Articles | Volume 21, issue 3
https://doi.org/10.5194/nhess-21-917-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-917-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrometeorological analysis and forecasting of a 3 d flash-flood-triggering desert rainstorm
Yair Rinat
CORRESPONDING AUTHOR
Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
Francesco Marra
Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
Institute of Atmospheric Sciences and Climate, National Research Council of Italy, ISAC-CNR, Bologna, Italy
Moshe Armon
Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
Asher Metzger
Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
Yoav Levi
Israel Meteorological Service, Beit Dagan, Israel
Pavel Khain
Israel Meteorological Service, Beit Dagan, Israel
Elyakom Vadislavsky
Israel Meteorological Service, Beit Dagan, Israel
Marcelo Rosensaft
Geological Survey of Israel, Jerusalem, Israel
Efrat Morin
Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
Related authors
Davide Zoccatelli, Francesco Marra, Moshe Armon, Yair Rinat, James A. Smith, and Efrat Morin
Hydrol. Earth Syst. Sci., 23, 2665–2678, https://doi.org/10.5194/hess-23-2665-2019, https://doi.org/10.5194/hess-23-2665-2019, 2019
Short summary
Short summary
This study presents a comparison of flood properties over multiple Mediterranean and desert catchments. While in Mediterranean areas floods are related to rainfall amount, in deserts we observed a strong connection with the characteristics of the more intense part of storms. Because of the different mechanisms involved, despite having significantly shorter and more localized storms, deserts are able to produce floods with a magnitude comparable to Mediterranean areas.
Francesco Marra, Nadav Peleg, Elena Cristiano, Efthymios I. Nikolopoulos, Federica Remondi, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 25, 2565–2570, https://doi.org/10.5194/nhess-25-2565-2025, https://doi.org/10.5194/nhess-25-2565-2025, 2025
Short summary
Short summary
Climate change is escalating the risks related to hydro-meteorological extremes. This preface introduces a special issue originating from a European Geosciences Union (EGU) session. It highlights the challenges posed by these extremes, ranging from hazard assessment to mitigation strategies, and covers both water excess events like floods, landslides, and coastal hazards and water deficit events such as droughts and fire weather. The collection aims to advance understanding, improve resilience, and inform policy-making.
Francesco Marra, Eleonora Dallan, Marco Borga, Roberto Greco, and Thom Bogaard
EGUsphere, https://doi.org/10.5194/egusphere-2025-3378, https://doi.org/10.5194/egusphere-2025-3378, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We highlight an important conceptual difference between the duration used in intensity-duration thresholds and the duration used in the intensity-duration-frequency curves that has been overlooked by the landslide literature so far.
Nathalia Correa-Sánchez, Xiaoli Guo Larsén, Giorgia Fosser, Eleonora Dallan, Marco Borga, and Francesco Marra
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-111, https://doi.org/10.5194/wes-2025-111, 2025
Preprint under review for WES
Short summary
Short summary
We examined the power spectra of wind speed in three convection-permitting models in central Europe and found these models have a better representation of wind variability characteristics than standard wind datasets like the New European Wind Atlas, due to different simulation approaches, providing more reliable extreme wind predictions.
Joëlle C. Rieder, Franziska Aemisegger, Elad Dente, and Moshe Armon
Hydrol. Earth Syst. Sci., 29, 1395–1427, https://doi.org/10.5194/hess-29-1395-2025, https://doi.org/10.5194/hess-29-1395-2025, 2025
Short summary
Short summary
The Sahara was wetter in the past and may become wetter in the future. Lake remnants are evidence of the desert’s wetter past. If the Sahara gets wetter in the future, these lakes may serve as a water resource. However, it is unclear how these lakes get filled and how moisture is carried into the desert and converted into rain in the first place. Therefore, we examine processes currently leading to the filling of a dry lake in the Sahara, which can help assess future water availability.
Kevin Kenfack, Francesco Marra, Zéphirin Yepdo Djomou, Lucie Angennes Djiotang Tchotchou, Alain Tchio Tamoffo, and Derbetini Appolinaire Vondou
Weather Clim. Dynam., 5, 1457–1472, https://doi.org/10.5194/wcd-5-1457-2024, https://doi.org/10.5194/wcd-5-1457-2024, 2024
Short summary
Short summary
The results of this study show that moisture advection induced by horizontal wind anomalies and vertical moisture advection induced by vertical velocity anomalies were crucial mechanisms behind the anomalous October 2019 exceptional rainfall increase over western central Africa. The information we derive can be used to support risk assessment and management in the region and to improve our resilience to ongoing climate change.
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024, https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Short summary
The train effect is related to convective cells that pass over the same place. Trains produce heavy rainfall and sometimes floods and are reported in North America during spring and summer. In Israel, 17 trains associated with Cyprus lows were identified by radar images and were found within the cold sector south of the low center and in the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km; last 1–3 h; and yield 35 mm of rainfall up to 60 mm.
Talia Rosin, Francesco Marra, and Efrat Morin
Hydrol. Earth Syst. Sci., 28, 3549–3566, https://doi.org/10.5194/hess-28-3549-2024, https://doi.org/10.5194/hess-28-3549-2024, 2024
Short summary
Short summary
Knowledge of extreme precipitation probability at various spatial–temporal scales is crucial. We estimate extreme precipitation return levels at multiple scales (10 min–24 h, 0.25–500 km2) in the eastern Mediterranean using radar data. We show our estimates are comparable to those derived from averaged daily rain gauges. We then explore multi-scale extreme precipitation across coastal, mountainous, and desert regions.
Rajani Kumar Pradhan, Yannis Markonis, Francesco Marra, Efthymios I. Nikolopoulos, Simon Michael Papalexiou, and Vincenzo Levizzani
EGUsphere, https://doi.org/10.5194/egusphere-2024-1626, https://doi.org/10.5194/egusphere-2024-1626, 2024
Short summary
Short summary
This study compared global satellite and one reanalysis precipitation dataset to assess diurnal variability. We found that all datasets capture key diurnal precipitation patterns, with maximum precipitation in the afternoon over land and early morning over the ocean. However, there are differences in the exact timing and amount of precipitation. This suggests that it is better to use a combination of datasets for potential applications rather than relying on a single dataset.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Shai Abir, Hamish A. McGowan, Yonatan Shaked, Hezi Gildor, Efrat Morin, and Nadav G. Lensky
Atmos. Chem. Phys., 24, 6177–6195, https://doi.org/10.5194/acp-24-6177-2024, https://doi.org/10.5194/acp-24-6177-2024, 2024
Short summary
Short summary
Understanding air–sea heat exchange is vital for studying ocean dynamics. Eddy covariance measurements over the Gulf of Eilat revealed a 3.22 m yr-1 evaporation rate, which is inconsistent with bulk formulae estimations in stable atmospheric conditions, requiring bulk formulae to be revisited in these environments. The surface fluxes have a net cooling effect on the gulf water on an annual mean (-79 W m-2), balanced by a strong exchange flux between the Red Sea and the Gulf of Eilat.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels (i.e., intensity–duration–frequency, IDF, curves), which are critical for the estimation of future floods. The proposed model, named TENAX, incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data are available.
Haggai Eyal, Moshe Armon, Yehouda Enzel, and Nadav G. Lensky
Earth Surf. Dynam., 11, 547–574, https://doi.org/10.5194/esurf-11-547-2023, https://doi.org/10.5194/esurf-11-547-2023, 2023
Short summary
Short summary
Extracting paleoenvironmets from sedimentologic and geomorphic records is a main goal in Earth sciences. We study a chain of processes connecting causative Mediterranean cyclones, coeval floods, storm waves generated by mesoscale funneled wind, and coastal gravel transport. This causes northward dispersion of gravel along the modern Dead Sea coast, which has also persisted since the late Pleistocene, resulting in beach berms and fan deltas always being deposited north of channel mouths.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Nadav Peleg, Herminia Torelló-Sentelles, Grégoire Mariéthoz, Lionel Benoit, João P. Leitão, and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1233–1240, https://doi.org/10.5194/nhess-23-1233-2023, https://doi.org/10.5194/nhess-23-1233-2023, 2023
Short summary
Short summary
Floods in urban areas are one of the most common natural hazards. Due to climate change enhancing extreme rainfall and cities becoming larger and denser, the impacts of these events are expected to increase. A fast and reliable flood warning system should thus be implemented in flood-prone cities to warn the public of upcoming floods. The purpose of this brief communication is to discuss the potential implementation of low-cost acoustic rainfall sensors in short-term flood warning systems.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Shalev Siman-Tov and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1079–1093, https://doi.org/10.5194/nhess-23-1079-2023, https://doi.org/10.5194/nhess-23-1079-2023, 2023
Short summary
Short summary
Debris flows represent a threat to infrastructure and the population. In arid areas, they are observed when heavy rainfall hits steep slopes with sediments. Here, we use digital surface models and radar rainfall data to detect and characterize the triggering and non-triggering rainfall conditions. We find that rainfall intensity alone is insufficient to explain the triggering. We suggest that antecedent rainfall could represent a critical factor for debris flow triggering in arid regions.
Sella Nevo, Efrat Morin, Adi Gerzi Rosenthal, Asher Metzger, Chen Barshai, Dana Weitzner, Dafi Voloshin, Frederik Kratzert, Gal Elidan, Gideon Dror, Gregory Begelman, Grey Nearing, Guy Shalev, Hila Noga, Ira Shavitt, Liora Yuklea, Moriah Royz, Niv Giladi, Nofar Peled Levi, Ofir Reich, Oren Gilon, Ronnie Maor, Shahar Timnat, Tal Shechter, Vladimir Anisimov, Yotam Gigi, Yuval Levin, Zach Moshe, Zvika Ben-Haim, Avinatan Hassidim, and Yossi Matias
Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, https://doi.org/10.5194/hess-26-4013-2022, 2022
Short summary
Short summary
Early flood warnings are one of the most effective tools to save lives and goods. Machine learning (ML) models can improve flood prediction accuracy but their use in operational frameworks is limited. The paper presents a flood warning system, operational in India and Bangladesh, that uses ML models for forecasting river stage and flood inundation maps and discusses the models' performances. In 2021, more than 100 million flood alerts were sent to people near rivers over an area of 470 000 km2.
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, https://doi.org/10.5194/esd-13-749-2022, 2022
Short summary
Short summary
Gaining a complete understanding of extreme weather, from its physical drivers to its impacts on society, is important in supporting future risk reduction and adaptation measures. Here, we provide a review of the available scientific literature, knowledge gaps and key open questions in the study of extreme weather events over the vulnerable eastern Mediterranean region.
Francesco Marra, Moshe Armon, and Efrat Morin
Hydrol. Earth Syst. Sci., 26, 1439–1458, https://doi.org/10.5194/hess-26-1439-2022, https://doi.org/10.5194/hess-26-1439-2022, 2022
Short summary
Short summary
We present a new method for quantifying the probability of occurrence of extreme rainfall using radar data, and we use it to examine coastal and orographic effects on extremes. We identify three regimes, directly related to precipitation physical processes, which respond differently to these forcings. The methods and results are of interest for researchers and practitioners using radar for the analysis of extremes, risk managers, water resources managers, and climate change impact studies.
