Articles | Volume 21, issue 1
https://doi.org/10.5194/nhess-21-393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional tropical cyclone impact functions for globally consistent risk assessments
Institute for Environmental Decisions, ETH Zurich, Zurich, 8092,
Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss,
Zurich-Airport, 8058, Switzerland
Samuel Lüthi
Institute for Environmental Decisions, ETH Zurich, Zurich, 8092,
Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss,
Zurich-Airport, 8058, Switzerland
David N. Bresch
Institute for Environmental Decisions, ETH Zurich, Zurich, 8092,
Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss,
Zurich-Airport, 8058, Switzerland
Related authors
No articles found.
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Robin Noyelle, Matthias Röthlisberger, and Heini Wernli
Weather Clim. Dynam., 6, 1027–1043, https://doi.org/10.5194/wcd-6-1027-2025, https://doi.org/10.5194/wcd-6-1027-2025, 2025
Short summary
Short summary
Atmospheric flows over the North Atlantic can be meaningfully classified into weather regimes, and climate simulations suggest that the regime frequencies might change in the future. We provide a quantitative framework that helps assess whether these regime frequency changes are relevant to understanding climate change signals in precipitation. At least in our example application, in most regions, regime frequency changes explain little of the projected precipitation changes.
Christophe Lienert, Andreas Paul Zischg, Horst Kremers, Jamie McCaughey, Lara Zinkl, and David N. Bresch
Abstr. Int. Cartogr. Assoc., 9, 1, https://doi.org/10.5194/ica-abs-9-1-2025, https://doi.org/10.5194/ica-abs-9-1-2025, 2025
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Chahan M. Kropf, Alessio Ciullo, Laura Otth, Simona Meiler, Arun Rana, Emanuel Schmid, Jamie W. McCaughey, and David N. Bresch
Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022, https://doi.org/10.5194/gmd-15-7177-2022, 2022
Short summary
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
Zélie Stalhandske, Valentina Nesa, Marius Zumwald, Martina S. Ragettli, Alina Galimshina, Niels Holthausen, Martin Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 22, 2531–2541, https://doi.org/10.5194/nhess-22-2531-2022, https://doi.org/10.5194/nhess-22-2531-2022, 2022
Short summary
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
Samuel Lüthi, Gabriela Aznar-Siguan, Christopher Fairless, and David N. Bresch
Geosci. Model Dev., 14, 7175–7187, https://doi.org/10.5194/gmd-14-7175-2021, https://doi.org/10.5194/gmd-14-7175-2021, 2021
Short summary
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
Christoph Welker, Thomas Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 279–299, https://doi.org/10.5194/nhess-21-279-2021, https://doi.org/10.5194/nhess-21-279-2021, 2021
Short summary
Short summary
How representative are local building insurers' claims to assess winter windstorm risk? In our case study of Zurich, we use a risk model for windstorm building damages and compare three different inputs: insurance claims and historical and probabilistic windstorm datasets. We find that long-term risk is more robustly assessed based on windstorm datasets than on claims data only. Our open-access method allows European building insurers to complement their risk assessment with modelling results.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Cited articles
Abon, C. C., David, C. P. C., and Pellejera, N. E. B.: Reconstructing the Tropical Storm Ketsana flood event in Marikina River, Philippines, Hydrol. Earth Syst. Sci., 15, 1283–1289, https://doi.org/10.5194/hess-15-1283-2011, 2011.
Aznar-Siguan, G. and Bresch, D. N.: CLIMADA v1: a global weather and climate risk assessment platform, Geosci. Model Dev., 12, 3085–3097, https://doi.org/10.5194/gmd-12-3085-2019, 2019.
Aznar-Siguan, G. and Bresch, D. N.: CLIMADA_python documentation, available at: https://climada-python.readthedocs.io/en/stable/, last access: 26 January 2021.
