doi.org/10.2151/jmsj1965.61.2_306, 1983.
Chen, G. T.-J.:
Mesoscale features observed in the Taiwan Mei-Yu season, J. Meteorol. Soc. Jpn., 70, 497–516, https://doi.org/10.2151/jmsj1965.70.1B_497, 1992.
Chen, G. T.-J.:
Research on the phenomena of Meiyu during the past quarter century: An overview, in: East Asian Monsoon, edited by: Chang, C.-P., World Scientific, Toh Tuck Link, Singapore, 357–403, https://doi.org/10.1142/9789812701411_0010, 2004.
Chen, G. T.-J., Wang, C.-C., and Liu, S. C.-S.:
Potential vorticity diagnostics of a Mei-Yu front case, Mon. Weather Rev., 131, 2680–2696, 2003.
Chen, G. T.-J., Wang, C.-C., and Lin, D. T.-W.:
Characteristics of low-level jets over northern Taiwan in mei-yu season and their relationship to heavy rain events, Mon. Weather Rev., 133, 20–43, https://doi.org/10.1175/MWR-2813.1, 2005.
Chen, G. T.-J., Wang, C.-C., and Chang, S.-W.:
A diagnostic case study of Mei-yu frontogenesis and development of wavelike frontal disturbances in the subtropical environment, Mon. Weather Rev., 136, 41–61, https://doi.org/10.1175/2007MWR1966.1, 2008.
Chen, S., Hong, Y., Cao, Q., Kirstetter, P.-E., Gourley, J. J., Qi, Y., Zhang, J., Howard, K., Hu, J., and Wang, J.:
Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: Are remote-sensing products ready for gauge denial scenario of extreme events?, J. Hydrol., 506, 4–13, 2013.
Chen, S.-H. and Lin, Y.-L.:
Orographic effects on a conditionally unstable flow over an idealized three-dimensional mesoscale mountain, Meteorol. Atmos. Phys., 88, 1–21, https://doi.org/10.1007/s00703-003-0047-6, 2005a.
Chen, S.-H. and Lin, Y.-L.:
Effects of moist Froude number and CAPE on a conditionally unstable flow over a mesoscale mountain ridge, J. Atmos. Sci., 62, 331–350, https://doi.org/10.1175/JAS-3380.1, 2005b.
Chen, T.-C., Yen, M.-C., Hsieh, J.-C., and Arritt, R. W.:
Diurnal and seasonal variations of the rainfall measured by the Automatic Rainfall and Meteorological Telemetry System in Taiwan, B. Am. Meteorol. Soc., 80, 2299–2312, https://doi.org/10.1175/1520-0477(1999)080%3C2299:DASVOT%3E2.0.CO;2, 1999.
Chen, X. A. and Chen, Y.-L.:
Development of low-level jets during TAMEX, Mon. Weather Rev., 123, 1695–1719, https://doi.org/10.1175/1520-0493(1995)123%3C1695:DOLLJD%3E2.0.CO;2, 1995.
Chen, Y.-L.:
Some synoptic-scale aspects of the surface fronts over southern China during TAMEX, Mon. Weather Rev., 121, 50–64, https://doi.org/10.1175/1520-0493(1993)121%3C0050:SSSAOT%3E2.0.CO;2, 1993.
Chi, S.-S.:
The Mei-Yu in Taiwan, SFRDEST E-625 06-MT-03-4, Chung-Shin Engineering Technology Research and Development Foundation, Taipei, Taiwan, 65 pp, 2006 (in Chinese).
Cho, H. R. and Chen, G. T.-J.:
Mei-Yu frontogenesis, J. Atmos. Sci., 52, 2109–2120, https://doi.org/10.1175/1520-0469(1995)052%3C2109:MYF%3E2.0.CO;2, 1995.
Chu, C.-M. and Lin, Y.-L.:
Effects of orography on the generation and propagation of mesoscale convective systems in a two-dimensional conditionally unstable flow, J. Atmos. Sci., 57, 3817–3837, https://doi.org/10.1175/1520-0469(2001)057%3C3817:EOOOTG%3E2.0.CO;2, 2000.
