Articles | Volume 21, issue 1
https://doi.org/10.5194/nhess-21-393-2021
https://doi.org/10.5194/nhess-21-393-2021
Research article
 | 
29 Jan 2021
Research article |  | 29 Jan 2021

Regional tropical cyclone impact functions for globally consistent risk assessments

Samuel Eberenz, Samuel Lüthi, and David N. Bresch

Related authors

Asset exposure data for global physical risk assessment
Samuel Eberenz, Dario Stocker, Thomas Röösli, and David N. Bresch
Earth Syst. Sci. Data, 12, 817–833, https://doi.org/10.5194/essd-12-817-2020,https://doi.org/10.5194/essd-12-817-2020, 2020
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Adaptive behavior of farmers under consecutive droughts results in more vulnerable farmers: a large-scale agent-based modeling analysis in the Bhima basin, India
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025,https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Content analysis of multi-annual time series of flood-related Twitter (X) data
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
Nat. Hazards Earth Syst. Sci., 25, 879–891, https://doi.org/10.5194/nhess-25-879-2025,https://doi.org/10.5194/nhess-25-879-2025, 2025
Short summary
Enhancement of state response capability and famine mitigation: a comparative analysis of two drought events in northern China during the Ming dynasty
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci., 25, 591–607, https://doi.org/10.5194/nhess-25-591-2025,https://doi.org/10.5194/nhess-25-591-2025, 2025
Short summary
Flood exposure of environmental assets
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci., 25, 565–580, https://doi.org/10.5194/nhess-25-565-2025,https://doi.org/10.5194/nhess-25-565-2025, 2025
Short summary
A new method for calculating highway blocking due to high-impact weather conditions
Duanyang Liu, Tian Jing, Mingyue Yan, Ismail Gultepe, Yunxuan Bao, Hongbin Wang, and Fan Zu
Nat. Hazards Earth Syst. Sci., 25, 493–513, https://doi.org/10.5194/nhess-25-493-2025,https://doi.org/10.5194/nhess-25-493-2025, 2025
Short summary

Cited articles

Abon, C. C., David, C. P. C., and Pellejera, N. E. B.: Reconstructing the Tropical Storm Ketsana flood event in Marikina River, Philippines, Hydrol. Earth Syst. Sci., 15, 1283–1289, https://doi.org/10.5194/hess-15-1283-2011, 2011. 
Aznar-Siguan, G. and Bresch, D. N.: CLIMADA v1: a global weather and climate risk assessment platform, Geosci. Model Dev., 12, 3085–3097, https://doi.org/10.5194/gmd-12-3085-2019, 2019. 
Aznar-Siguan, G. and Bresch, D. N.: CLIMADA_python documentation, available at: https://climada-python.readthedocs.io/en/stable/, last access: 26 January 2021. 
Aznar-Siguan, G., Bresch, D. N., Eberenz, S. and Röösli, T.: CLIMADA-papers repository, GitHub, (202005), available at: https://github.com/CLIMADA-project/climada_papers, last access: 9 July 2020. 
Bagtasa, G.: Contribution of Tropical Cyclones to Rainfall in the Philippines, J. Climate, 30, 3621–3633, https://doi.org/10.1175/JCLI-D-16-0150.1, 2017. 
Download
Short summary
Asset damage caused by tropical cyclones is often computed based on impact functions mapping wind speed to damage. However, a lack of regional impact functions can lead to a substantial bias in tropical cyclone risk estimates. Here, we present regionally calibrated impact functions, as well as global risk estimates. Our results are relevant for researchers, model developers, and practitioners in the context of global risk assessments, climate change adaptation, and physical risk disclosure.
Share
Altmetrics
Final-revised paper
Preprint