Aznar-Siguan, G., Bresch, D. N., Eberenz, S. and Röösli, T.:
CLIMADA-papers repository, GitHub, (202005), available at:
https://github.com/CLIMADA-project/climada_papers, last access: 9 July 2020.
Bagtasa, G.: Contribution of Tropical Cyclones to Rainfall in the
Philippines, J. Climate, 30, 3621–3633, https://doi.org/10.1175/JCLI-D-16-0150.1,
2017.
Bakkensen, L. A., Park, D.-S. R., and Sarkar, R. S. R.: Climate costs of
tropical cyclone losses also depend on rain, Environ. Res. Lett., 13,
074034, https://doi.org/10.1088/1748-9326/aad056, 2018a.
Bakkensen, L. A., Shi, X., and Zurita, B. D.: The Impact of Disaster Data on
Estimating Damage Determinants and Climate Costs, Econ. Disasters Clim.
Change, 2, 49–71, https://doi.org/10.1007/s41885-017-0018-x, 2018b.
Baradaranshoraka, M., Pinelli, J.-P., Gurley, K., Peng, X., and Zhao, M.:
Hurricane Wind versus Storm Surge Damage in the Context of a Risk Prediction
Model, J. Struct. Eng., 143, 04017103, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001824, 2017.
Bertinelli, L., Mohan, P., and Strobl, E.: Hurricane damage risk assessment
in the Caribbean: An analysis using synthetic hurricane events and
nightlight imagery, Ecol. Econ., 124, 135–144,
https://doi.org/10.1016/j.ecolecon.2016.02.004, 2016.
Blanc, E. and Strobl, E.: Assessing the Impact of Typhoons on Rice
Production in the Philippines, J. Appl. Meteorol. Climatol., 55,
993–1007, https://doi.org/10.1175/JAMC-D-15-0214.1, 2016.
Bloemendaal, N., Haigh, I. D., Moel, H. de, Muis, S., Haarsma, R. J., and
Aerts, J. C. J. H.: Generation of a global synthetic tropical cyclone hazard
dataset using STORM, Sci. Data, 7, 1–12, https://doi.org/10.1038/s41597-020-0381-2,
2020.
Bloomberg, M. R., Pavarina, D., Pitkethly, G., Thimann, C., and Sim, Y. L.: Final Report: Recommendations of the Task Force on Climate-related Financial
Disclosures, Task Force on Climate-Related Financial Disclosures (TCFD),
Switzerland, 2017.
Bresch, D. N., Aznar-Siguan, G., Eberenz, S., Röösli, T., Stocker,
D., Hartman, J., Pérus, M., and Bozzini, V.: CLIMADA repository, available at: https://github.com/CLIMADA-project/climada_python, last access: 20 March 2019a.
Bresch, D. N., Aznar-Siguan, G., Eberenz, S., Röösli, T., Stocker,
D., Hartman, J., Pérus, M., and Bozzini, V.: CLIMADA v.1.2.0, ETH Data
Arch., https://doi.org/10.5905/ethz-1007-226, 2019b.
Bresch, D. N., Aznar-Siguan, G., Bozzini, V., Bungener, R., Eberenz, S.,
Hartman, J., Mühlhofer, E., Pérus, M., Röösli, T., Sauer,
I., Schmid, E., Stalhandske, Z., Steinmann, C., and Stocker, D.: CLIMADA
v.1.4.1, ETH Data Arch., https://doi.org/10.5905/ethz-1007-252, 2020.
Cardona, O.-D., Ordaz, M. G., Mora, M. G., Salgado-Gálvez, M. A.,
Bernal, G. A., Zuloaga-Romero, D., Marulanda Fraume, M. C., Yamín, L.,
and González, D.: Global risk assessment: A fully probabilistic seismic
and tropical cyclone wind risk assessment, Int. J. Disaster Risk Reduct.,
10, 461–476, https://doi.org/10.1016/j.ijdrr.2014.05.006, 2014.