Ciesielski, P. E., Chang, W.-M., Huang, S.-C., Johnson, R. H., Jou, B. J.-D., Lee, W.-C., Lin, P.-H., Liu, C.-H., and Wang, J.:
Quality-controlled upper-air sounding dataset for TiMREX/SoWMEX: Development and corrections, J. Atmos. Ocean. Tech., 27, 1802–1821, https://doi.org/10.1175/2010JTECHA1481.1, 2010.
Cotton, W. R., Tripoli, G. J., Rauber, R. M., and Mulvihill, E. A.:
Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall, J. Appl. Meteorol. Clim., 25, 1658–1680, https://doi.org/10.1175/1520-0450(1986)025%3C1658:NSOTEO%3E2.0.CO;2, 1986.
Davis, C. A. and Lee, W.-C.:
Mesoscale analysis of heavy rainfall episodes from SoWMEX/TiMREX, J. Atmos. Sci., 69, 521–537, https://doi.org/10.1175/JAS-D-11-0120.1, 2012.
Deardorff, J. W.:
Stratocumulus-capped mixed layers derived from a three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527, https://doi.org/10.1007/BF00119502, 1980.
Ding, Y.:
Summer monsoon rainfalls in China, J. Meteorol. Soc. Jpn., 70, 373–396, https://doi.org/10.2151/jmsj1965.70.1B_373, 1992.
Forbes, G. S., Anthes, R. A., and Thompson, D. W.:
Synoptic and mesoscale aspects of an Appalachian ice storm associated with cold-air damming, Mon. Weather Rev., 115, 564–591, https://doi.org/10.1175/1520-0493(1987)115%3C0564:SAMAOA%3E2.0.CO;2, 1987.
Fovell, R. G.:
Convective initiation ahead of the sea-breeze front, Mon. Weather Rev., 133, 264–278, https://doi.org/10.1175/MWR-2852.1, 2005.
Gourley, J. J., Zhang, J., Maddox, R. A., Calvert, C. M., andHoward, K. W.:
A real-time precipitation monitoring algorithm—quantitative precipitation estimation using multiple sensors (QPE-SUMS), Preprints, symp. on precipitation extremes: prediction, impacts, and responses, Albuquerque, NM, Am. Meteor. Soc., 57–60, 2001.
Hsu, J.:
ARMTS up and running in Taiwan, Väisälä News, 146, 24–26, 1998.
Ikawa, M. and Saito, K.:
Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI, Technical Report, 28, Meteorological Research Institute, Tsukuba, Ibaraki, Japan, 245 pp, https://doi.org/10.11483/mritechrepo.28, 1991.
Johnson, R. H.:
Diurnal cycle of monsoon convection, in: The Global Monsoon System: Research and Forecast, 2nd edn., edited by: Chang, C.-P., Ding, Y., Lau, N.-C., Johnson, R. H., Wang, B., Yasunari, T., World Scientific, Toh Tuck Link, Singapore, 257–276, https://doi.org/10.1142/9789814343411_0015, 2011.
Jou, B. J.-D. and Deng, S.-M.:
Structure of a low-level jet and its role in triggering and organizing moist convection over Taiwan: A TAMEX case study, Terr. Atmos. Ocean. Sci., 3, 39–58, https://doi.org/10.3319/TAO.1992.3.1.39(A), 1992.
Jou, B. J.-D., Lee, W.-C., and Johnson, R. H.:
An overview of SoWMEX/TiMREX and its operation, in: The Global Monsoon System: Research and Forecast, edited by: Chang, C.-P., Ding, Y., Lau, N.-C., Johnson, R. H., Wang, B., Yasunari, T., World Scientific, Toh Tuck Link, Singapore, 303–318, https://doi.org/10.1142/9789814343411_0018, 2011.