Yoav Ben Dor, Francesco Marra, Moshe Armon, Yehouda Enzel, Achim Brauer, Markus Julius Schwab, and Efrat Morin
Clim. Past, 17, 2653–2677, https://doi.org/10.5194/cp-17-2653-2021, https://doi.org/10.5194/cp-17-2653-2021, 2021
Short summary
Short summary
Laminated sediments from the deepest part of the Dead Sea unravel the hydrological response of the eastern Mediterranean to past climate changes. This study demonstrates the importance of geological archives in complementing modern hydrological measurements that do not fully capture natural hydroclimatic variability, which is crucial to configure for understanding the impact of climate change on the hydrological cycle in subtropical regions.
Uri Dayan, Itamar M. Lensky, Baruch Ziv, and Pavel Khain
Nat. Hazards Earth Syst. Sci., 21, 1583–1597, https://doi.org/10.5194/nhess-21-1583-2021, https://doi.org/10.5194/nhess-21-1583-2021, 2021
Short summary
Short summary
An intense rainstorm hit the Middle East between 24 and 27 April 2018. The storm reached its peak over Israel on 26 April when a heavy flash flood took the lives of 10 people. The rainfall was comparable to the long-term annual rainfall in the southern Negev. The timing was the end of the rainy season when rain is rare and spotty. The study analyses the dynamic and thermodynamic conditions that made this rainstorm one of the latest spring severe events in the region during the last 3 decades.
Leenes Uzan, Smadar Egert, Pavel Khain, Yoav Levi, Elyakom Vadislavsky, and Pinhas Alpert
Atmos. Chem. Phys., 20, 12177–12192, https://doi.org/10.5194/acp-20-12177-2020, https://doi.org/10.5194/acp-20-12177-2020, 2020
Short summary
Short summary
Detection of the planetary boundary layer (PBL) height is crucial to various fields, from air pollution assessment to weather prediction. We examined the diurnal summer PBL height by eight ceilometers in Israel, radiosonde profiles, the global IFS, and regional COSMO models. Our analysis utilized the bulk Richardson number method, the parcel method, and the wavelet covariance transform method. A novel correction tool to improve model results against in-situ ceilometer measurements is introduced.
Moshe Armon, Francesco Marra, Yehouda Enzel, Dorita Rostkier-Edelstein, and Efrat Morin
Hydrol. Earth Syst. Sci., 24, 1227–1249, https://doi.org/10.5194/hess-24-1227-2020, https://doi.org/10.5194/hess-24-1227-2020, 2020
Short summary
Short summary
Heavy precipitation events (HPEs), occurring around the globe, lead to natural hazards as well as to water resource recharge. Rainfall patterns during HPEs vary from one case to another and govern their effect. Thus, correct prediction of these patterns is crucial for coping with HPEs. However, the ability of weather models to generate such patterns is unclear. Here, we characterise rainfall patterns during HPEs based on weather radar data and evaluate weather model simulations of these events.
Matty Sharon, Amir Sagy, Ittai Kurzon, Shmuel Marco, and Marcelo Rosensaft
Nat. Hazards Earth Syst. Sci., 20, 125–148, https://doi.org/10.5194/nhess-20-125-2020, https://doi.org/10.5194/nhess-20-125-2020, 2020
Short summary
Short summary
We present a methodology for mapping faults that constitute far-field (ground motion) and near-field (surface rupture) hazards to structures, particularly for critical facilities. For categorising faults, the criteria are adjusted to local tectonic characteristics, combining data of geological maps, instrumental seismicity, geodesy and past earthquakes. Our results adhere to international standards of hazard assessment for nuclear power plants and improve the regional tectonic understanding.
Davide Zoccatelli, Francesco Marra, Moshe Armon, Yair Rinat, James A. Smith, and Efrat Morin
Hydrol. Earth Syst. Sci., 23, 2665–2678, https://doi.org/10.5194/hess-23-2665-2019, https://doi.org/10.5194/hess-23-2665-2019, 2019
Short summary
Short summary
This study presents a comparison of flood properties over multiple Mediterranean and desert catchments. While in Mediterranean areas floods are related to rainfall amount, in deserts we observed a strong connection with the characteristics of the more intense part of storms. Because of the different mechanisms involved, despite having significantly shorter and more localized storms, deserts are able to produce floods with a magnitude comparable to Mediterranean areas.
William Amponsah, Pierre-Alain Ayral, Brice Boudevillain, Christophe Bouvier, Isabelle Braud, Pascal Brunet, Guy Delrieu, Jean-François Didon-Lescot, Eric Gaume, Laurent Lebouc, Lorenzo Marchi, Francesco Marra, Efrat Morin, Guillaume Nord, Olivier Payrastre, Davide Zoccatelli, and Marco Borga
Earth Syst. Sci. Data, 10, 1783–1794, https://doi.org/10.5194/essd-10-1783-2018, https://doi.org/10.5194/essd-10-1783-2018, 2018
Short summary
Short summary
The EuroMedeFF database comprises 49 events that occurred in France, Israel, Germany, Slovenia, Romania, and Italy. The dataset may be of help to hydrologists as well as other scientific communities because it offers benchmark data for the verification of flash flood hydrological models and for hydro-meteorological forecast systems. It provides, moreover, a sample of rainfall and flood discharge extremes in different climates.
Philipp Gasch, Daniel Rieger, Carolin Walter, Pavel Khain, Yoav Levi, Peter Knippertz, and Bernhard Vogel
Atmos. Chem. Phys., 17, 13573–13604, https://doi.org/10.5194/acp-17-13573-2017, https://doi.org/10.5194/acp-17-13573-2017, 2017
Short summary
Short summary
This paper presents simulations of a severe dust event in the Eastern Mediterranean with a weather prediction model using very high spatial resolution. Due to the high resolution, the small-scale features of the event are captured in great detail. Consequently, the previously erroneous forecast of the event is improved drastically. In addition, the interaction of mineral dust with radiation inside the model has been included as a part of this work and is presented here.
Idit Belachsen, Francesco Marra, Nadav Peleg, and Efrat Morin
Hydrol. Earth Syst. Sci., 21, 5165–5180, https://doi.org/10.5194/hess-21-5165-2017, https://doi.org/10.5194/hess-21-5165-2017, 2017
Short summary
Short summary
Spatiotemporal rainfall patterns in arid environments are not well-known. We derived properties of convective rain cells over the arid Dead Sea region from a long-term radar archive. We found differences in cell properties between synoptic systems and between flash-flood and non-flash-flood events. Large flash floods are associated with slow rain cells, directed downstream with the main catchment axis. Results from this work can be used for hydrological models and stochastic storm simulations.
Francesco Marra, Elisa Destro, Efthymios I. Nikolopoulos, Davide Zoccatelli, Jean Dominique Creutin, Fausto Guzzetti, and Marco Borga
Hydrol. Earth Syst. Sci., 21, 4525–4532, https://doi.org/10.5194/hess-21-4525-2017, https://doi.org/10.5194/hess-21-4525-2017, 2017
Short summary
Short summary
Previous studies have reported a systematic underestimation of debris flow occurrence thresholds, due to the use of sparse networks in non-stationary rain fields. We analysed high-resolution radar data to show that spatially aggregated estimates (e.g. satellite data) largely reduce this issue, in light of a reduced estimation variance. Our findings are transferable to other situations in which lower envelope curves are used to predict point-like events in the presence of non-stationary fields.
Francesco Marra, Efrat Morin, Nadav Peleg, Yiwen Mei, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, https://doi.org/10.5194/hess-21-2389-2017, 2017
Short summary
Short summary
Rainfall frequency analyses from radar and satellite estimates over the eastern Mediterranean are compared examining different climatic conditions. Correlation between radar and satellite results is high for frequent events and decreases with return period. The uncertainty related to record length is larger for drier climates. The agreement between different sensors instills confidence on their use for rainfall frequency analysis in ungauged areas of the Earth.
Yoav Levi and Itzhak Carmona
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2016-60, https://doi.org/10.5194/esd-2016-60, 2016
Manuscript not accepted for further review
Short summary
Short summary
Seasonal forecast is a scientific challenge drawing increase attention of both the scientific community and the decision makers. The manuscript deals with evaluation of seasonal forecasts skill taking into account the rapid changes in both climate and socio-economic development. An attempt to give a solution to overcome rapid changes may provide local stakeholders with a new way of using seasonal forecast.
N. Peleg, E. Shamir, K. P. Georgakakos, and E. Morin
Hydrol. Earth Syst. Sci., 19, 567–581, https://doi.org/10.5194/hess-19-567-2015, https://doi.org/10.5194/hess-19-567-2015, 2015
N. Peleg, M. Ben-Asher, and E. Morin
Hydrol. Earth Syst. Sci., 17, 2195–2208, https://doi.org/10.5194/hess-17-2195-2013, https://doi.org/10.5194/hess-17-2195-2013, 2013
E. Shamir, L. Ben-Moshe, A. Ronen, T. Grodek, Y. Enzel, K. P. Georgakakos, and E. Morin
Hydrol. Earth Syst. Sci., 17, 1021–1034, https://doi.org/10.5194/hess-17-1021-2013, https://doi.org/10.5194/hess-17-1021-2013, 2013
Related subject area
Hydrological Hazards
Drought propagation in high-latitude catchments: insights from a 60-year analysis using standardized indices
Brief communication: Hydrological and hydraulic investigation of the extreme September 2024 flood on the Lamone River in Emilia-Romagna, Italy
Improving pluvial flood simulations with a multi-source digital elevation model super-resolution method
It could have been much worse: spatial counterfactuals of the July 2021 flood in the Ahr Valley, Germany
Rapid high-resolution impact-based flood early warning is possible with RIM2D: a showcase for the 2023 pluvial flood in Braunschweig
The 2018–2023 drought in Berlin: impacts and analysis of the perspective of water resources management
Recent large-inland-lake outbursts on the Tibetan Plateau: processes, causes, and mechanisms
Modelling urban stormwater drainage overflows for assessing flood hazards: application to the urban area of Dakar (Senegal)
Dynamics and impacts of monsoon-induced geological hazards: a 2022 flood study along the Swat River in Pakistan
Monte Carlo-based sensitivity analysis of the RIM2D hydrodynamic model for the 2021 flood event in western Germany
Climate change impacts on floods in West Africa: New insight from two large-scale hydrological models
Mind the gap: misalignment between drought monitoring and community realities
Forecasting agricultural drought: the Australian Agriculture Drought Indicators
Post-wildfire sediment source and transport modeling, empirical observations, and applied mitigation: an Arizona, USA, case study
Causes of the exceptionally high number of fatalities in the Ahr valley, Germany, during the 2021 flood
Groundwater recharge in Brandenburg is declining – but why?
