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Abstract. Assessing the adverse impacts caused by tropical
cyclones has become increasingly important as both climate
change and human coastal development increase the damage
potential. In order to assess tropical cyclone risk, direct eco-
nomic damage is frequently modeled based on hazard inten-
sity, asset exposure, and vulnerability, the latter represented
by impact functions. In this study, we show that assessing
tropical cyclone risk on a global level with one single im-
pact function calibrated for the USA – which is a typical
approach in many recent studies – is problematic, biasing
the simulated damage by as much as a factor of 36 in the
north West Pacific. Thus, tropical cyclone risk assessments
should always consider regional differences in vulnerability,
too. This study proposes a calibrated model to adequately
assess tropical cyclone risk in different regions by fitting re-
gional impact functions based on reported damage data. Ap-
plying regional calibrated impact functions within the risk
modeling framework CLIMADA (CLIMate ADAptation) at
a resolution of 10 km worldwide, we find global annual aver-
age direct damage caused by tropical cyclones to range from
USD 51 up to USD 121 billion (value in 2014, 1980–2017)
with the largest uncertainties in the West Pacific basin where
the calibration results are the least robust. To better under-
stand the challenges in the West Pacific and to complement
the global perspective of this study, we explore uncertainties
and limitations entailed in the modeling setup for the case
of the Philippines. While using wind as a proxy for tropical
cyclone hazard proves to be a valid approach in general, the
case of the Philippines reveals limitations of the model and
calibration due to the lack of an explicit representation of
sub-perils such as storm surges, torrential rainfall, and land-
slides. The globally consistent methodology and calibrated

regional impact functions are available online as a Python
package ready for application in practical contexts like phys-
ical risk disclosure and providing more credible information
for climate adaptation studies.

1 Introduction

Tropical cyclones (TCs) are highly destructive natural haz-
ards affecting millions of people each year (Geiger et al.,
2018; Guha-Sapir, 2018) and causing annual average direct
damage in the order of USD 29 to USD 89 billions (Cardona
et al., 2014; Gettelman et al., 2017; Guha-Sapir, 2018). Cli-
mate change and coastal development could significantly in-
crease the impact of TCs in the future (Gettelman et al., 2017;
Mendelsohn et al., 2012). Increasing risks from TCs and
other extreme weather events pose a challenge to exposed
populations and assets but also to governments and investors
as actors in globally connected economies. Governments,
companies, and investors increasingly express the need to un-
derstand their physical risk under current and future climatic
conditions (Bloomberg et al., 2017). Thus, quantitative risk
assessments require a globally consistent representation of
the economic impact of TCs and other natural hazards.

Probabilistic risk models can provide the quantitative basis
for risk assessments and adaptation studies. Since the mid-
2000s, there have been increasing scientific efforts in devel-
oping and improving global-scale natural hazard risk assess-
ments (Cardona et al., 2014; Gettelman et al., 2017; Ward et
al., 2020). Risk from natural hazards is frequently modeled
as a function of severity and occurrence frequency which can
be computed by combining information on hazard, exposure,
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and vulnerability (IPCC, 2014). Global- and regional-scale
TC risk models often represent hazard as the spatial distri-
bution of the maximum sustained surface wind speed per TC
event (Aznar-Siguan and Bresch, 2019; Ward et al., 2020). In
past studies, wind fields modeled from historical TC tracks
were used to assess economic risk in the Global Assessment
Report (GAR) 2013 (Cardona et al., 2014; UNDRR, 2013)
and to quantify affected population (Geiger et al., 2018),
among others. For the assessment of future risk, historical
TC records can be complemented with events simulated in
downscaling experiments based on the output of global cli-
mate models (Gettelman et al., 2017; Korty et al., 2017) or
synthetic resampling algorithms (Bloemendaal et al., 2020).
The exposure component can be represented by the spatial
distribution of people, assets, or economic values potentially
affected by TCs (Geiger et al., 2018; Ward et al., 2020). For
the modeling of direct economic damage, exposure is usually
derived from building inventories for local risk assessments
(Sealy and Strobl, 2017) or estimated by spatially disaggre-
gating national asset value estimates (De Bono and Mora,
2014; Eberenz et al., 2020; Gettelman et al., 2017).