Cayanan, E. O., Chen, T.-C., Argete, J. C., Yen, M.-C., and Nilo, P. D.: The
Effect of Tropical Cyclones on Southwest Monsoon Rainfall in the
Philippines, J. Meteorol. Soc. Jpn., 89, 123–139, https://doi.org/10.2151/jmsj.2011-A08, 2011.
Cinco, T. A., de Guzman, R. G., Ortiz, A. M. D., Delfino, R. J. P., Lasco,
R. D., Hilario, F. D., Juanillo, E. L., Barba, R., and Ares, E. D.: Observed
trends and impacts of tropical cyclones in the Philippines, Int. J.
Climatol., 36, 4638–4650, https://doi.org/10.1002/joc.4659, 2016.
CLIMADA-Project: CLIMADA repository – github.com/CLIMADA-project/climada_python, available at: https://github.com/CLIMADA-project/climada_python, last access: 26 September 2019.
Collins, D. and Lowe, S. P.: A Macro Validation Dataset for US Hurricane
Models, Casualty Actuarial Society, available at:
https://www.casact.org/pubs/forum/01wforum/01wf217.pdf (last access: 26 January 2021), 2001.
Cooper, G. A. and Falvey, R. J.: Annual Tropical Cyclone Report, U.S. Naval
Maritime Forecast Center/ Joint Typhoon Warning Center Pearl Harbor, Hawaii,
available at:
https://www.metoc.navy.mil/jtwc/products/atcr/2009atcr.pdf (last access: 25 March 2020), 2009.
Credit Suisse Research Institute: Global Wealth Report 2017, Credit Suisse
Research Institute, available at:
https://www.credit-suisse.com/corporate/en/articles/news-and-expertise/global-wealth-report-2017-201711.html
(last access: 3 July 2020), 2017.
Cruz, F. T. and Narisma, G. T.: WRF simulation of the heavy rainfall over
Metropolitan Manila, Philippines during tropical cyclone Ketsana: a
sensitivity study, Meteorol. Atmos. Phys., 128, 415–428,
https://doi.org/10.1007/s00703-015-0425-x, 2016.
Czajkowski, J. and Done, J.: As the Wind Blows? Understanding Hurricane
Damages at the Local Level through a Case Study Analysis, Weather Clim.
Soc., 6, 202–217, https://doi.org/10.1175/WCAS-D-13-00024.1, 2013.
De Bono, A. and Mora, M. G.: A global exposure model for disaster risk
assessment, Int. J. Disaster Risk Reduct., 10, 442–451,
https://doi.org/10.1016/j.ijdrr.2014.05.008, 2014.
Done, J. M., Ge, M., Holland, G. J., Dima-West, I., Phibbs, S., Saville, G. R., and Wang, Y.: Modelling global tropical cyclone wind footprints, Nat. Hazards Earth Syst. Sci., 20, 567–580, https://doi.org/10.5194/nhess-20-567-2020, 2020.
Eberenz, S., Stocker, D., Röösli, T., and Bresch, D. N.: Asset exposure data for global physical risk assessment, Earth Syst. Sci. Data, 12, 817–833, https://doi.org/10.5194/essd-12-817-2020, 2020.
Eberenz, S., Lüthi, S., and Bresch, D. N.: sameberenz/climada_papers_tropical_cyclone_impact_functions: TC impact function calibration (Version v1.1), Zenodo, https://doi.org/10.5281/zenodo.4467858, 2021.
Elliott, R. J. R., Strobl, E., and Sun, P.: The local impact of typhoons on
economic activity in China: A view from outer space, J. Urban Econ., 88,
50–66, https://doi.org/10.1016/j.jue.2015.05.001, 2015.
Emanuel, K.: Global Warming Effects on U.S. Hurricane Damage, Weather Clim.
Soc., 3, 261–268, https://doi.org/10.1175/WCAS-D-11-00007.1, 2011.
Emanuel, K., Fondriest, F., and Kossin, J.: Potential Economic Value of
Seasonal Hurricane Forecasts, Weather Clim. Soc., 4, 110–117,
https://doi.org/10.1175/WCAS-D-11-00017.1, 2012.