Large-scale flood risk assessment in data-scarce areas: an application to Central Asia
Multi-scale hydraulic graph neural networks for flood modelling
The role of antecedent conditions in translating precipitation events into extreme floods at the catchment scale and in a large-basin context
Brief communication: Stay local or go global? On the construction of plausible counterfactual scenarios to assess flash flood hazards
Integrating susceptibility maps of multiple hazards and building exposure distribution: a case study of wildfires and floods for the province of Quang Nam, Vietnam
Tangible and intangible ex post assessment of flood-induced damage to cultural heritage
A multivariate statistical framework for mixed storm types in compound flood analysis
Invited perspectives: safeguarding the usability and credibility of flood hazard and risk assessments
Influence of building collapse on pluvial and fluvial flood inundation of metro stations in central Shanghai
Impact of drought hazards on flow regimes in anthropogenically impacted streams: an isotopic perspective on climate stress
The effect of wildfires on flood risk: a multi-hazard flood risk approach for the Ebro River basin, Spain
Modelling hazards impacting the flow regime in the Hranice Karst due to the proposed Skalička Dam
Spatiotemporal variability of flash floods and their human impacts in the Czech Republic during the 2001–2023 period
Risk of compound flooding substantially increases in the future Mekong River delta
Transferability of machine-learning-based modeling frameworks across flood events for hindcasting maximum river water depths in coastal watersheds
Floods in the Pyrenees: a global view through a regional database
Algorithmically detected rain-on-snow flood events in different climate datasets: a case study of the Susquehanna River basin
Disentangling Atmospheric, Hydrological, and Coupling Uncertainties in Compound Flood Modeling within a Coupled Earth System Model
Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems
Coupling WRF with HEC-HMS and WRF-Hydro for flood forecasting in typical mountainous catchments of northern China
Temporal persistence of postfire flood hazards under present and future climate conditions in southern Arizona, USA
Evaluating Yangtze River Delta Urban Agglomeration flood risk using hybrid method of AutoML and AHP
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Hail events in Germany, rare or frequent natural hazards?
Probabilistic flood inundation mapping through copula Bayesian multi-modeling of precipitation products
Flood occurrence and impact models for socioeconomic applications over Canada and the United States
Model-based assessment of climate change impact on inland flood risk at the German North Sea coast caused by compounding storm tide and precipitation events
An improved dynamic bidirectional coupled hydrologic–hydrodynamic model for efficient flood inundation prediction
Quantifying hazard resilience by modeling infrastructure recovery as a resource-constrained project scheduling problem
Hydrometeorological controls of and social response to the 22 October 2019 catastrophic flash flood in Catalonia, north-eastern Spain
Claudia Teutschbein, Thomas Grabs, Markus Giese, Andrijana Todorović, and Roland Barthel
Nat. Hazards Earth Syst. Sci., 25, 2541–2564, https://doi.org/10.5194/nhess-25-2541-2025, https://doi.org/10.5194/nhess-25-2541-2025, 2025
Short summary
Short summary
This study is an exploration of how droughts develop and spread in high-latitude regions, focusing on the unique conditions found in areas like Scandinavia. It reveals that droughts affect soil, rivers, and groundwater differently, depending on such factors as land cover, water availability, and soil properties. The findings highlight the importance of tailored water management strategies to protect resources and ecosystems in these regions, especially as climate change continues to affect weather patterns.
Alessia Ferrari, Giulia Passadore, Renato Vacondio, Luca Carniello, Mattia Pivato, Elena Crestani, Francesco Carraro, Francesca Aureli, Sara Carta, Francesca Stumpo, and Paolo Mignosa
Nat. Hazards Earth Syst. Sci., 25, 2473–2479, https://doi.org/10.5194/nhess-25-2473-2025, https://doi.org/10.5194/nhess-25-2473-2025, 2025
Short summary
Short summary
Between 17 and 20 September 2024, the Lamone River basin in northern Italy was hit by extreme precipitation. This study adopts the hydrological model Rhyme and the hydrodynamic model PARFLOOD to simulate the hydrological processes in the watershed and the levee-breach-induced inundation affecting the village of Traversara. The close match between the resulting flooded areas and the observed ones shows the capability of these numerical models to support the preparedness for at-risk populations.
Yue Zhu, Paolo Burlando, Puay Yok Tan, Christian Geiß, and Simone Fatichi
Nat. Hazards Earth Syst. Sci., 25, 2271–2286, https://doi.org/10.5194/nhess-25-2271-2025, https://doi.org/10.5194/nhess-25-2271-2025, 2025
Short summary
Short summary
This study addresses the challenge of accurately predicting floods in regions with limited terrain data. By utilising a deep learning model, we developed a method that improves the resolution of digital elevation data by fusing low-resolution elevation data with high-resolution satellite imagery. This approach not only substantially enhances flood prediction accuracy, but also holds potential for broader applications in simulating natural hazards that require terrain information.
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 25, 2007–2029, https://doi.org/10.5194/nhess-25-2007-2025, https://doi.org/10.5194/nhess-25-2007-2025, 2025
Short summary
Short summary
The July 2021 flood in central Europe was one of the deadliest floods in Europe in the recent decades and the most expensive flood in Germany. In this paper, we show that the hydrological impact of this event in the Ahr valley could have been even worse if the rainfall footprint trajectory had been only slightly different. The presented methodology of spatial counterfactuals generates plausible unprecedented events and helps to better prepare for future extreme floods.
Shahin Khosh Bin Ghomash, Heiko Apel, Kai Schröter, and Max Steinhausen
Nat. Hazards Earth Syst. Sci., 25, 1737–1749, https://doi.org/10.5194/nhess-25-1737-2025, https://doi.org/10.5194/nhess-25-1737-2025, 2025
Short summary
Short summary
This work introduces RIM2D (Rapid Inundation Model 2D), a hydrodynamic model for precise and rapid flood predictions that is ideal for early warning systems. We demonstrate RIM2D's ability to deliver detailed and localized flood forecasts using the June 2023 flood in Braunschweig, Germany, as a case study. This research highlights the readiness of RIM2D and the required hardware for integration into operational flood warning and impact-based forecasting systems.
Ina Pohle, Sarah Zeilfelder, Johannes Birner, and Benjamin Creutzfeldt
Nat. Hazards Earth Syst. Sci., 25, 1293–1313, https://doi.org/10.5194/nhess-25-1293-2025, https://doi.org/10.5194/nhess-25-1293-2025, 2025
Short summary
Short summary
Climate change, the lignite mining phase-out and structural changes challenge water resources management of the German capital Berlin. Reduced water availability and rising demand are creating latent water quality problems. The 2018–2023 drought uniquely impacted temperature, precipitation, groundwater and surface water. Analysing the impacts of the 2018–2023 drought helps to address water-related challenges and implement effective measures in Berlin and its surrounding areas.
Fenglin Xu, Yong Liu, Guoqing Zhang, Ping Zhao, R. Iestyn Woolway, Yani Zhu, Jianting Ju, Tao Zhou, Xue Wang, and Wenfeng Chen
Nat. Hazards Earth Syst. Sci., 25, 1187–1206, https://doi.org/10.5194/nhess-25-1187-2025, https://doi.org/10.5194/nhess-25-1187-2025, 2025
Short summary
Short summary
Glacial lake outbursts have been widely studied, but large-inland-lake outbursts have received less attention. Recently, with the rapid expansion of inland lakes, signs of potential outbursts have increased. However, their processes, causes, and mechanisms are still not well understood. Here, the outburst processes of two inland lakes were investigated using a combination of field surveys, remote sensing mapping, and hydrodynamic modeling. Their causes and mechanisms were also investigated.
Laurent Pascal Malang Diémé, Christophe Bouvier, Ansoumana Bodian, and Alpha Sidibé
Nat. Hazards Earth Syst. Sci., 25, 1095–1112, https://doi.org/10.5194/nhess-25-1095-2025, https://doi.org/10.5194/nhess-25-1095-2025, 2025
Short summary
Short summary
We propose a decision support tool that detect the occurrence of flooding by drainage overflow, with sufficiently short calculation times. The simulations are based on a drainage topology on 5 m grids, incorporating changes to surface flows induced by urbanization. The method can be used for flood mapping in project mode and in real time. It applies to the present situation as well as to any scenario involving climate change or urban growth.
Nazir Ahmed Bazai, Mehtab Alam, Peng Cui, Wang Hao, Adil Poshad Khan, Muhammad Waseem, Yao Shunyu, Muhammad Ramzan, Li Wanhong, and Tashfain Ahmed
Nat. Hazards Earth Syst. Sci., 25, 1071–1093, https://doi.org/10.5194/nhess-25-1071-2025, https://doi.org/10.5194/nhess-25-1071-2025, 2025
Short summary
Short summary
The 2022 monsoon in Pakistan's Swat River basin brought record rainfall, exceeding averages by 7–8%, triggering catastrophic debris flows and floods. Key factors include extreme rainfall, deforestation, and steep slopes. Fieldwork, remote sensing, and simulations highlight land degradation's role in intensifying floods. Recommendations include reforestation, early warning systems, and land use reforms to protect communities and reduce future risks
Shahin Khosh Bin Ghomash, Patricio Yeste, Heiko Apel, and Viet Dung Nguyen
Nat. Hazards Earth Syst. Sci., 25, 975–990, https://doi.org/10.5194/nhess-25-975-2025, https://doi.org/10.5194/nhess-25-975-2025, 2025
Short summary
Short summary
Hydrodynamic models are vital for predicting floods, like those in Germany's Ahr region in July 2021. We refine the RIM2D model for the Ahr region, analyzing the impact of various factors using Monte Carlo simulations. Accurate parameter assignment is crucial, with channel roughness and resolution playing key roles. Coarser resolutions are suitable for flood extent predictions, aiding early-warning systems. Our work provides guidelines for optimizing hydrodynamic models in the Ahr region.
Serigne Bassirou Diop, Job Ekolu, Yves Tramblay, Bastien Dieppois, Stefania Grimaldi, Ansoumana Bodian, Juliette Blanchet, Ponnambalam Rameshwaran, Peter Salamon, and Benjamin Sultan
EGUsphere, https://doi.org/10.5194/egusphere-2025-130, https://doi.org/10.5194/egusphere-2025-130, 2025
Short summary
Short summary
West Africa is very vulnerable to rivers floods. Current flood hazards are poorly understood due to limited data. This study is filling this knowledge gap using recent databases and two regional hydrological models to analyze changes in flood risk under two climate scenarios. Results show that most areas will see more frequent and severe floods, with some increasing by over 45 %. These findings stress the urgent need for climate-resilient strategies to protect communities and infrastructure.
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 893–912, https://doi.org/10.5194/nhess-25-893-2025, https://doi.org/10.5194/nhess-25-893-2025, 2025
Short summary
Short summary
Droughts impact water and people, yet monitoring often overlooks impacts on people. In northeastern Brazil, we compare official data to local experiences, finding data mismatches and blind spots. Mismatches occur due to the data's broad scope missing finer details. Blind spots arise from ignoring diverse community responses and vulnerabilities to droughts. We suggest enhanced monitoring by technical extension officers for both severe and mild droughts.
