Articles | Volume 21, issue 3
Nat. Hazards Earth Syst. Sci., 21, 961–976, 2021
https://doi.org/10.5194/nhess-21-961-2021
Nat. Hazards Earth Syst. Sci., 21, 961–976, 2021
https://doi.org/10.5194/nhess-21-961-2021
Research article
12 Mar 2021
Research article | 12 Mar 2021

The impact of hydrological model structure on the simulation of extreme runoff events

Gijs van Kempen et al.

Related authors

The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022,https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
A geography of drought indices: mismatch between indicators of drought and its impacts on water and food securities
Sarra Kchouk, Lieke A. Melsen, David W. Walker, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 22, 323–344, https://doi.org/10.5194/nhess-22-323-2022,https://doi.org/10.5194/nhess-22-323-2022, 2022
Short summary
A data-driven prediction model for Fennoscandian wildfires
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-384,https://doi.org/10.5194/nhess-2021-384, 2021
Preprint under review for NHESS
Short summary
Storylines of weather-induced crop failure events under climate change
Henrique M. D. Goulart, Karin van der Wiel, Christian Folberth, Juraj Balkovic, and Bart van den Hurk
Earth Syst. Dynam., 12, 1503–1527, https://doi.org/10.5194/esd-12-1503-2021,https://doi.org/10.5194/esd-12-1503-2021, 2021
Short summary
Numerical daemons of hydrological models are summoned by extreme precipitation
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021,https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary

Related subject area

Hydrological Hazards
Assessing flooding impact to riverine bridges: an integrated analysis
Maria Pregnolato, Andrew O. Winter, Dakota Mascarenas, Andrew D. Sen, Paul Bates, and Michael R. Motley
Nat. Hazards Earth Syst. Sci., 22, 1559–1576, https://doi.org/10.5194/nhess-22-1559-2022,https://doi.org/10.5194/nhess-22-1559-2022, 2022
Short summary
Warming of 0.5 °C may cause double the economic loss and increase the population affected by floods in China
Lulu Liu, Jiangbo Gao, and Shaohong Wu
Nat. Hazards Earth Syst. Sci., 22, 1577–1590, https://doi.org/10.5194/nhess-22-1577-2022,https://doi.org/10.5194/nhess-22-1577-2022, 2022
Short summary
First application of the Integrated Karst Aquifer Vulnerability (IKAV) method – potential and actual vulnerability in Yucatán, Mexico
Miguel Moreno-Gómez, Carolina Martínez-Salvador, Rudolf Liedl, Catalin Stefan, and Julia Pacheco
Nat. Hazards Earth Syst. Sci., 22, 1591–1608, https://doi.org/10.5194/nhess-22-1591-2022,https://doi.org/10.5194/nhess-22-1591-2022, 2022
Short summary
Brief communication: Seismological analysis of flood dynamics and hydrologically triggered earthquake swarms associated with Storm Alex
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022,https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
System vulnerability to flood events and risk assessment of railway systems based on national and river basin scales in China
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022,https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary

Cited articles

Addor, N. and Melsen, L. A.: Legacy, rather than adequacy, drives the selection of hydrological models, Water Resour. Res., 55, 378–390, https://doi.org/10.1029/2018WR022958, 2019. a, b
Ajami, N. K., Duan, Q., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, https://doi.org/10.1029/2005WR004745, 2007. a
Andersen, M. N., Jensen, C. R., and Lösch, R.: The interaction effects of potassium and drought in field-grown barley. I. Yield, water-use efficiency and growth, Acta Agr. Scand. B-S. P., 42, 34–44, https://doi.org/10.1080/09064719209410197, 1992. a
Atkinson, S. E., Woods, R. A., and Sivapalan, M.: Climate and landscape controls on water balance model complexity over changing timescales, Water Resour. Res., 38, 50-1–50-17, https://doi.org/10.1029/2002wr001487, 2002. a
Bethune, M. G., Selle, B., and Wang, Q. J.: Understanding and predicting deep percolation under surface irrigation, Water Resour. Res., 44, W12430, https://doi.org/10.1029/2007WR006380, 2008. a
Download
Short summary
In this study, we combine climate model results with a hydrological model to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of current climate was created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on high- and low-flow risk in four different climate zones with return periods of up to 500 years.
Altmetrics
Final-revised paper
Preprint