Espada, R.: Return period and Pareto analyses of 45 years of tropical
cyclone data (1970–2014) in the Philippines, Appl. Geogr., 97, 228–247,
https://doi.org/10.1016/j.apgeog.2018.04.018, 2018.
Federal Emergency Management Authority [FEMA]: HAZUS MH MR5 Technical
Manual, Washington, D.C., available at:
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_hurricane-model_technical-manual_2.1.pdf (last access: 26 January 2021), 2010.
Geiger, T., Frieler, K., and Bresch, D. N.: A global historical data set of tropical cyclone exposure (TCE-DAT), Earth Syst. Sci. Data, 10, 185–194, https://doi.org/10.5194/essd-10-185-2018, 2018.
Gettelman, A., Bresch, D. N., Chen, C. C., Truesdale, J. E., and Bacmeister,
J. T.: Projections of future tropical cyclone damage with a high-resolution
global climate model, Clim. Change, 146, 575–585,
https://doi.org/10.1007/s10584-017-1902-7, 2017.
GNU Operating System: GNU General Public License, version 3, available at: https://www.gnu.org/licenses/gpl-3.0.en.html (last access: 10 February 2020), 2007.
Guha-Sapir, D.: EM-DAT, CRED/UCLouvain, Brussels, Belgium,
available at: https://www.emdat.be/, last access: 31 October 2018.
Guha-Sapir, D. and Below, R.: The quality and accuracy of disaster data: A
comparative analyse of three global data sets, Disaster Management Facil,
World Bank, available at: http://www.cred.be/sites/default/files/Quality_accuracy_disaster_data.pdf (last access: 26 January 2021), 2002.
Guha-Sapir, D. and Checchi, F.: Science and politics of disaster death
tolls, BMJ, 362, k4005, https://doi.org/10.1136/bmj.k4005, 2018.
Holland, G.: A Revised Hurricane Pressure–Wind Model, Mon. Weather Rev.,
136, 3432–3445, https://doi.org/10.1175/2008MWR2395.1, 2008.
IFRC: Philippines: Typhoon Fengshen (Emergency appeal), MDRPH004,
International Federation of the Red Cross and Red Crescent Societies,
available at:
https://reliefweb.int/sites/reliefweb.int/files/resources/FB51CB092CBBC9F18525763A0058A87A-Full_Report.pdf (last access: 26 January 2021), 2009.
Inokuchi, T., Nakasu, T., and Sato, T.: Landslide Disaster around Baguio City
caused by Typhoon Pepeng in 2009, Nat. Disaster Res. Rep., 8, 35–41, available at: https://researchmap.jp/read0139271/misc/15254764/attachment_file.pdf (last access: 26 January 2021), 2011.
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A:
Global and Sectoral Aspects. Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.
Ishizawa, O. A., Miranda, J. J., and Strobl, E.: The Impact of Hurricane
Strikes on Short-Term Local Economic Activity: Evidence from Nightlight
Images in the Dominican Republic, Int. J. Disaster Risk Sci., 10,
362–370, https://doi.org/10.1007/s13753-019-00226-0, 2019.
Joint Typhoon Warning Center: Super Typhoon Angela (29W), available
at:
https://web.archive.org/web/20110607011047/http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/atcr/1995atcr/pdf/wnp/29w.pdf
(last access: 25 March 2020), 1995.
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C.
J.: The International Best Track Archive for Climate Stewardship (IBTrACS):
Unifying tropical cyclone best track data, B. Am. Meteorol. Soc., 91,
363–376, https://doi.org/10.1175/2009BAMS2755.1, 2010.
Korty, R. L., Emanuel, K. A., Huber, M., and Zamora, R. A.: Tropical Cyclones
Downscaled from Simulations with Very High Carbon Dioxide Levels, J. Climate,
30, 649–667, https://doi.org/10.1175/JCLI-D-16-0256.1, 2017.