Andrew Schepen, Andrew Bolt, Dorine Bruget, John Carter, Donald Gaydon, Mihir Gupta, Zvi Hochman, Neal Hughes, Chris Sharman, Peter Tan, and Peter Taylor
EGUsphere, https://doi.org/10.5194/egusphere-2024-4129, https://doi.org/10.5194/egusphere-2024-4129, 2025
Short summary
Short summary
The success of agricultural enterprises is affected by climate variability and other important factors like soil conditions and market prices. We have developed an agricultural drought forecasting system to help drought analysts and policymakers more accurately identify communities that are enduring financial stress. By coupling climate forecasts and agricultural models, we can skillfully predict crop yields and farm profits for the coming seasons, which will support proactive responses.
Edward R. Schenk, Alex Wood, Allen Haden, Gabriel Baca, Jake Fleishman, and Joe Loverich
Nat. Hazards Earth Syst. Sci., 25, 727–745, https://doi.org/10.5194/nhess-25-727-2025, https://doi.org/10.5194/nhess-25-727-2025, 2025
Short summary
Short summary
Post-wildfire flooding and debris are dangerous and damaging. This study used three different sediment models to predict post-wildfire sediment sources and transport amounts downstream of the 2019 Museum Fire in northern Arizona, USA. The predictions were compared with real-world measurements of sediment that was cleaned out of the city of Flagstaff after four large floods in 2021. Results provide avenues for continued model refinement and an example of potential mitigation strategies.
Belinda Rhein and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 581–589, https://doi.org/10.5194/nhess-25-581-2025, https://doi.org/10.5194/nhess-25-581-2025, 2025
Short summary
Short summary
In July 2021, flooding killed 190 people in Germany, 134 of them in the Ahr valley, making it the deadliest flood in recent German history. The flash flood was extreme in terms of water levels, flow velocities and flood extent, and early warning and evacuation were inadequate. Many died on the ground floor or in the street, with older and impaired individuals especially vulnerable. Clear warnings should urge people to seek safety rather than save belongings, and timely evacuations are essential.
Till Francke and Maik Heistermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-222, https://doi.org/10.5194/egusphere-2025-222, 2025
Short summary
Short summary
Brandenburg is among the driest federal states in Germany. The low ground water recharge (GWR) is fundamental to both water supply and the support of natural ecosystems. In this study, we show that the decline of observed discharge and groundwater tables since 1980 can be explained by climate change in combination with an increasing leaf area index. Still, simulated GWR rates remain highly uncertain due to the uncertainty of precipitation trends.
Paola Ceresa, Gianbattista Bussi, Simona Denaro, Gabriele Coccia, Paolo Bazzurro, Mario Martina, Ettore Fagà, Carlos Avelar, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Zhanar Raimbekova, Kanatbek Abdrakhmatov, Sitora Mirzokhonova, Vakhitkhan Ismailov, and Vladimir Belikov
Nat. Hazards Earth Syst. Sci., 25, 403–428, https://doi.org/10.5194/nhess-25-403-2025, https://doi.org/10.5194/nhess-25-403-2025, 2025
Short summary
Short summary
A fully probabilistic flood risk assessment was carried out for five Central Asian countries to support regional and national risk financing and insurance applications. The paper presents the first high-resolution regional-scale transboundary flood risk assessment study in the area aiming to provide tools for decision-making.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025, https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
Short summary
Deep learning methods are increasingly used as surrogates for spatio-temporal flood models but struggle with generalization and speed. Here, we propose a multi-resolution approach using graph neural networks that predicts dike breach floods across different meshes, topographies, and boundary conditions with high accuracy and up to 1000× speed-ups. The model also generalizes to larger more complex case studies with just one additional simulation for fine-tuning.
Maria Staudinger, Martina Kauzlaric, Alexandre Mas, Guillaume Evin, Benoit Hingray, and Daniel Viviroli
Nat. Hazards Earth Syst. Sci., 25, 247–265, https://doi.org/10.5194/nhess-25-247-2025, https://doi.org/10.5194/nhess-25-247-2025, 2025
Short summary
Short summary
Various combinations of antecedent conditions and precipitation result in floods of varying degrees. Antecedent conditions played a crucial role in generating even large ones. The key predictors and spatial patterns of antecedent conditions leading to flooding at the basin's outlet were distinct. Precipitation and soil moisture from almost all sub-catchments were important for more frequent floods. For rarer events, only the predictors of specific sub-catchments were important.
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 4609–4615, https://doi.org/10.5194/nhess-24-4609-2024, https://doi.org/10.5194/nhess-24-4609-2024, 2024
Short summary
Short summary
Floods have caused significant damage in the past. To prepare for such events, we rely on historical data but face issues due to rare rainfall events, lack of data and climate change. Counterfactuals, or
what ifscenarios, simulate historical rainfall in different locations to estimate flood levels. Our new study refines this by deriving more-plausible local scenarios, using the June 2024 Bavaria flood as a case study. This method could improve preparedness for future floods.
Chinh Luu, Giuseppe Forino, Lynda Yorke, Hang Ha, Quynh Duy Bui, Hanh Hong Tran, Dinh Quoc Nguyen, Hieu Cong Duong, and Matthieu Kervyn
Nat. Hazards Earth Syst. Sci., 24, 4385–4408, https://doi.org/10.5194/nhess-24-4385-2024, https://doi.org/10.5194/nhess-24-4385-2024, 2024
Short summary
Short summary
This study presents a novel and integrated approach to assessing the climate hazards of floods and wildfires. We explore multi-hazard assessment and risk through a machine learning modeling approach. The process includes collecting a database of topography, climate, geology, environment, and building data; developing models for multi-hazard assessment and coding in the Google Earth Engine; and producing credible multi-hazard susceptibility and building exposure maps.
Claudia De Lucia, Michele Amaddii, and Chiara Arrighi
Nat. Hazards Earth Syst. Sci., 24, 4317–4339, https://doi.org/10.5194/nhess-24-4317-2024, https://doi.org/10.5194/nhess-24-4317-2024, 2024
Short summary
Short summary
This work describes the flood damage to cultural heritage (CH) that occurred in September 2022 in central Italy. Datasets related to flood impacts on cultural heritage are rare, and this work aims at highlighting both tangible and intangible aspects and their correlation with physical characteristics of flood (i.e. water depth and flow velocity). The results show that current knowledge and datasets are inadequate for risk assessment of CH.
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
Nat. Hazards Earth Syst. Sci., 24, 4091–4107, https://doi.org/10.5194/nhess-24-4091-2024, https://doi.org/10.5194/nhess-24-4091-2024, 2024
Short summary
Short summary
When assessing the likelihood of compound flooding, most studies ignore that it can arise from different storm types with distinct statistical characteristics. Here, we present a new statistical framework that accounts for these differences and shows how neglecting these can impact the likelihood of compound flood potential.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
Zhi Li, Hanqi Li, Zhibo Zhang, Chaomeng Dai, and Simin Jiang
Nat. Hazards Earth Syst. Sci., 24, 3977–3990, https://doi.org/10.5194/nhess-24-3977-2024, https://doi.org/10.5194/nhess-24-3977-2024, 2024
Short summary
Short summary
This study used advanced computer simulations to investigate how earthquake-induced building collapse affects flooding of the metro stations in Shanghai. Results show that the influences of building collapse on rainfall-driven and river-driven floods are different because these two types of floods have different origination and propagation mechanisms.
Maria Magdalena Warter, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby
Nat. Hazards Earth Syst. Sci., 24, 3907–3924, https://doi.org/10.5194/nhess-24-3907-2024, https://doi.org/10.5194/nhess-24-3907-2024, 2024
Short summary
Short summary
Streams are increasingly impacted by droughts and floods. Still, the amount of water needed for sustainable flows remains unclear and contested. A comparison of two streams in the Berlin–Brandenburg region of northeast Germany, using stable water isotopes, shows strong groundwater dependence with seasonal rainfall contributing to high/low flows. Understanding streamflow variability can help us assess the impacts of climate change on future water resource management.
Samuel Jonson Sutanto, Matthijs Janssen, Mariana Madruga de Brito, and Maria del Pozo Garcia
Nat. Hazards Earth Syst. Sci., 24, 3703–3721, https://doi.org/10.5194/nhess-24-3703-2024, https://doi.org/10.5194/nhess-24-3703-2024, 2024
Short summary
Short summary
A conventional flood risk assessment only evaluates flood hazard in isolation without considering wildfires. This study, therefore, evaluates the effect of wildfires on flood risk, considering both current and future conditions for the Ebro River basin in Spain. Results show that extreme climate change increases the risk of flooding, especially when considering the effect of wildfires, highlighting the importance of adopting a multi-hazard risk management approach.
Miroslav Spano and Jaromir Riha
Nat. Hazards Earth Syst. Sci., 24, 3683–3701, https://doi.org/10.5194/nhess-24-3683-2024, https://doi.org/10.5194/nhess-24-3683-2024, 2024
Short summary
Short summary
The study examines the effects of hydrogeological hazard due to construction of the Skalička Dam near the Hranice Karst on groundwater discharges and water levels in the local karst formations downstream. A simplified pipe model was used to analyze the impact of two dam layouts: lateral and through-flow reservoirs. Results show that the through-flow scheme more significantly influences water levels and the discharge of mineral water, while the lateral layout has only negligible impact.
Rudolf Brázdil, Dominika Faturová, Monika Šulc Michalková, Jan Řehoř, Martin Caletka, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 3663–3682, https://doi.org/10.5194/nhess-24-3663-2024, https://doi.org/10.5194/nhess-24-3663-2024, 2024
Short summary
Short summary
Flash floods belong to natural hazards that can be enhanced in frequency, intensity, and impact during recent climate change. This paper presents a complex analysis of spatiotemporal variability and human impacts (including material damage and fatalities) of flash floods in the Czech Republic for the 2001–2023 period. The analysis generally shows no statistically significant trends in the characteristics analyzed.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024, https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Short summary
We look at how compound flooding from the combination of river flooding and storm tides (storm surge and astronomical tide) may be changing over time due to climate change, with a case study of the Mekong River delta. We found that future compound flooding has the potential to flood the region more extensively and be longer lasting than compound floods today. This is useful to know because it means managers of deltas such as the Mekong can assess options for improving existing flood defences.
Maryam Pakdehi, Ebrahim Ahmadisharaf, Behzad Nazari, and Eunsaem Cho
Nat. Hazards Earth Syst. Sci., 24, 3537–3559, https://doi.org/10.5194/nhess-24-3537-2024, https://doi.org/10.5194/nhess-24-3537-2024, 2024
Short summary
Short summary
Machine learning (ML) algorithms have increasingly received attention for modeling flood events. However, there are concerns about the transferability of these models (their capability in predicting out-of-sample and unseen events). Here, we show that ML models can be transferable for hindcasting maximum river flood depths across extreme events (four hurricanes) in a large coastal watershed (HUC6) when informed by the spatial distribution of pertinent features and underlying physical processes.