The vulnerability of an exposed value to a given hazard
can be represented by impact functions, also called dam-
age functions or vulnerability curves, relating hazard inten-
sity to impact. Impact functions for the assessment of di-
rect economic damage caused by TCs usually relate wind
speed to relative damage (Emanuel, 2011). For the USA, TC
impact functions are available specific to different building
types (Federal Emergency Management Authority, FEMA,
2010; Yamin et al., 2014), as well as on an aggregate level
(Emanuel, 2011). Emanuel et al. (2012) found a lack of sen-
sitivity of simulated TC damage to the exact shape of the
impact function for the USA. However, due to global het-
erogeneities in the tropical cyclone climatology (Schreck et
al., 2014), building codes, and other socioeconomic vulner-
ability factors (Yamin et al., 2014), it is inadequate to use a
single universal impact function for global TC risk assess-
ments. Bakkensen et al. (2018b) used reported damage data
to calibrate TC impact functions for China, highlighting both
the potential of this approach and the considerable uncertain-
ties related to the quality of reported damage data. Still, there
is a lack of globally consistent and regionally calibrated im-
pact functions. Due to this lack, impact functions calibrated
for the USA have been used in a variety of local and re-
gional studies outside the USA, i.e., the Caribbean (Aznar-
Siguan and Bresch, 2019; Bertinelli et al., 2016; Ishizawa et
al., 2019; Sealy and Strobl, 2017), China (Elliott et al., 2015),
and the Philippines (Strobl, 2019). A similar impact function
has also been applied for modeling TC damages on a global
level (Gettelman et al., 2017).

For GAR 2013, building-type-specific impact functions
from FEMA were assigned to exposure points based on
global data based on development level, complexity of ur-
ban areas, and regional hazard level at each location (De
Bono and Mora, 2014; Yamin et al., 2014). However, the im-

pact functions were not calibrated regionally against reported
damage data. Furthermore, the required complexity in expo-
sure data exceeds the scope of many risk assessments.

Can globally consistent TC impact modeling be improved
by calibrating the vulnerability component on a regional
level?

This article addresses this question by calibrating regional
TC impact functions in a globally consistent TC impact mod-
eling framework, as implemented within the open-source
weather and climate risk assessment platform CLIMADA
(CLIMate ADAptation; Aznar-Siguan and Bresch, 2019).
This study contributes to reaching the goal of consistent
global TC risk modeling and a better connection of global
and regional impact studies. The objectives of this study are
to (1) calibrate a global TC impact model by regionalizing
the impact function, (2) assess the annual average damage
(AAD) per region and compare the results to past studies,
and (3) evaluate the robustness of the calibration and discuss
the limitations and uncertainties of both the model setup and
the calibration. To inform the discussion of uncertainties, we
complement aggregated calibration results (Sect. 3) with an
event-level case study for the Philippines (Sect. 4). While the
attribution of vulnerability to regional drivers is outside the
scope of this study, the results can serve as a starting point for
further research disentangling the socio-economic and phys-
ical drivers determining vulnerability to TC impacts locally
and across the globe.

2 Data and method

To regionally calibrate TC impact functions, simulated dam-
age is compared to reported damage, as illustrated in Fig. 1.
In a first step, direct economic damage caused by TCs is
simulated in the impact modeling framework CLIMADA
(Figs. 1a–d; Sect. 2.1 to 2.2.2) with one single default impact
function applied globally to start from (Sect. 2.2.3). Then,
damage data points per country and TC event are assigned to
entries of reported damage (Fig. 1e–f; Sect. 2.3.1). For the
matched events, the ratio between simulated and reported
damage is calculated (Fig. 1g; Sect. 2.3.2). For calibration,
countries are clustered into regions, and two complementary
cost functions are optimized based on the damage ratios by
regionally fitting the slope of the impact function (Fig. 1h;
Sect. 2.3.3).