Lagmay, A. M. F., Agaton, R. P., Bahala, M. A. C., Briones, J. B. L. T.,
Cabacaba, K. M. C., Caro, C. V. C., Dasallas, L. L., Gonzalo, L. A. L.,
Ladiero, C. N., Lapidez, J. P., Mungcal, M. T. F., Puno, J. V. R., Ramos, M.
M. A. C., Santiago, J., Suarez, J. K., and Tablazon, J. P.: Devastating storm
surges of Typhoon Haiyan, Int. J. Disaster Risk Reduct., 11, 1–12,
https://doi.org/10.1016/j.ijdrr.2014.10.006, 2015.
Lüthi, S.: Applying Machine Learning Methods to the Assessment of
Tropical Cyclone Impacts, ETH Zurich, available at:
https://doi.org/10.3929/ethz-b-000398592 (last access: 5 June 2020), 2019.
Lyons, S. W.: U.S. Tropical Cyclone Landfall Variability: 1950–2002,
Weather Forecast., 19, 473–480, https://doi.org/10.1175/1520-0434(2004)019<0473:UTCLV>2.0.CO;2, 2004.
Mas, E., Bricker, J., Kure, S., Adriano, B., Yi, C., Suppasri, A., and Koshimura, S.: Field survey report and satellite image interpretation of the 2013 Super Typhoon Haiyan in the Philippines, Nat. Hazards Earth Syst. Sci., 15, 805–816, https://doi.org/10.5194/nhess-15-805-2015, 2015.
Mendelsohn, R., Emanuel, K., Chonabayashi, S., and Bakkensen, L.: The impact
of climate change on global tropical cyclone damage, Nat. Clim. Change,
2, 205–209, https://doi.org/10.1038/nclimate1357, 2012.
Met Office: Cartopy: a cartographic python library with a Matplotlib
interface, Python, Exeter, Devon, available at:
https://scitools.org.uk/cartopy (last access: 12 January 2019), 2010.
Munich Re: NatCatSERVICE Methodology, available at:
https://natcatservice.munichre.com/assets/pdf/180220_NCS_Methodology_en.pdf (last access: 23 March 2020), 2018.
Nakasu, T., Inokuchi, T., Shimokawa, S., and Watanabe, A.: 2009 Typhoon Ondoy
and Pepeng Disasters in the Phillipines, National Research Institute for
Earth Science and Disaster Prevention, available at:
https://www.researchgate.net/profile/Tadashi_Nakasu/publication/287205168_2009_Typhoon_Ondoy_and_Pepeng_Disasters_in_the_Phillipines/links/56d94d5008aebe4638baa2d8/2009-Typhoon-Ondoy-and-Pepeng-Disasters-in-the-Phillipines.pdf
(last access: 3 July 2020), 2011.
NDCC: Final Report on Tropical Storm Ondoy and Typhoon Pepeng, National
Disaster Coordination Council, available at:
http://ndrrmc.gov.ph/attachments/article/1543/Update_Final_Report_TS_Ondoy_and_Pepeng_24-27SEP2009and30SEP-20OCT2009.pdf (last access: 26 January 2021), 2009a.
NDCC: SiteRep No. 15 on Humanitarian Coordination on Tropical Storm ONDOY,
National Disaster Coordination Council, available at:
https://web.archive.org/web/20110530012257/http://210.185.184.53/ndccWeb/images/ndccWeb/ndcc_advisory/TC_ ONDOY/ondoy15.pdf (last access: 25 March 2020), 2009b.
NDRRMC: Effects of Typhoon Juan, Sitrep No. 17, National Disaster Risk
Reduction and Management Council, available at:
http://www.ndrrmc.gov.ph/attachments/article/1554/SitRep_No_ 17_Typhoon_Juan_Issued_On_22OCT2010_1800H.pdf (last access: 25 March 2020), 2010.