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024, https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Short summary
This paper shows the first public and systematic dataset of flood episodes referring to the entire Pyrenees massif, at municipal scale, named PIRAGUA_flood. Of the 181 flood events (1981–2015) that produced 154 fatalities, 36 were transnational, with the eastern part of the massif most affected. Dominant weather types show a southern component flow, with a talweg on the Iberian Peninsula and a depression in the vicinity. A positive and significant trend was found in Nouvelle-Aquitaine.
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
Nat. Hazards Earth Syst. Sci., 24, 3315–3335, https://doi.org/10.5194/nhess-24-3315-2024, https://doi.org/10.5194/nhess-24-3315-2024, 2024
Short summary
Short summary
We developed an automated workflow to detect rain-on-snow events, which cause flooding in the northeastern United States, in climate data. Analyzing the Susquehanna River basin, this technique identified known events affecting river flow. Comparing four gridded datasets revealed variations in event frequency and severity, driven by different snowmelt and runoff estimates. This highlights the need for accurate climate data in flood management and risk prediction for these compound extremes.
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2785, https://doi.org/10.5194/egusphere-2024-2785, 2024
Short summary
Short summary
Our study explores how riverine and coastal flooding during hurricanes is influenced by the interaction of atmosphere, land, river and ocean conditions. Using an advanced Earth system model, we simulate Hurricane Irene to evaluate how meteorological and hydrological uncertainties affect flood modeling. Our findings reveal the importance of a multi-component modeling system, how hydrological conditions play critical roles in flood modeling, and greater flood risks if multiple factors are present.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Sheik Umar Jam-Jalloh, Jia Liu, Yicheng Wang, and Yuchen Liu
Nat. Hazards Earth Syst. Sci., 24, 3155–3172, https://doi.org/10.5194/nhess-24-3155-2024, https://doi.org/10.5194/nhess-24-3155-2024, 2024
Short summary
Short summary
Our paper explores improving flood forecasting using advanced weather and hydrological models. By coupling the WRF model with WRF-Hydro and HEC-HMS, we achieved more accurate forecasts. WRF–WRF-Hydro excels for short, intense storms, while WRF–HEC-HMS is better for longer, evenly distributed storms. Our research shows how these models provide insights for adaptive atmospheric–hydrologic systems and aims to boost flood preparedness and response with more reliable, timely predictions.
Tao Liu, Luke A. McGuire, Ann M. Youberg, Charles J. Abolt, and Adam L. Atchley
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-151, https://doi.org/10.5194/nhess-2024-151, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
After a fire, soil infiltration decreases, increasing flash flood risks, worsened by intense rainfall from climate change. Using data from a burned watershed in Arizona and a hydrological model, we examined postfire soil changes under medium and high emissions scenarios. Results showed soil infiltration increased sixfold from the first to third postfire year. Both scenarios suggest that rainfall intensification will extend high flood risks after fires by late century.
Yu Gao, Haipeng Lu, Yaru Zhang, Hengxu Jin, Shuai Wu, Yixuan Gao, and Shuliang Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-144, https://doi.org/10.5194/nhess-2024-144, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study focuses on the Yangtze River Delta Urban Agglomeration (YRDUA), where we determined flood risk assessment indices across different dimensions, including hazard, exposure, vulnerability, and resilience. We constructed a flood risk assessment model using AutoML and AHP to examine the spatial and temporal changes in flood risk in the region over the past 30 years (1990 to 2020), aiming to provide a scientific basis for flood prevention and resilience strategies in the YRDUA.
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024, https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Short summary
Extreme rainfall is the leading weather-related source of damages in Europe, but it is still difficult to predict on long timescales. A recent example of this was the devastating floods in the Italian region of Emiglia Romagna in May 2023. We present perspectives based on large-scale dynamical information that allows us to better understand and predict such events.
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024, https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Short summary
Hydrological hazards affect people and ecosystems, but extremes are not fully understood due to limited observations. A large climate ensemble and simple hydrological model are used to assess unprecedented but plausible floods and droughts. The chain gives extreme flows outside the observed range: summer 2022 ~ 28 % lower and autumn 2023 ~ 42 % higher. Spatial dependence and temporal persistence are analysed. Planning for such events could help water supply resilience and flood risk management.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024, https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Short summary
Early warning is essential to minimise the impact of flash floods. We explore the use of highly detailed flood models to simulate the 2021 flood event in the lower Ahr valley (Germany). Using very high-resolution models resolving individual streets and buildings, we produce detailed, quantitative, and actionable information for early flood warning systems. Using state-of-the-art computational technology, these models can guarantee very fast forecasts which allow for sufficient time to respond.
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024, https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary
Short summary
The study proposes a new framework, named FLEXTH, to estimate flood water depth and improve satellite-based flood monitoring using topographical data. FLEXTH is readily available as a computer code, offering a practical and scalable solution for estimating flood depth quickly and systematically over large areas. The methodology can reduce the impacts of floods and enhance emergency response efforts, particularly where resources are limited.
Tabea Wilke, Katharina Lengfeld, and Markus Schultze
EGUsphere, https://doi.org/10.5194/egusphere-2024-2507, https://doi.org/10.5194/egusphere-2024-2507, 2024
Short summary
Short summary
Hail in Germany is a natural hazard that is not in everyone's focus, even though it can cause great damage. In this study we focus on hail frequency, sizes and spatial distribution in Germany based on crowd sourcing and weather radar data. We compare different algorithms based on weather radar data with crowd sourced data and show the annual and diurnal cycle of hail in Germany.
Francisco Javier Gomez, Keighobad Jafarzadegan, Hamed Moftakhari, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 24, 2647–2665, https://doi.org/10.5194/nhess-24-2647-2024, https://doi.org/10.5194/nhess-24-2647-2024, 2024
Short summary
Short summary
This study utilizes the global copula Bayesian model averaging technique for accurate and reliable flood modeling, especially in coastal regions. By integrating multiple precipitation datasets within this framework, we can effectively address sources of error in each dataset, leading to the generation of probabilistic flood maps. The creation of these probabilistic maps is essential for disaster preparedness and mitigation in densely populated areas susceptible to extreme weather events.
Manuel Grenier, Mathieu Boudreault, David A. Carozza, Jérémie Boudreault, and Sébastien Raymond
Nat. Hazards Earth Syst. Sci., 24, 2577–2595, https://doi.org/10.5194/nhess-24-2577-2024, https://doi.org/10.5194/nhess-24-2577-2024, 2024
Short summary
Short summary
Modelling floods at the street level for large countries like Canada and the United States is difficult and very costly. However, many applications do not necessarily require that level of detail. As a result, we present a flood modelling framework built with artificial intelligence for socioeconomic studies like trend and scenarios analyses. We find for example that an increase of 10 % in average precipitation yields an increase in displaced population of 18 % in Canada and 14 % in the US.
Helge Bormann, Jenny Kebschull, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 2559–2576, https://doi.org/10.5194/nhess-24-2559-2024, https://doi.org/10.5194/nhess-24-2559-2024, 2024
Short summary
Short summary
Inland flooding is threatening coastal lowlands. If rainfall and storm surges coincide, the risk of inland flooding increases. We examine how such compound events are influenced by climate change. Data analysis and model-based scenario analysis show that climate change induces an increasing frequency and intensity of compounding precipitation and storm tide events along the North Sea coast. Overload of inland drainage systems will also increase if no timely adaptation measures are taken.
Yanxia Shen, Zhenduo Zhu, Qi Zhou, and Chunbo Jiang
Nat. Hazards Earth Syst. Sci., 24, 2315–2330, https://doi.org/10.5194/nhess-24-2315-2024, https://doi.org/10.5194/nhess-24-2315-2024, 2024
Short summary
Short summary
We present an improved Multigrid Dynamical Bidirectional Coupled hydrologic–hydrodynamic Model (IM-DBCM) with two major improvements: (1) automated non-uniform mesh generation based on the D-infinity algorithm was implemented to identify flood-prone areas where high-resolution inundation conditions are needed, and (2) ghost cells and bilinear interpolation were implemented to improve numerical accuracy in interpolating variables between the coarse and fine grids. The improved model was reliable.
Taylor Glen Johnson, Jorge Leandro, and Divine Kwaku Ahadzie
Nat. Hazards Earth Syst. Sci., 24, 2285–2302, https://doi.org/10.5194/nhess-24-2285-2024, https://doi.org/10.5194/nhess-24-2285-2024, 2024
Short summary
Short summary
Reliance on infrastructure creates vulnerabilities to disruptions caused by natural hazards. To assess the impacts of natural hazards on the performance of infrastructure, we present a framework for quantifying resilience and develop a model of recovery based upon an application of project scheduling under resource constraints. The resilience framework and recovery model were applied in a case study to assess the resilience of building infrastructure to flooding hazards in Accra, Ghana.
Arnau Amengual, Romu Romero, María Carmen Llasat, Alejandro Hermoso, and Montserrat Llasat-Botija
Nat. Hazards Earth Syst. Sci., 24, 2215–2242, https://doi.org/10.5194/nhess-24-2215-2024, https://doi.org/10.5194/nhess-24-2215-2024, 2024
Short summary
Short summary
On 22 October 2019, the Francolí River basin experienced a heavy precipitation event, resulting in a catastrophic flash flood. Few studies comprehensively address both the physical and human dimensions and their interrelations during extreme flash flooding. This research takes a step forward towards filling this gap in knowledge by examining the alignment among all these factors.
Cited articles
Alfieri, L., Salamon, P., Pappenberger, F., and Wetterhall, F.: Operational
early warning systems for water-related hazards in Europe, Environ.