2.1 CLIMADA – spatially explicit TC risk modeling

The CLIMADA (CLIMate ADAptation) impact modeling
framework has been developed at ETH Zurich as a free,
open-source software package (Aznar-Siguan and Bresch,
2019). It is written in Python 3.7 and made available on-
line on both GitHub (Bresch et al., 2019a) and the ETH
Data Archive (Bresch et al., 2019b). Here, CLIMADA was
used for the preprocessing of hazard and exposure data and

Nat. Hazards Earth Syst. Sci., 21, 393–415, 2021 https://doi.org/10.5194/nhess-21-393-2021



S. Eberenz et al.: Regional tropical cyclone impact 395

Figure 1. Schematic overview of the data and methods applied to calibrate regional tropical cyclone (TC) impact functions in a globally
consistent manner. From left to right, TC event damages are first simulated within the CLIMADA framework based on TC hazard (a), asset
exposure (b), and a default impact function (c) (cf. Sect. 2.1 to 2.2.3). Resulting simulated damages (d) are compared to reported damage
data from EM-DAT (e) for 473 matched TC events (f) by means of the damage ratio (g) (cf. Sect. 2.2.4 to 2.3.2). During calibration (h),
steps (c) to (g) are repeated several times with varied impact functions for each region, optimizing the cost functions’ total damage ratio
(TDR) and root-mean-squared fraction (RMSF; cf. Sect. 2.3.3). The result is a set of best-fitting impact functions for nine world regions
(Sect. 3.2). Finally, the calibrated impact functions are plugged into CLIMADA once more (dashed arrow) to compute the annual average
damage (AAD) per region (Sect. 3.3).

for the spatially explicit computation of direct damage on
a global grid at 10 km resolution. The setup works equally
well at a higher chosen resolution, but the given uncertainties
especially in calibration data and computational constraints
justify the chosen resolution. In the CLIMADA framework,
damage is defined as the product of exposed assets and a
damage ratio. The damage ratio is an impact function mul-
tiplied by hazard intensity.

In our case, damage per TC event and country is simu-
lated as follows: for each grid cell and event, damage is cal-
culated as the product of total exposed asset values and the
mean damage ratio. The mean damage ratio (0 % to 100 %)
results from plugging the hazard intensity (maximum sus-
tained wind speed) into the impact function. Finally, damage
per event is aggregated over all grid cells within the coun-
try. Please refer to Sects. 2.1 and 2.2.3 in Aznar-Siguan and
Bresch (2019) for a more detailed description of impact cal-
culation.

2.2 Data

2.2.1 TC Hazard

TCs typically inflict damage due to strong sustained sur-
face winds, storm surge inundation, and torrential rain
(Bakkensen et al., 2018a; Baradaranshoraka et al., 2017; Park
et al., 2013). Next to maximum wind speed, storm size is
an important factor controlling TC impacts (Czajkowski and
Done, 2013). Since the severity of surge and rain is to a cer-
tain extent correlated to wind speed and storm size (Cza-
jkowski and Done, 2013), the latter is often taken as a proxy
hazard intensity (Emanuel, 2011; Gettelman et al., 2017).

Here, TC hazard intensity is represented by wind fields,
i.e., the geographical distribution of the 1 min sustained
wind speed at 10 m above ground per TC event, referred
to as “wind speed” or “hazard intensity” in the follow-
ing. Wind speed was simulated at a horizontal resolution
of 10 km× 10 km from historical TC tracks as a function
of time, location, radius of maximum winds, and central
and environmental pressure, based on the revised hurricane
pressure–wind model by Holland (2008). Please also refer to
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Geiger et al. (2018) for a detailed description and illustration
of the wind field model and its limitations.

Historical TC tracks were obtained from the International
Best Track Archive for Climate Stewardship (IBTrACS)
(Knapp et al., 2010). As data quality and global coverage im-
proved after approximately 1980 (Geiger et al., 2018), 4098
historical TC tracks from 1980 to 2017 were selected based
on data completeness criteria with regards to data fields pro-
vided within IBTrACS following the approach described by
Geiger et al. (2018) and Aznar-Siguan and Bresch (2019).
Out of the 4098 TCs, a total number of 1538 landfall events
with the potential of causing damage were identified. Poten-
tial damage is given if at least one grid cell of a TC’s wind
field with an intensity of 25.7 m s−1 (∼50 kn) or more coin-
cides with an asset exposure value larger than zero. A world
map showing the maximum intensity per grid cell for all
tracks is shown in the Supplement (Fig. S1).