NDRRMC: Effects of Typhoon Pedring (Nesat), SitRep No. 20, National Disaster
Risk Reduction and Management Council, available at:
http://www.ndrrmc.gov.ph/attachments/article/1748/SitRep_No_ 20_re_Effects_of_Typhoon_PEDRING_as_of_ 05OCT2011_ 0600H.pdf
(last access: 26 March 2020), 2011.
NDRRMC: Effects of Typhoon Pablo (Bopha), Sitrep No. 38, National Disaster
Risk Reduction and Management Council, available at:
https://reliefweb.int/sites/reliefweb.int/files/resources/NDRRMC Update Sitrep No 38 re Effects of Typhoon Pablo Bopha.pdf
(last access: 25 March 2020), 2012.
NDRRMC: Effects of Typhoon Yolanda (Haiyan), Final Report, National Disaster
Risk Reduction and Management Council, available at:
http://ndrrmc.gov.ph/attachments/article/1329/FINAL_REPORT_re_Effects_of_Typhoon_YOLANDA_HAIYAN_06-09NOV2013.pdf (last access: 26 January 2021), 2013.
NDRRMC: Effects of Typhoon Glenda (Rammasun), Final Report, National
Disaster Risk Reduction and Management Council, available at:
http://www.ndrrmc.gov.ph/attachments/article/1293/Effects_of_ Typhoon_Glenda_(RAMMASUN)_Final_Report_16SEP2014.pdf (last access: 25 March 2020), 2014.
Park, S., van de Lindt, J. W., and Li, Y.: Application of the hybrid ABV
procedure for assessing community risk to hurricanes spatially, Nat.
Hazards, 68, 981–1000, https://doi.org/10.1007/s11069-013-0674-2, 2013.
Pielke, R. A.: Future economic damage from tropical cyclones: sensitivities
to societal and climate changes, Philos. Trans. R. Soc. Math. Phys. Eng.
Sci., 365, 2717–2729, https://doi.org/10.1098/rsta.2007.2086, 2007.
Pielke, R. A., Gratz, J., Landsea, C. W., Collins, D., Saunders, M. A., and
Musulin, R.: Normalized Hurricane Damage in the United States: 1900–2005,
Nat. Hazards Rev., 9, 29–42, https://doi.org/10.1061/(ASCE)1527-6988(2008)9:1(29),
2008.
Porio, E.: Vulnerability, Adaptation, and Resilience to Floods and Climate
Change-Related Risks among Marginal, Riverine Communities in Metro Manila,
Asian J. Soc. Sci., 39, 425–445, https://doi.org/10.1163/156853111X597260, 2011.
Schreck, C. J., Knapp, K. R., and Kossin, J. P.: The Impact of Best Track
Discrepancies on Global Tropical Cyclone Climatologies using IBTrACS, Mon.
Weather Rev., 142, 3881–3899, https://doi.org/10.1175/MWR-D-14-00021.1, 2014.
Sealy, K. S. and Strobl, E.: A hurricane loss risk assessment of coastal
properties in the caribbean: Evidence from the Bahamas, Ocean Coast. Manag.,
149, 42–51, https://doi.org/10.1016/j.ocecoaman.2017.09.013, 2017.
Soria, J. L. A., Switzer, A. D., Villanoy, C. L., Fritz, H. M., Bilgera, P.
H. T., Cabrera, O. C., Siringan, F. P., Maria, Y. Y.-Sta., Ramos, R. D., and
Fernandez, I. Q.: Repeat Storm Surge Disasters of Typhoon Haiyan and Its
1897 Predecessor in the Philippines, B. Am. Meteorol. Soc., 97,
31–48, https://doi.org/10.1175/BAMS-D-14-00245.1, 2015.
Strobl, E.: The Impact of Typhoons on Economic Activity in the Philippines:
Evidence from Nightlight Intensity, ADB Econ. Work. Pap. Ser., 589, 28,
https://doi.org/10.22617/WPS190278-2, 2019.