Kalnay, E., Kanamitsu, M., and Baker, W. E.:
Global numerical weather prediction at the National Meteorological Center, B. Am. Meteorol. Soc., 71, 1410–1428, https://www.jstor.org/stable/26228046 (last access: 21 April 2021), 1990.
Kerns, B. W. J., Chen, Y.-L., and Chang, M.-Y.:
The diurnal cycle of winds, rain, and clouds over Taiwan during the mei-yu, summer, and autumn rainfall regimes, Mon. Weather Rev., 138, 497–516, https://doi.org/10.1175/2009MWR3031.1, 2010.
Kingsmill, D. E.:
Convection initiation associated with a sea-breeze front, a gust front, and their collision, Mon. Weather Rev., 123, 2913–2933, https://doi.org/10.1175/1520-0493(1995)123%3C2913:CIAWAS%3E2.0.CO;2, 1995.
Kirshbaum, D.:
Cloud-resolving simulations of deep convection over a heated mountain. J. Atmos. Sci., 68, 361–378, 2011.
Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W. S., and Lord, S.:
Introduction of the GSI into the NCEP Global Data Assimilation System, Weather Forecast., 24, 1691–1705, https://doi.org/10.1175/2009WAF2222201.1, 2009.
Kondo, J.:
Heat balance of the China Sea during the air mass transformation experiment, J. Meteorol. Soc. Jpn., 54, 382–398, https://doi.org/10.2151/jmsj1965.54.6_382, 1976.
Kuo, Y.-H. and Chen, G. T.-J.:
The Taiwan Area Mesoscale Experiment (TAMEX): An overview, B. Am. Meteorol. Soc., 71, 488–503, https://doi.org/10.1175/1520-0477(1990)071%3C0488:TTAMEA%3E2.0.CO;2, 1990.
Lai, H.-W, Davis, C. A., and Jou, B. J.-D.:
A subtropical oceanic mesoscale convective vortex observed during SoWMEX/TiMREX, Mon. Weather Rev., 139, 2367–2385, https://doi.org/10.1175/2010MWR3411.1, 2011.
Li, J. and Chen, Y.-L.:
Barrier jets during TAMEX, Mon. Weather Rev., 126, 959–971, https://doi.org/10.1175/1520-0493(1998)126%3C0959:BJDT%3E2.0.CO;2, 1998.
Lin, Y.-L.:
Orographic effects on airflow and mesoscale weather systems over Taiwan, Terr. Atmos. Ocean. Sci., 4, 381–420, https://doi.org/10.3319/TAO.1993.4.4.381(A), 1993.
Lin, Y.-L., Farley, R. D., and Orville, H. D.:
Bulk parameterization of the snow field in a cloud model, J. Appl. Meteorol. Clim., 22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)022%3C1065:BPOTSF%3E2.0.CO;2, 1983.
Lin, Y.-L., Chiao, S., Wang, T.-A., Kaplan, M. L., and Weglarz, R. P.:
Some common ingredients for heavy orographic rainfall, Weather Forecast., 16 633–660, https://doi.org/10.1175/1520-0434(2001)016%3C0633:SCIFHO%3E2.0.CO;2, 2001.
Louis, J. F., Tiedtke, M., and Geleyn, J. F.:
A short history of the operational PBL parameterization at ECMWF, in: Proceedings of Workshop on Planetary Boundary Layer Parameterization, Shinfield Park, Reading, UK, 25–27 November 1981, 59–79, https://www.ecmwf.int/node/10845 (last access: 21 April 2021), 1982.
Lupo, K. M., Torn, R. D., and Yang, S.-C.:
Evaluation of stochastic perturbed parameterization tendencies on convective permitting ensemble forecasts of heavy rainfall events in New York and Taiwan, Weather Forecast., 35, 5–24, https://doi.org/10.1175/WAF-D-19-0064.1, 2020.
Manins, P. C. and Sawford, B. L.:
Mesoscale observations of upstream blocking, Q. J. Roy. Meteor. Soc., 108, 427–434, https://doi.org/10.1002/qj.49710845608, 1982.