2.2.2 Asset exposure

Asset exposure for the assessment of direct economic risk
is represented by the spatially explicit monetary value po-
tentially impacted by a hazard. Here, we use gridded asset
exposure value at a resolution of 10 km× 10 km. The dataset
is based on the disaggregation of national estimates of to-
tal asset value (TAV; Table A3) proportional to the product
of nightlight intensity and population count (Eberenz et al.,
2020). Following the approach in GAR 2013 (De Bono and
Mora, 2014), the TAV per country is represented by the pro-
duced capital stock of 2014 from the World Bank Wealth Ac-
counting (World Bank, 2019a). Out of the 62 countries used
for calibration, 32 come with produced capital estimates. For
the remaining 30, an estimate of non-financial wealth is used
as a fallback (Eberenz et al., 2020) based on the gross do-
mestic product (GDP) of 2014 from the World Bank Open
Data portal (World Bank, 2019b) combined with an GDP-to-
wealth factor from the Global Wealth Report (Credit Suisse
Research Institute, 2017). The asset exposure dataset utilized
here and a detailed overview over limitations and data avail-
ability per country are documented in Eberenz et al. (2020).

2.2.3 Impact function

In CLIMADA, vulnerability is represented by impact func-
tions. They are used to compute damage for each TC event
at each exposed location by relating hazard intensity to rel-
ative impact. Since no directly wind-induced damage is ex-
pected for low wind speeds, TC impact functions for the spa-
tially explicit modeling of direct damages can be constrained
by a minimum threshold Vthresh for the occurrence of im-
pacts and an upper bound of 100 % direct damage (Emanuel,
2011). Empirical studies suggest a high power-law function
for the slope, i.e., the increase in damage with wind speed
(Pielke, 2007). An idealized sigmoidal impact function satis-

Figure 2. Idealized TC impact function based on Emanuel (2011).
Vhalf is the hazard intensity (i.e., maximum sustained wind speed)
at which the relative impact reaches 50 % of the exposed asset value.
No impact occurs for an intensity below Vthresh.

fying these constraints was proposed by Emanuel (2011):

f =
v3
n

1+ v3
n

,

with

vn =
MAX[(V −Vthresh) ,0]

Vhalf−Vthresh
. (1)

Equation (1) defines the impact function f as a func-
tion of wind speed V . The function takes two shape pa-
rameters as inputs: Vthresh and Vhalf. A lower threshold
Vthresh of 25.7 m s−1 (50 kn) was proposed for the USA by
Emanuel (2011) and empirically supported for China (Elliott
et al., 2015). The slope parameter Vhalf signifies the wind
speed at which the function’s slope is the steepest and a dam-
age ratio of 50 % is reached (Fig. 2). It should be noted that
the effects of varying Vthresh and Vhalf on resulting impacts
are not linearly independent.

Based on the reference data provided by FEMA (2010),
Vhalf for damage to buildings can range from 52 to 89 m s−1

depending on building type and surface roughness (El-
liott et al., 2015). Applying FEMA impact functions that
were verified with reported damage data for US hurri-
canes Andrew (1992), Eric (1995), and Fran (1996), Sealy
and Strobl (2017) estimated Vhalf to range from 71.7 to
77.8 m s−1, depending on building type, with a mean value
of 74.7 m s−1.

In a comparison of calibration results based on a sig-
moidal impact function with a more complex 12-step stair-
case function, Lüthi (2019) found no improvement in calibra-
tion skill with the more complex function. Therefore, a sig-
moidal function is applied in this study. The default impact
function with Vthresh = 25.7 m s−1 and Vhalf = 74.7 m s−1 is
used for a first, uncalibrated simulation of global TC dam-
ages and as a starting point for calibration. While Vhalf is fit-
ted during the calibration process, the lower threshold Vthresh
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is kept constant throughout the study. This is based on the
finding by Lüthi (2019) that the variation in more than one
of the linearly dependent parameters most likely results in
an overfitting during calibration with physically implausible
values for Vthresh in some world regions.

On the chosen 10 km× 10 km grid, single buildings are
not resolved. Therefore, damage is aggregated over several
buildings in a grid cell, and not all buildings are expected to
be damaged to the same degree. However, the wind-speed-
dependent impact function is also implicitly accounting for
the damage caused by storm surges and torrential rain when
calibrated against reported damage data. For these two rea-
sons, we allow for values of Vhalf lower and larger than the
literature range for pure wind-induced building damage in
the calibration. To find the functional slope best fit to simu-
late the direct economic damage of TCs in a region, Vhalf is
varied step-wise with Vhalf > Vthresh (cf. Sect. 2.3.3, Calibra-
tion of regional impact functions).

2.2.4 Reported damage data

Reported damage data for historical TC events are required
on a global level to calibrate TC impact functions.