Sci. Policy, 21, 35–49, https://doi.org/10.1016/j.envsci.2012.01.008, 2012. a
Alfieri, L., Berenguer, M., Knechtl, V., Liechti, K., Sempere-Torres, D., and
Zappa, M.: Flash Flood Forecasting Based on Rainfall Thresholds, in:
Handbook of Hydrometeorological Ensemble Forecasting, Springer, Berlin, Heidelberg,
1–38,
https://doi.org/10.1007/978-3-642-40457-3_49-1, 2015. a, b
Amponsah, W., Marchi, L., Zoccatelli, D., Boni, G., Cavalli, M., Comiti, F.,
Crema, S., Lucía, A., Marra, F., and Borga, M.: Hydrometeorological
Characterization of a Flash Flood Associated with Major Geomorphic Effects:
Assessment of Peak Discharge Uncertainties and Analysis of the Runoff
Response, J. Hydrometeorol., 17, 3063–3077,
https://doi.org/10.1175/JHM-D-16-0081.1, 2016. a
Archer, D. R., Leesch, F., and Harwood, K.: Learning from the extreme River
Tyne flood in January 2005, Water Environ. J., 21, 133–141,
https://doi.org/10.1111/j.1747-6593.2006.00058.x, 2007. a
Armon, M., Dente, E., Smith, J. A., Enzel, Y., and Morin, E.: Synoptic-Scale
Control over Modern Rainfall and Flood Patterns in the Levant Drylands with
Implications for Past Climates, J. Hydrometeorol., 19, 1077–1096,
https://doi.org/10.1175/JHM-D-18-0013.1, 2018. a
Armon, M., Marra, F., Enzel, Y., Rostkier-Edelstein, D., and Morin, E.: Radar-based characterisation of heavy precipitation in the eastern Mediterranean and its representation in a convection-permitting model, Hydrol. Earth Syst. Sci., 24, 1227–1249, https://doi.org/10.5194/hess-24-1227-2020, 2020. a, b
Avni, Y. and Wieler, N.: The geological map of Israel, 1:50,000, Sheet 18-IV: SdeBoqer, Isr. Geol. Surv., Jerusalem, 2013. a
Avni, Y., Bartov, Y., and Sneh, A.: The geological map of Israel, 1:50,000. Sheet 22-I: HarArdon, Isr. Geol. Surv., Jerusalem, 2016. a
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M.,
and Reinhardt, T.: Operational convective-scale numerical weather prediction
with the COSMO model: Description and sensitivities, Mon. Weather Rev.,
139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a
Barredo, J. I.: Major flood disasters in Europe: 1950–2005, Nat. Hazards,
42, 125–148, https://doi.org/10.1007/s11069-006-9065-2, 2007. a, b
Bartsotas, N. S., Nikolopoulos, E. I., Anagnostou, E. N., Solomos, S., and
Kallos, G.: Moving toward Subkilometer Modeling Grid Spacings: Impacts on
Atmospheric and Hydrological Simulations of Extreme Flash Flood-Inducing
Storms, J. Hydrometeorol., 18, 209–226,
https://doi.org/10.1175/JHM-D-16-0092.1, 2016. a
Belachsen, I., Marra, F., Peleg, N., and Morin, E.: Convective rainfall in a dry climate: relations with synoptic systems and flash-flood generation in the Dead Sea region, Hydrol. Earth Syst. Sci., 21, 5165–5180, https://doi.org/10.5194/hess-21-5165-2017, 2017. a, b, c, d
Benson, M. A. and Dalrymple, T.: General Field and Office Procedures for
Indirect Discharge Measurements, Technical Report, available at:
http://pubs.usgs.gov/twri/twri3-a1/html/pdf/twri_3-A1_a.pdf (last access: 10 May 2020),
1967. a
Berenguer, M., Corral, C., Sánchez-Diezma, R., and Sempere-Torres, D.:
Hydrological Validation of a Radar-Based Nowcasting Technique, J.
Hydrometeorol., 6, 532–549, https://doi.org/10.1175/JHM433.1, 2005. a, b
Borga, M., Boscolo, P., Zanon, F., and Sangati, M.: Hydrometeorological
Analysis of the 29 August 2003 Flash Flood in the Eastern Italian Alps,
J. Hydrometeorol., 8, 1049–1067, https://doi.org/10.1175/JHM593.1, 2007. a
Borga, M., Stoffel, M., Marchi, L., Marra, F., and Jakob, M.: Hydrogeomorphic
response to extreme rainfall in headwater systems: Flash floods and debris
flows, J. Hydrol., 518, 194–205,
https://doi.org/10.1016/j.jhydrol.2014.05.022, 2014. a, b
Borga, M., Comiti, F., Ruin, I., and Marra, F.: Forensic analysis of flash
flood response, Wires, 6, 1–9,
https://doi.org/10.1002/wat2.1338, 2019. a, b, c, d
Bracken, L. J. and Croke, J.: The concept of hydrological connectivity and its
contribution to understanding runoff-dominated geomorphic systems,
Hydrol. Process., 21, 1749–1763, https://doi.org/10.1002/hyp.6313, 2007. a
Brunner, W. G.: HEC-RAS River Analysis System, Hydraulic reference manual, Version 5.0, US Army Crops of Engineers, 2016. a
Brutsaert, W.: Hydrology, An Introducation, Cambridge University Press, New
York, USA, 2005. a
Calvo, R. and Bartov, Y.: Hazeva Group, southern Israel: New observations, and
their implications for its stratigraphy, paleogeography, and
tectono-sedimentary regime, Israel J. Earth Sci., 50, 71–99,
https://doi.org/10.1092/B02L-6K04-UFQL-KUE3, 2001. a
Chappell, C. F.: Quasi-Stationary Convective Events, in: Mesoscale
Meteorology and Forecasting, edited by: Ray, P. S.,
American Meteorological Society, Boston, MA, USA,
289–310,
https://doi.org/10.1007/978-1-935704-20-1_13, 1986. a
Collier, C. G.: Flash flood forecasting: What are the limits of predictability?, Q. J. Roy. Meteor. Soc., 133, 3–23, https://doi.org/10.1002/qj.29, 2007. a, b, c
Creutin, J. D., Borga, M., Gruntfest, E., Lutoff, C., Zoccatelli, D., and Ruin,
I.: A space and time framework for analyzing human anticipation of flash
floods, J. Hydrol., 482, 14–24,
https://doi.org/10.1016/j.jhydrol.2012.11.009, 2013. a, b
Dan, Y., Raz, Z., Yaalon, D. H., and Koyumdjisky, H.: Soil Map of Israel, 1:500,000, Jerusalem, 1975. a
Dayan, U., Lensky, I. M., and Ziv, B.: Atmospheric Conditions Leading to an Exceptional Fatal Flash Flood in the Negev Desert, Israel, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2020-94, in review, 2020. a
Delrieu, G., Ducrocq, V., Gaume, E., Nicol, J., Payrastre, O., Yates, E.,
Kirstetter, P.-E., Andrieu, H., Ayral, P.-A., Bouvier, C., Creutin, J.-D.,
Livet, M., Anquetin, S., Lang, M., Neppel, L., Obled, C., Parent-Du-Chatelet,
J., Saulnier, G.-M., Walpersorf, A., and Wobrock, W.: The catastrophic
flash-flood event of 8–9 September 2002 in the Gard region, France: a first
case study for the Cévennes-Vivarais Mediterranean
Hydrometeorological, J. Hydrometeorol., 6, 34–52,
2005. a
Dey, K. D. and Yan, J.: Extreme Value Modeling and Risk Analysis: Methods and
Applications, CRC Press, Taylor and Francis Group, NY, USA, 2016. a
Dey, S. R., Plant, R. S., Roberts, N. M., and Migliorini, S.: Assessing
spatial precipitation uncertainties in a convective-scale ensemble,
Q. J. Roy. Meteor. Soc., 142, 2935–2948,
https://doi.org/10.1002/qj.2893, 2016. a
Dingman, S. L.: Physical hydrology, Waveland Press, Long Grove, IL, USA, https://doi.org/10.1177/030913337800200111, 2015. a
Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D.,
Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P.,
and Vogel, G.: A Description of the Nonhydrostatic Regional COSMO Model Part II: Physical Parameterization, Deutscher Wetterdienst, Offenbach, Germany, Technical Report, p. 139, 2011. a
Doocy, S., Daniels, A., Murray, S., and Kirsch, T. D.: The Human Impact of
Floods: a Historical Review of Events and Systematic Literature Review, PLOS
Currents Disasters, 1, 1–32,
https://doi.org/10.1371/currents.dis.f4deb457904936b07c09daa 98ee8171a, 2013. a, b, c
Doswell, A. C., Brooks, E. H., and Madox, A. R.: Flash flood forecasting: An
ingredients-based methodology, Weather Forecast., 11, 560–581,
1996. a
Downer, C. W. and Ogden, F. L.: GSSHA – User's Manual, Version 1.43, p. 190, 2002. a
DWD – Deutscher Wetterdienst: Wetter und Klima – Deutscher Wetterdienst – Startseite, https://www.dwd.de, last access: 10 May 2020. a
EMS Mekorot Projects Ltd: https://www.emsmekorotprojects.com/, last access: 24 January 2021. a
Engman, E. T.: Roughness Coefficients for Routing Surface Runoff, J. Irrig. Drainage Eng., https://doi.org/10.1061/(ASCE)0733-9437(1986)112:1(39), 1986. a, b
Faurès, J. M., Goodrich, D. C., Woolhiser, D. A., and Sorooshian, S.:
Impact of small-scale spatial rainfall variability on runoff modeling,
J. Hydrol., 173, 309–326, https://doi.org/10.1016/0022-1694(95)02704-S,
1995. a
Foody, G. M., Ghoneim, E. M., and Arnell, N. W.: Predicting locations
sensitive to flash flooding in an arid environment, J. Hydrol.,
292, 48–58, https://doi.org/10.1016/j.jhydrol.2003.12.045, 2004. a
Gaume, E. and Borga, M.: Post-flood field investigations in upland catchments
after major flash floods: proposal of a methodology and illustrations,
J. Flood Risk Manag., 1, 175–189,
https://doi.org/10.1111/j.1753-318x.2008.00023.x, 2008. a
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A.,
Blaškovičová, L., Blöschl, G., Borga, M., Dumitrescu,
A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A.,
Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D.,
Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., and Viglione, A.: A
compilation of data on European flash floods, J. Hydrol., 367,
70–78, https://doi.org/10.1016/j.jhydrol.2008.12.028, 2009. a, b, c, d
Gaume, E., Borga, M., Llasat, M., Maouche, S., Lang, M., and Diakakis, M.:
Mediterranean extreme floods and flash floods. Into Hydro-meteorological
extremes, The Mediterranean Region under Climate Change, A Scientific
Update, edited by: Thiébault, S. and Moatti, J.-P., IRD Éditions, Marseille, France, 133–144, 2016. a
Goldreich, Y.: The Climate of Israel, Observations, Research and
Imlementation, Springer, New York, USA, 2003. a
Greenbaum, N., Schwartz, U., Schick, A., and Enzel, Y.: Paleofloods and the
Estimation of Long Term Transmission Losses and Recharge to the Lower Nahal
Zin Alluvial Aquifer, Negev Desert, Israel, in: Ancient floods, modern
hazards: principles and applications of paleoflood hydrologydrology, edited
by: House, P., Webb, R., Baker, V., and Levish, D.,
NY, USA, 311–328,
2002a. a, b
Greenbaum, N., Schwartz, U., Schick, P. A., and Enzel, Y.: Paleo floods and
the Estimation of Long Term Transmission Losses and Recharge to the Lower
Nahal Zin Alluvial Aquifer, Negev Desert, Israel, in: Ancient Floods, Modern
Hazards Principles and Applications of Paleoflood Hydrology, Water Science
and Application, edited by: House, P. K., Webb, H. R., Baker, R. V., and
Levish, R. D., American Geophysical Union, Washington, DC, USA,
311–328, 2002b. a
Greenbaum, N., Ben-Zvi, A., Haviv, I., and Enzel, Y.: The hydrology and
paleohydrology of the Dead Sea tributaries, Geol. S. Am.