Metzger, J., Barthlott, C., and Kalthoff, N.:
Impact of upstream flow conditions on the initiation of moist convection over the island of Corsica, Atmos. Res. 145–146, 279–296, https://doi.org/10.1016/j.atmosres.2014.04.011, 2014.
Miglietta, M. M. and Rotunno, R.:
Numerical simulations of conditionally unstable flows over a mountain ridge, J. Atmos. Sci., 66, 1865–1885, https://doi.org/10.1175/2009JAS2902.1, 2009.
Murakami, M.:
Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud—The 19 July 1981 CCOPE cloud, J. Meteorol. Soc. Jpn., 68, 107–128, https://doi.org/10.2151/jmsj1965.68.2_107, 1990.
Murakami, M., Clark, T. L., and Hall, W. D.:
Numerical simulations of convective snow clouds over the Sea of Japan: Two-dimensional simulation of mixed layer development and convective snow cloud formation, J. Meteorol. Soc. Jpn., 72, 43–62, https://doi.org/10.2151/jmsj1965.72.1_43, 1994.
Nicholls, M. E., Pielke, R. A., and Cotton, W. R.:
A two-dimensional numerical investigation of the interaction between sea breezes and deep convection over the Florida peninsula, Mon. Weather Rev., 119, 298–323, https://doi.org/10.1175/1520-0493(1991)119%3C0298:ATDNIO%3E2.0.CO;2, 1991.
Overland, J. E. and Bond, B. A.:
Observations and scale analysis of a coastal wind jet, Mon. Weather Rev., 123, 2934–2941, https://doi.org/10.1175/1520-0493(1995)123%3C2934:OASAOC%3E2.0.CO;2, 1995.
Pierrehumbert, R. T.:
Linear results on the barrier effects of mesoscale mountains, J. Atmos. Sci., 41, 1356–1367, https://doi.org/10.1175/1520-0469(1984)041%3C1356:LROTBE%3E2.0.CO;2, 1984.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.:
An improved in situ and satellite SST analysis for climate, J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015%3C1609:AIISAS%3E2.0.CO;2, 2002.
Rotunno, R. and Ferretti, R.:
Orographic effects on rainfall in MAP cases IOP 2b and IOP 8, Q. J. Roy. Meteor. Soc., 129, 373–390, https://doi.org/10.1256/qj.02.20, 2003.
Ruppert, J. H., Jr., Johnson, R. H., and Rowe, A. K.:
Diurnal circulations and rainfall in Taiwan during SoWMEX/TiMREX (2008), Mon. Weather Rev., 141, 3851–3872, https://doi.org/10.1175/MWR-D-12-00301.1, 2013.
Segami, A., Kurihara, K., Nakamura, H., Ueno, M., Takano, I., and Tatsumi, Y.:
Operational mesoscale weather prediction with Japan Spectral Model, J. Meteorol. Soc. Jpn., 67, 907–924, https://doi.org/10.2151/jmsj1965.67.5_907, 1989.
Sever, G. and Lin, Y.-L.:
Dynamical and physical processes associated with orographic precipitation in a conditionally unstable uniform flow: Variation in basic wind speed, J. Atmos. Sci., 74, 449–466, https://doi.org/10.1175/JAS-D-16-0077.1, 2017.
Sha, W., Kawamura, T., and Ueda, H.:
A numerical study on sea/land breezes as a gravity current: Kelvin–Helmholtz billows and inland penetration of the sea-breeze front, J. Atmos. Sci., 48, 1649–1665, https://doi.org/10.1175/1520-0469(1991)048%3C1649:ANSOSB%3E2.0.CO;2, 1991.
Smith, R. B.:
Synoptic observations and theory of orographically disturbed wind and pressure, J. Atmos. Sci., 39, 60–70, https://doi.org/10.1175/1520-0469(1982)039%3C0060:SOATOO%3E2.0.CO;2, 1982.
Smolarkiewicz, P. K., Rasmussen, R., and Clark, T. L.:
On the dynamics of Hawaiian cloud band: Island forcing, J. Atmos. Sci., 45, 1872–1905, https://doi.org/10.1175/1520-0469(1988)045%3C1872:OTDOHC%3E2.0.CO;2, 1988.