UNDRR: GAR 2013, From Shared Risk to Shared Value: the Business Case for
Disaster Risk Reduction, UN Office for Disaster Risk Reduction, Geneva,
Switzerland, available at:
https://www.preventionweb.net/english/hyogo/gar/2013/en/home/index.html
(last access: 6 May 2020), 2013.
Wahiduzzaman, M., Oliver, E. C. J., Wotherspoon, S. J., and Holbrook, N. J.:
A climatological model of North Indian Ocean tropical cyclone genesis,
tracks and landfall, Clim. Dynam., 49, 2585–2603,
https://doi.org/10.1007/s00382-016-3461-4, 2017.
Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D., Kunz, M., Mohr, S., Muis, S., Riddell, G. A., Schäfer, A., Stanley, T., Veldkamp, T. I. E., and Winsemius, H. C.: Review article: Natural hazard risk assessments at the global scale, Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, 2020.
Weinkle, J., Landsea, C., Collins, D., Musulin, R., Crompton, R. P.,
Klotzbach, P. J., and Pielke, R.: Normalized hurricane damage in the
continental United States 1900–2017, Nat. Sustain., 1, 808–813,
https://doi.org/10.1038/s41893-018-0165-2, 2018.
World Bank: Wealth Accounting, available at:
https://datacatalog.worldbank.org/dataset/wealth-accounting (last access: 10 February 2020), 2019a.
World Bank: World Bank Open Data, available at:
https://data.worldbank.org/ (last access: 10 February 2020), 2019b.
Yamin, L. E., Hurtado, A. I., Barbat, A. H., and Cardona, O. D.: Seismic and
wind vulnerability assessment for the GAR-13 global risk assessment, Int. J.
Disaster Risk Reduct., 10, 452–460, https://doi.org/10.1016/j.ijdrr.2014.05.007, 2014.
Yumul, G. P., Cruz, N. A., Servando, N. T., and Dimalanta, and C. B.: The
meteorologically abnormal year of 2006 and natural disasters in the
Philippines, Episodes J. Int. Geosci., 31, 378–383,
https://doi.org/10.18814/epiiugs/2008/v31i4/002, 2008.
Yumul, G. P., Cruz, N. A., Servando, N. T., and Dimalanta, C. B.: Extreme
weather events and related disasters in the Philippines, 2004–08: a sign of
what climate change will mean?, Disasters, 35, 362–382,
https://doi.org/10.1111/j.1467-7717.2010.01216.x, 2011.
Yumul, G. P., Servando, N. T., Suerte, L. O., Magarzo, M. Y., Juguan, L. V.
V., and Dimalanta, C. B.: Tropical cyclone–southwest monsoon interaction and
the 2008 floods and landslides in Panay island, central Philippines:
meteorological and geological factors, Nat. Hazards, 62, 827–840,
https://doi.org/10.1007/s11069-012-0109-5, 2012.
Zhang, Q., Wu, L., and Liu, Q.: Tropical Cyclone Damages in China 1983–2006,
B. Am. Meteorol. Soc., 90, 489–496, https://doi.org/10.1175/2008BAMS2631.1, 2009.
Zumwald, M., Knüsel, B., Baumberger, C., Hadorn, G. H., Bresch, D. N.,
and Knutti, R.: Understanding and assessing uncertainty of observational
climate datasets for model evaluation using ensembles, WIRES Clim. Change,
e654, 1–19, https://doi.org/10.1002/wcc.654, 2020.
Short summary
Asset damage caused by tropical cyclones is often computed based on impact functions mapping wind speed to damage. However, a lack of regional impact functions can lead to a substantial bias in tropical cyclone risk estimates. Here, we present regionally calibrated impact functions, as well as global risk estimates. Our results are relevant for researchers, model developers, and practitioners in the context of global risk assessments, climate change adaptation, and physical risk disclosure.
Asset damage caused by tropical cyclones is often computed based on impact functions mapping...
Altmetrics
Final-revised paper
Preprint