S., 401, 63–93, https://doi.org/10.1130/2006.2401(05), 2006. a
Grodek, T., Jacoby, Y., Morin, E., and Katz, O.: Effectiveness of exceptional
rainstorms on a small Mediterranean basin, Geomorphology, 159–160, 156–168,
https://doi.org/10.1016/j.geomorph.2012.03.016, 2012. a
Gruntfest, E. and Handmer, J.: Coping With Flash Floods, Springer Science and Business Media, Dordrecht, Netherlands,
https://doi.org/10.1016/j.irfa.2004.01.004, 2001. a
Haan, C. T. C. T.: Statistical methods in hydrology, Iowa State Press,
Iowa, USA,
2002. a
Hagelin, S., Son, J., Swinbank, R., McCabe, A., Robertsa, N., and Tennanta, W.:
The Met Office convective-scale ensemble, MOGREPS-UK, Q. J. Roy. Meteor. Soc., 143, 2846–2861, https://doi.org/10.1002/qj.3135,
2017. a
Hirsch, F.: The geological map of Israel, 1:50,000. Sheet 19-II: HamakhteshHaqatan, Isr. Geol. Surv., Jerusalem, 1995. a
Hosking, J. R., Wallis, J. R., and Wood, E. F.: Estimation of the generalized
extreme-value distribution by the method of probability-weighted moments,
Technometrics, 27, 251–261, https://doi.org/10.1080/00401706.1985.10488049, 1985. a
Inbar, M.: Natural disasters in israel, availabe at:
https://geo.hevra.haifa.ac.il/~inh/index.php/en/disasters-en/floods-en (last access: 10 May 2020),
2019. a
Israel Hydrological service: https://www.gov.il/he/departments/water_authority, last access: 24 January 2021 (in Hebrew). a
Kahana, R., Ziv, B., Enzel, Y., and Dayan, U.: Synoptic climatology of major
floods in the Negev Desert, Israel, Int. J. Climatol.,
22, 867–882, https://doi.org/10.1002/joc.766, 2002. a
Kampf, S. K., Faulconer, J., Shaw, J. R., Lefsky, M., Wagenbrenner, J. W., and
Cooper, D. J.: Rainfall Thresholds for Flow Generation in Desert Ephemeral
Streams, Water Resour. Res., 54, 9935–9950,
https://doi.org/10.1029/2018WR023714, 2018. a
Karklinsky, M. and Morin, E.: Spatial characteristics of radar-derived
convective rain cells over southern Israel, Meteorol. Z., 15,
513–520, https://doi.org/10.1127/0941-2948/2006/0153, 2006. a
Khain, P., Levi, Y., Shtivelman, A., and Vadislavsky, E.: Improving the
precipitation forecast over the Eastern Mediterranean using a smoothed
time-lagged ensemble, Meteorol. Appl., 27, 1–17,
https://doi.org/10.1002/met.1840, 2019. a, b, c
Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P.,
Skofronick-Jackson, G., and Kirschbaum, D. B.: So, how much of the Earth's
surface is covered by rain gauges?, B. Am. Meteorol.
Soc., 98, 69–78, https://doi.org/10.1175/BAMS-D-14-00283.1, 2017. a, b
Lange, J.: Dynamics of transmission losses in large arid stream channel,
J. Hydrol., 306, 112–126, https://doi.org/10.1016/j.jhydrol.2004.09.016,
2005. a
Lange, J., and Leibundgut, C: Surface runoff and sediment dynamics in arid and semi‐arid regions, in Understanding Water in a Dry Environment, edited by: Simmers, I., Taylor & Francis, Lisse, the Netherlands, 115–150, 2003. a
Lange, J., Leibundgut, C., Greenbaun, N., and Schick, A.: A noncalibrated
model for large, arid catchments, Water Resour. Res., 35, 2161–2172,
https://doi.org/10.1029/1999WR900038, 1999. a, b, c
Larsen, M. C., Conde, M. T. V., and Clark, R. A.: Landslide hazards associated
with flash-foods, with examples from the December, 1999 disaster in
Venezuela, in: Coping with Flash Floods, edited by: Gruntfest, E. and
Handmer, J., Springer Science and Business Media, Dordrecht, Netherlands,
259–275, 2001. a
Liechti, K. and Zappa, M.: Verification of Short-Range Hydrological
Forecasts, in: Handbook of Hydrometeorological Ensemble Forecasting, edited
by: Qingyun, D., Pappenberger, F., Wood, A., Cloke, H. L., and Schaake, J. C., Springer, Berlin and Heidelberg, Germany, 954–974,
2019. a
Limerinos, T. J.: Determination of the Manning Coefficient From Measured Bed
Roughness in Natural Channels, Technical Report, Geological Survey, Washington, DC, USA, 47 pp., 1970. a
Marani, M. and Ignaccolo, M.: A metastatistical approach to rainfall
extremes, Adv. Water Resour., 79, 121–126,
https://doi.org/10.1016/j.advwatres.2015.03.001, 2015. a
Marra, F. and Morin, E.: Autocorrelation structure of convective rainfall in
semiarid-arid climate derived from high-resolution X-Band radar estimates,
Atmos. Res., 200, 126–138, https://doi.org/10.1016/j.atmosres.2017.09.020,
2018. a, b
Marra, F., Morin, E., Peleg, N., Mei, Y., and Anagnostou, E. N.: Intensity–duration–frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean, Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, 2017. a
Marra, F., Nikolopoulos, E. I., Anagnostou, E. N., and Morin, E.:
Metastatistical Extreme Value analysis of hourly rainfall from short
records: Estimation of high quantiles and impact of measurement errors,
Adv. Water Resour.,
117, 27–39,
https://doi.org/10.1016/j.advwatres.2018.05.001, 2018. a, b
Marra, F., Nikolopoulos, E. I., Anagnostou, E. N., Bárdossy, A., and
Morin, E.: Precipitation frequency analysis from remotely sensed datasets: A
focused review, J. Hydrol., 574, 699–705, https://doi.org/10.1016/j.jhydrol.2019.04.081, 2019a. a, b, c, d
Marra, F., Zoccatelli, D., Armon, M., and Morin, E.: A simplified MEV
formulation to model extremes emerging from multiple nonstationary underlying
processes, Adv. Water Resour., 127, 280–290,
https://doi.org/10.1016/j.advwatres.2019.04.002, 2019b. a
Martens, B., Cabus, P., De Jongh, I., and Verhoest, N. E.: Merging weather
radar observations with ground-based measurements of rainfall using an
adaptive multiquadric surface fitting algorithm, J. Hydrol., 500,
84–96, https://doi.org/10.1016/j.jhydrol.2013.07.011, 2013. a
MeteoSwiss – Federal Office of Meteorological and Climatology MeteoSwiss:
availabe at: http://www.meteoswiss.admin.ch, last access: 10 May 2020. a
Met Office: availabe at: https://www.metoffice.gov.uk/, last access: 10 May 2020. a
Michaud, J. D. and Sorooshian, S.: Effect of rainfall‐sampling errors on
simulations of desert flash floods, Water Resour. Res., 30,
2765–2775, https://doi.org/10.1029/94WR01273, 1994. a
Miniussi, A., and Marani, M. Estimation of daily rainfall extremes through the metastatistical extreme value distribution: Uncertainty minimization and implications for trend detection, Water Resour. Res., 56, e2019WR026535, https://doi.org/10.1029/2019WR026535, 2020. a
Mishra, S. and Singh, V. P.: Soil Conservation Service Curve Number (SCS-CN)
Methodology, Water Science and Technology Library, Springer Science and Business Media, Dordrecht, The Netherlands,
514 pp.,
https://doi.org/10.1007/978-94-017-0147-1,
2003. a
Moawad, M. B.: Analysis of the flash flood occurred on 18 January 2010 in wadi
El Arish, Egypt (a case study), Geomat. Nat. Haz. Risk, 4,
254–274, https://doi.org/10.1080/19475705.2012.731657, 2013. a
Moawad, M. B., Omar Abdel Aziz, A., and Mamtimin, B.: Flash floods in the
Sahara: a case study for the 28 January 2013 flood in Qena, Egypt,
Geomat. Nat. Haz. Risk, 7, 215–236,
https://doi.org/10.1080/19475705.2014.885467, 2016. a
Montgomery, D. R. and Gran, K. B.: Downstream variations in the width of
bedrock channels, Water Resour. Res., 37, 1841–1846,
https://doi.org/10.1029/2000WR900393, 2001. a
Morin, E. and Yakir, H.: Hydrological impact and potential flooding of
convective rain cells in a semi-arid environment, Hydrolog. Sci.
J., 57, 1–10, https://doi.org/10.1080/02626667.2013.841315, 2014. a, b
Morin, E., Enzel, Y., Shamir, U., and Garti, R.: The characteristic time scale
for basin hydrological response using radar data, J. Hydrol., 252,
85–99, https://doi.org/10.1016/S0022-1694(01)00451-6, 2001. a
Morin, E., Goodrich, D. C., Maddox, R. A., Gao, X., Gupta, H. V., and
Sorooshian, S.: Spatial patterns in thunderstorm rainfall events and their
coupling with watershed hydrological response, Adv. Water Resour.,
29, 843–860, https://doi.org/10.1016/j.advwatres.2005.07.014, 2006. a
Morin, E., Grodek, T., Dahan, O., Benito, G., Kulls, C., Jacoby, Y.,
Langenhove, G. V., Seely, M., and Enzel, Y.: Flood routing and alluvial
aquifer recharge along the ephemeral arid Kuiseb River, Namibia, J.