Reported damage estimates for disasters worldwide are
available from the International Disaster Database EM-DAT
(Guha-Sapir, 2018). EM-DAT provides data per event and
country, including disaster type and subtype, date of the
event, and impact estimates. The main data sources of EM-
DAT are UN agencies, governmental and non-governmental
agencies, reinsurance companies, research institutes, and the
press.

EM-DAT provides one entry per country and event. There-
fore, one meteorological TC can be listed in EM-DAT several
times with one entry for each country affected. In the follow-
ing, each of these entries per storm and country will be re-
ferred to as single “TC events”. For instance, Hurricane Irma
comes with 17 events in EM-DAT (disaster no. 2017-0381)
as it impacted 16 Caribbean countries and the USA. From
1980 to 2017, there are 1650 TC events reported in EM-DAT
of which 991 come with a reported monetary damage value.

The EM-DAT database provides total damage per event
and country in current US dollars. In contrast, the asset ex-
posure data used for the modeling of damage are kept fixed
at the USD value of 2014 (Sect. 2.3). To allow for a compar-
ison of reported and simulated damages that is independent
of economic development, reported damage values need to
be normalized to a reference year. For instance, Weinkle et
al. (2018) applied two normalization methodologies for hur-
ricane damage in the continental USA for 1900–2017, ad-
justing reported impact for inflation, per-capita wealth, and
the population of affected counties (Collins and Lowe, 2001;
Pielke et al., 2008). Due to a lack of global time series of
wealth data, reported damage is normalized by means of
GDP scaling. This is based on a less prerequisite approach
applied in Munich Re’s NatCat, in which recorded damages

are normalized proportional to regionalized GDP (Munich
Re, 2018). This normalization approach assumes that time
series in current GDP serve as a first order approximation of
economic development, implicitly accounting for inflation,
changes in wealth per capita, and population. To obtain es-
timates of normalized reported damage (NRD) per event E,
reported damage (RD) is scaled proportionally to the affected
country’s change in GDP between the year of occurrence y

and the year 2014:

NRDE = RDE ·
GDP2014

GDPy

. (2)

We found that GDP scaling removes the significant posi-
tive trend from the yearly impacts in the USA (p-values of
0.04 before and 0.14 after normalization). This is in agree-
ment with the findings of existing normalization studies for
past TC impacts in the USA (Pielke et al., 2008; Weinkle et
al., 2018).

2.3 Methods

2.3.1 Event matching: assigning reported damage data
to simulated TC events

For the comparison of simulated and reported TC damage,
reported events from EM-DAT per TC and country need to be
assigned to TC tracks from IBTrACS. Tracks were matched
based on the country affected and timestamps (Lüthi, 2019).
(1) In a first step, the impacted countries per TC track are de-
termined, i.e., in which countries a storm does make landfall.
(2) Subsequently, the best-fitting tracks are assigned to the re-
ported events based on an iterative comparison of start dates
provided in the datasets. Given that countries are hit by sev-
eral TCs in a relatively short time, the assignment certainty
varies. Finally, (3) tracks with a low assignment certainty are
double-checked manually for removal or reassigning.

In total, we matched 848 EM-DAT events to their respec-
tive tracks. These events account for USD 913 billion in re-
ported economic damage out of the total USD 959 billion
from the 991 EM-DAT events (95 %). For 534 of the 848
assigned events, there is economic damage larger than zero
simulated in CLIMADA with the respective TC track. Gen-
erally, the difference between simulated and reported dam-
age per matched event spans several orders of magnitude.
Extreme outliers are likely to be associated with either a mis-
match or flawed values of reported damage. Therefore, we
exclude 61 extreme outliers from calibration, i.e., all events
that come with a deviation of more than a factor of 1000
between normalized reported damage and simulated damage
with the default impact function.

Eventually, a total of 473 assigned events remain for anal-
ysis and are referred to as “matched events” in the follow-
ing. These matched events, representing damage per TC and
country, are based on 376 TC tracks making landfall in 53
countries (one TC can make landfall in several countries).
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The total reported damage from these 473 matched events
accounts for 91 % of the sum of all TC-related reported dam-
age from 1980 to 2017 in EM-DAT (76 % after normaliza-
tion). Damage simulated for the 376 TCs with the default
impact function amount to 58 % of the total global simulated
damage from all 4098 TC tracks.