Sun, W.-Y. and Chern, J.-D.:
Diurnal variation of lee vortices in Taiwan and the surrounding area, J. Atmos. Sci., 50, 3404–3430, https://doi.org/10.1175/1520-0469(1993)050%3C3404:DVOLVI%3E2.0.CO;2, 1993.
Sun, W.-Y. and Chern, J.-D.:
Numerical experiments of vortices in the wakes of large idealized mountains, J. Atmos. Sci., 51, 191–209, https://doi.org/10.1175/1520-0469(1994)051%3C0191:NEOVIT%3E2.0.CO;2, 1994.
Tsuboki, K.:
High-resolution simulations of high-impact weather systems using the cloud-resolving model on the Earth Simulator, in: High Resolution Numerical Modeling of the Atmosphere and Ocean, edited by: Hamilton, K. and Ohfuchi, W., Springer, New York, New York, USA, 141–156, https://doi.org/10.1007/978-0-387-49791-4_9, 2008.
Tsuboki, K. and Sakakibara, A.:
Large-scale parallel computing of cloud resolving storm simulator, in: High Performance Computing, edited by: Zima, H. P., Joe, K., Sato, M., Seo, Y., and Shimasaki, M., Springer, Berlin, Heidelberg, Germany, 243–259, https://doi.org/10.1007/3-540-47847-7_21, 2002.
Tsuboki, K. and Sakakibara, A.:
Numerical Prediction of High-Impact Weather Systems: The Textbook for the Seventeenth IHP Training Course in 2007, Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan, and UNESCO, Paris, France, 273 pp, 2007.
Tu, C.-C., Chen, Y.-L., Chen, C.-S., Lin, P.-L., and Lin, P.-H.:
A comparison of two heavy rainfall events during the Terrain-influenced Monsoon Rainfall Experiment (TiMREX) 2008, Mon. Weather Rev., 142, 2436–2463, https://doi.org/10.1175/MWR-D-13-00293.1, 2014.
Walser, A., Lüthi, D., and Schär, C.:
Predictability of precipitation in a cloud-resolving model, Mon. Weather Rev., 132, 560–577, https://doi.org/10.1175/1520-0493(2004)132%3C0560:POPIAC%3E2.0.CO;2, 2004.
Wang, A.-H., Wang, C.-C., and Chen, G. T.-J.:
A study on synoptic conditions leading to the extreme rainfall in Taiwan during 10-12 June 2012, Atmophsere, 12, 1255, https://doi.org/10.3390/atmos12101255, 2021.
Wang, C.-C. and Chen, G. T.-J.:
Case study of the leeside mesolow and mesocyclone in TAMEX, Mon. Weather Rev., 130, 2572–2592, https://doi.org/10.1175/1520-0493(2002)130%3C2572:CSOTLM%3E2.0.CO;2, 2002.
Wang, C.-C. and Chen, G. T.-J.:
On the formation of leeside mesolows under different Froude number flow regime in TAMEX, J. Meteorol. Soc. Jpn., 81, 339–365, https://doi.org/10.2151/jmsj.81.339, 2003.
Wang, C.-C., Chen, G. T.-J., Chen, T. C., and Tsuboki, K.:
A numerical study on the effects of Taiwan topography on a convective line during the mei-yu season, Mon. Weather Rev., 133, 3217–3242, https://doi.org/10.1175/MWR3028.1, 2005.
Wang, C.-C., Chen, G. T.-J., and Huang, S.-Y.:
Remote trigger of deep convection by cold outflow over the Taiwan Strait in the Mei-yu season: A modeling study of the 8 June 2007 case, Mon. Weather Rev., 139, 2854–2875, https://doi.org/10.1175/2011MWR3613.1, 2011.