Hydrol., 368, 262–275, https://doi.org/10.1016/j.jhydrol.2009.02.015,
2009a. a, b
Morin, E., Jacoby, Y., Navon, S., and Bet-Halachmi, E.: Towards flash-flood
prediction in the dry Dead Sea region utilizing radar rainfall information,
Adv. Water Resour., 32, 1066–1076,
https://doi.org/10.1016/j.advwatres.2008.11.011, 2009b. a
Morin, E., Marra, F., and Armon, M.: Dryland Precipitation Climatology from
Satellite Observations, in: Satellite Precipitation Measurement: Volume 2,
edited by: Levizzani, V., Kidd, C., Kirschbaum, D. B., Kummerow, C. D.,
Nakamura, K., and Turk, F. J., Springer International
Publishing, Cham, UK,
843–859, https://doi.org/10.1007/978-3-030-35798-6_19, 2020. a, b
Nouh, M.: Flood hydrograph estimation from arid catchment morphology,
Hydrol. Process., 4, 103–120, https://doi.org/10.1002/hyp.3360040202, 1990. a
Overeem, A., Buishand, A., and Holleman, I.: Rainfall depth-duration-frequency
curves and their uncertainties, J. Hydrol., 348, 124–134,
https://doi.org/10.1016/j.jhydrol.2007.09.044, 2008. a
Peckham, S. D.: A New Algorithm for Creating DEMs with Smooth Elevation
Profiles, Proceedings of Geomorphometry, 2, 34–37, 2009. a
Petrucci, O., Aceto, L., Bianchi, C., Bigot, V., Brázdil, R., Pereira,
S., Kahraman, A., Kiliç, Ö., Kotroni, V., Llasat, M. C.,
Llasat-Botija, M., Papagiannaki, K., Pasqua, A. A., Řehoř, J., Geli, J. R.,
Salvati, P., Vinet, F., and Zêzere, J. L.: Flood fatalities in Europe,
1980–2018: Variability, features, and lessons to learn, Water
11, 1682, https://doi.org/10.3390/w11081682, 2019. a
Pilgrim, D. H., Chapman, T. G., and Doran, D. G.: Problems of rainfall-runoff
modelling in arid and semiarid regions, Hydrolog. Sci. J., 33,
379–400, https://doi.org/10.1080/02626668809491261, 1988. a, b, c
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., Van Lipzig, N. P., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475,
2015. a
Rinat, Y. and Armon, M.: Desert Flash Flood, 26-Apr-2018, TIB-AV-Portal, https://doi.org/10.5446/47152, 2020. a
Roberts, N.: Assessing the spatial and temporal variation in the skill of
precipitation forecasts from an NWP model, Meteorol. Appl., 15,
163–169, https://doi.org/10.1002/met.57, 2008. a
Roded, R.: The geological map of Israel, 1:50,000, Sheet 19-III: Oron, Isr. Geol. Surv., Jerusalem, 1982. a
Roded, R.: The geological map of Israel, 1:50,000. Sheet 19-I: Dimona, Isr. Geol. Surv., Jerusalem, 1996. a
Sadeh, Y., Cohen, H., Maman, S., and Blumberg, D. G.: Evaluation of manning's
n roughness coefficient in arid environments by using SAR backscatter,
Remote Sens., 10, 1–14, https://doi.org/10.3390/rs10101505, 2018. a
Schwartz, C. S. and Sobash, R. A.: Generating Probabilistic Forecasts from
Convection-Allowing Ensembles Using Neighborhood Approaches: A Review and
Recommendations, Mon. Weather Rev., 145, 3379–3418,
https://doi.org/10.1175/MWR-D-16-0400.1, 2017. a
Schwartz, U.: Surface and near‐surface responses to floods in a large channel (Nahal Zin) in the context of an alluvial aquifer in a hyper‐arid environment, PhD diss., Department of Geography, Hebrew University of Jerusalem, Israel, 2001. a
S.C.S: Soil Conservation Service, National engineering handbook, section 4,
Hydrology, Technical Report, US Department of Agriculture, Washington DC, USA, 127 pp., 1972. a
Sempere-Torres, D., Berenguer, M., Corral, C., and Sanchez-Diezma, R.:
Improvements on flow forecasting using precipitation nowcasting based in
radar advection techniques: assessment of predictability and uncertainty
propagation, 32nd Conference on Radar Meteorology,
Albuquerque, USA,
2005. a
Shamir, E., Ben-Moshe, L., Ronen, A., Grodek, T., Enzel, Y., Georgakakos, K. P., and Morin, E.: Geomorphology-based index for detecting minimal flood stages in arid alluvial streams, Hydrol. Earth Syst. Sci., 17, 1021–1034, https://doi.org/10.5194/hess-17-1021-2013, 2013. a
Shammout, M., Shatanawi, M., and Nelson, J.: Curve Number Applications for
Restoration the Zarqa River Basin, Sustainability, 10, 586,
https://doi.org/10.3390/su10030586, 2018. a
Shmilovitz, Y., Morin, E., Rinat, Y., Haviv, I., Carmi, G., Mushkin, A., and
Enzel, Y.: Linking frequency of rainstorms, runoff generation and sediment
transport across hyperarid talus-pediment slopes, Earth Surf. Proc.
Land., 45, 1644–1659, https://doi.org/10.1002/esp.4836, 2020. a, b, c
Sivakumar B.: Chaos in hydrology: bridging determinism and stochasticity, Springer, the Netherlands, https://doi.org/10.1007/978-90-481-2552-4, 2017. a
Sneh, A., Bartov, Y., Weissbrod, T., and Rosensaft, M.:
Geological Map of Israel, 1:200,000. Isr. Geol. Surv., 4 sheets, 1998. a
Sobash, R. A., Kain, J. S., Bright, D. R., Dean, A. R., Coniglio, M. C., and
Weiss, S. J.: Probabilistic forecast guidance for severe thunderstorms based
on the identification of extreme phenomena in convection-allowing model
forecasts, Weather Forecast., 26, 714–728,
https://doi.org/10.1175/WAF-D-10-05046.1, 2011. a
Sokol, Z. and Zacharov, P.: Nowcasting of precipitation by an NWP model using
assimilation of extrapolated radar reflectivity, Q. J.
Roy. Meteor. Soc., 138, 1072–1082, https://doi.org/10.1002/qj.970, 2012. a
Stephan, K., Klink, S., and Schraff, C.: Assimilation of radar-derived rain
rates into the convective-scale model COSMO-DE at DWD, Q. J.
Roy. Meteor. Soc., 134, 1315–1326, https://doi.org/10.1002/qj.269,
2008. a, b, c
Tarolli, P., Borga, M., Morin, E., and Delrieu, G.: Analysis of flash flood regimes in the North-Western and South-Eastern Mediterranean regions, Nat. Hazards Earth Syst. Sci., 12, 1255–1265, https://doi.org/10.5194/nhess-12-1255-2012, 2012. a, b, c
Theis, S. E., Hense, A., and Damrath, U.: Probabilistic precipitation
forecasts from a deterministic model: a pragmatic approach, Meteorol.
Appl., 268, 257–268, https://doi.org/10.1017/S1350482705001763, 2005. a
Tooth, S.: Process, form and change in dryland rivers: A review of recent
research, Earth Sci. Rev., 51, 67–107,
https://doi.org/10.1016/S0012-8252(00)00014-3, 2000. a, b
USGS: Estimating Basin Lagtime and Hydrograph-Timing Indexes Used to
Characterize Stormflows, Technical Report, availabe at:
http://pubs.usgs.gov/sir/2012/5110/pdf/sir2012-5110_text.pdf (last access: 10 May 2020),
2012. a
Vetter, T., Rieger, A. K., and Nicolay, A.: Disconnected runoff contributing
areas: Evidence provided by ancient watershed management systems in arid
north-eastern Marmarica (NW-Egypt), Geomorphology, 212, 41–57, https://doi.org/10.1016/j.geomorph.2013.10.002,
2014. a, b
Vincendon, B., Ducrocq, V., Nuissier, O., and Vié, B.: Perturbation of convection-permitting NWP forecasts for flash-flood ensemble forecasting, Nat. Hazards Earth Syst. Sci., 11, 1529–1544, https://doi.org/10.5194/nhess-11-1529-2011, 2011. a
Vinet, F., Bigot, V., Petrucci, O., Papagiannaki, K., Llasat, M. C., Kotroni,
V., Boissier, L., Aceto, L., Grimalt, M., Llasat-Botija, M., Pasqua, A. A.,
Rossello, J., Kiliç, Ö., Kahraman, A., and Tramblay, Y.: Mapping
flood-related mortality in the mediterranean basin. Results from the MEFF
v2.0 DB, Water, 11, p. 2196, https://doi.org/10.3390/w11102196, 2019. a
Wagener, T., Gupta, H., Yatheendradas, S., Goodrich, D., Unkrich, C., and
Schaffner, M.: Understanding sources of uncertainty in flash-flood
forecasting for semi-arid regions, IAHS-AISH, 313,
204–212, 2007. a
Walters, O. M.: Transmission losses in arid region, J. Hydraul.
Eng., 116, 129–138, 1990. a
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, J.
Am. Stat. Assoc., 102, p. 380, https://doi.org/10.1198/jasa.2007.s163, 2006. a
Wittenberg, L., Kutiel, H., Greenbaum, N., and Inbar, M.: Short-term changes
in the magnitude, frequency and temporal distribution of floods in the
Eastern Mediterranean region during the last 45 years – Nahal Oren, Mt.
Carmel, Israel, Geomorphology, 84, 181–191,
https://doi.org/10.1016/j.geomorph.2006.01.046, 2007. a
Yair, A. and Kossovsky, A.: Climate and surface properties: Hydrological
response of small arid and semi-arid watersheds, Geomorphology, 42, 43–57,
https://doi.org/10.1016/S0169-555X(01)00072-1, 2002. a
Yair, A. and Lavee, H.: Application of the concept of partial area
contribution to small arid watersheds, Z. Gemorphologie,
29, 71–82, 1981. a
Yair, A. and Raz-Yassif, N.: Hydrological processes in a small arid catchment:
Scale effects of rainfall and slope length, Geomorphology, 61, 155–169,
https://doi.org/10.1016/j.geomorph.2003.12.003, 2004. a, b
Yair, A., Sharon, D., and Lavee, H.: Trends in runoff and erosion processes
over an arid limestone hillside, northern negev, israel, Hydrol.
Sci. Bull., 25, 243–255, https://doi.org/10.1080/02626668009491932, 1980. a
Yakir, H. and Morin, E.: Hydrologic response of a semi-arid watershed to spatial and temporal characteristics of convective rain cells, Hydrol. Earth Syst. Sci., 15, 393–404, https://doi.org/10.5194/hess-15-393-2011, 2011. a, b, c
Yang, L., Smith, J., Baeck, M. L., Morin, E., and Goodrich, D. C.: Flash
Flooding in Arid/Semiarid Regions: Dissecting the Hydrometeorology and
Hydrology of the 19 August 2014 Storm and Flood Hydroclimatology in Arizona,
J. Hydrometeorol., 18, 3103–3123, https://doi.org/10.1175/jhm-d-17-0089.1,
2017.
a, b
Yechieli, Y., Elron, E., and Sneh, A.: The geological map of Israel, 1:50,000, Sheet 19-IV,20-III: NeotHakikar, Isr. Geol. Surv., Jerusalem, 1994. a
Zilberman, E. and Avni, Y.,: The geological map of Israel, 1:50,000, Sheet 21-II: MizpeRamon, Isr. Geol. Surv., Jerusalem, 2004. a
Zoccatelli, D., Marra, F., Armon, M., Rinat, Y., Smith, J. A., and Morin, E.: Contrasting rainfall-runoff characteristics of floods in desert and Mediterranean basins, Hydrol. Earth Syst. Sci., 23, 2665–2678, https://doi.org/10.5194/hess-23-2665-2019, 2019. a, b, c, d
Zoccatelli, D., Marra, F., Smith, J., Goodrich, D., Unkrich, C., Rosensaft, M.,
and Morin, E.: Hydrological modelling in desert areas of the eastern
Mediterranean, J. Hydrol., 587, 124879,
https://doi.org/10.1016/j.jhydrol.2020.124879, 2020. a, b
Zorzetto, E., Botter, G., and Marani, M.: On the emergence of rainfall
extremes from ordinary events, Geophys. Res. Lett., 43, 8076–8082,
https://doi.org/10.1002/2016GL069445, 2016. a
Short summary
Flash floods are among the most devastating and lethal natural hazards worldwide. The study of such events is important as flash floods are poorly understood and documented processes, especially in deserts. A small portion of the studied basin (1 %–20 %) experienced extreme rainfall intensities resulting in local flash floods of high magnitudes. Flash floods started and reached their peak within tens of minutes. Forecasts poorly predicted the flash floods mostly due to location inaccuracy.
Flash floods are among the most devastating and lethal natural hazards worldwide. The study of...
Altmetrics
Final-revised paper
Preprint