Wang, C.-C., Hsu, J. C.-S., Chen, G. T.-J., and Lee, D.-I.:
A study of two propagating heavy-rainfall episodes near Taiwan during SoWMEX/TiMREX IOP-8 in June 2008. Part I: Synoptic evolution, episode propagation, and model control simulation, Mon. Weather Rev., 142, 2619–2643, https://doi.org/10.1175/MWR-D-13-00331.1, 2014a.
Wang, C.-C., Hsu, J. C.-S., Chen, G. T.-J., and Lee, D.-I.:
A study of two propagating heavy-rainfall episodes near Taiwan during SoWMEX/TiMREX IOP-8 in June 2008. Part II: Sensitivity tests on the roles of synoptic conditions and topographic effects, Mon. Weather Rev., 142, 2644–2664, https://doi.org/10.1175/MWR-D-13-00330.1, 2014b.
Wang, C.-C., Chiou, B.-K., Chen, G. T.-J., Kuo, H.-C., and Liu, C.-H.: A numerical study of back-building process in a quasistationary rainband with extreme rainfall over northern Taiwan during 11–12 June 2012, Atmos. Chem. Phys., 16, 12359–12382, https://doi.org/10.5194/acp-16-12359-2016, 2016.
Wang, C.-C., Chen, G. T.-J., Ngai, C.-H., and Tsuboki, K.:
Case study of a morning convective rainfall event over southwestern Taiwan in the Mei-yu season under weak synoptic conditions, J. Meteorol. Soc. Jpn., 96, 461–484, https://doi.org/10.2151/jmsj.2018-051, 2018.
Wang, C.-C., Li, M.-S., Chang, C.-S., Chuang, P.-Y., Chen, S.-H., and Tsuboki, K.:
Ensemble-based sensitivity analysis and predictability of an extreme rainfall event over northern Taiwan in the Mei-yu season: The 2 June 2017 case, Atmos. Res., 259, 105684, https://doi.org/10.1016/j.atmosres.2021.105684, 2021.
Wang, C.-C., Chuang, P.-Y., Chen, S.-T., Lee, D.-I., and Tsuboki, K.: Cloud-Resolving Storm Simulator Binary Data, DBAR [data set], https://doi.org/10.29840/DBAR.DB_CReSSBD/Dataset, 2022.
Xu, W., Zipser, E. J., Chen, Y.-L., Liu, C., Liou, Y.-C., Lee, W.-C., and Jou, B. J.-D.:
An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance, Mon. Weather Rev., 140, 2555–2574, https://doi.org/10.1175/MWR-D-11-00208.1, 2012.
Yeh, H.-C. and Chen, Y.-L.:
Characteristics of rainfall distributions over Taiwan during the Taiwan Area Mesoscale Experiment (TAMEX), J. Appl. Meteorol. Clim., 37, 1457–1469, https://doi.org/10.1175/1520-0450(1998)037%3C1457:CORDOT%3E2.0.CO;2, 1998.
Yeh, H.-C. and Chen, Y.-L.:
The role of offshore convergence on coastal rainfall during TAMEX IOP 3, Mon. Weather Rev., 130, 2709–2730, https://doi.org/10.1175/1520-0493(2002)130%3C2709:TROOCO%3E2.0.CO;2, 2002.
Yeh, H.-C. and Chen, Y.-L.:
Numerical simulations of the barrier jet over northwestern Taiwan during the Mei-Yu Season, Mon. Weather Rev., 131, 1396–1407, https://doi.org/10.1175/1520-0493(2003)131%3C1396:NSOTBJ%3E2.0.CO;2, 2003.
Short summary
In this study, cloud-resolving simulations are performed under idealized and uniform southwesterly flow direction and speed to investigate the rainfall regimes in the Mei-yu season and the role of complex mesoscale topography on rainfall without the influence of unwanted disturbances, including a low-Froude number regime where the thermodynamic effects and island circulation dominate, a high-Froude number regime where topographic rainfall in a flow-over scenario prevails, and a mixed regime.
In this study, cloud-resolving simulations are performed under idealized and uniform...
Altmetrics
Final-revised paper
Preprint