2.3.2 Damage ratios: event damage ratio and total
damage ratio

For the analysis of regional differences in TC vulnerability,
event damage is simulated with CLIMADA for all matched
events with the default impact function (Sect. 2.4). The event
damage ratio (EDR) is computed per matched event E as
the ratio of simulated event damage (SED) over normalized
reported damage (NRD):

EDRE =
SEDE

NRDE

. (3)

An EDR of 1.0 indicates a perfect fit between SED and
NRD. An EDR greater (smaller) than 1.0 indicates an over-
estimation (underestimation) of the simulations as compared
to reports. As there are considerable deviations between the
distribution of EDRs between countries, the median of EDRs
per country is used to define calibration regions in Sect. 2.3.3.

To compare the aggregated damage on a global or regional
level, we use total damage ratio (TDR) defined as the sum
of simulated damages divided by the sum of normalized re-
ported damages:

TDRR =

∑N
E=1SEDE∑N
E=1NRDE

, (4)

where N is the number of matched events E in a region R.
The distribution of EDRs and TDRs before calibration, as

well as TDRs after calibration, is shown per region in Figs. 6
and S4 and per country in Fig. S2.

2.3.3 Calibration of regional impact functions

As a first step towards the regional calibration of the TC im-
pact model, distinct calibration regions were defined based
on three criteria regarding (1) geography, (2) data avail-
ability, and (3) patterns in damage ratios before calibration.
(1) We clustered countries by hemispheric ocean basins. This
results in five high-level regions: North Atlantic and East Pa-
cific oceans (NA), North Indian Ocean (NI), Oceania (OC),
South Indian Ocean (SI), and north West Pacific (WP). This
first geographical separation is applied to account for dif-
ferences in TC characteristics and data sources between the
ocean basins (Schreck et al., 2014). The five basins are then
subdivided based on (2) a minimum desired number of 30
data points (matched TC events) per region and (3) the me-
dian EDRs per country. Applying criterion 2, three countries
come with a sufficient amount of data points to be calibrated

for themselves: China (N = 69), the Philippines (N = 83),
and the USA (N = 43, including three events in Canada).
Applying criterion 3, the remaining countries in WP are fur-
ther subdivided into two regions: South East Asia with me-
dian EDR < 1.2 and the rest of the north West Pacific with
EDR > 5 (see Fig. S2d). In summary, the nine calibration
regions are the Caribbean with Central America and Mex-
ico (NA1), the USA and Canada (NA2), North Indian Ocean
(NI), Oceania with Australia (OC), South Indian Ocean with-
out Australia (SI), South East Asia (WP1), the Philippines
(WP2), mainland China (WP3), and the north West Pacific
(WP4) (see Fig. 3 and Table A1).

Regional impact functions are calibrated following two
complementary approaches based on (1) minimizing the
spread of EDRs and (2) the optimization of TDRs. For the
first calibration approach, the root-mean-squared fraction
(RMSF) is introduced as a cost function:

RMSF= exp

(√
1
N

∑N

E=1
[ln(EDRE)]2

)
. (5)

Input variables are the number of events N and the natural
logarithm of EDR (cf. Eq. 3). The RMSF is a measure of the
spread in EDRs, i.e., the relative deviation between modeled
and reported damage for all matched events in a region. In
the computation of RMSF, each event E has the same weight,
independent of the absolute damage values. The natural log-
arithm ensures that an overestimation is penalized the same
as an underestimation. RMSF is optimized by identifying the
impact function associated with the lowest value of RMSF. A
value of 1 would indicate perfect fit of all events. For the sec-
ond calibration approach, TDR is optimized. A TDR larger
than 1 implies that the summed simulated damage exceeds
the reported values and vice versa. Therefore, TDR is opti-
mized by identifying the impact function associated with a
TDR as close to 1 as possible. As TDR is a ratio of damage
aggregated over several events, the TDR approach is biased
towards better representing events with large absolute dam-
age values. In both calibration approaches, the slope of the
generic impact function (Fig. 2) is calibrated by fitting the
parameter Vhalf in Eq. (1). An increase in Vhalf corresponds
to a flattening of the function and thus lower resulting simu-
lated damage (cf. Fig. 2). For the fitting of Vhalf, damage is
simulated for all matched events and an array of Vhalf ranging
from 25.8 to 325.7 m s−1 in increments of 0.1 m s−1. For each
increment, EDR is computed for all matched events. Con-
sequently, the values of the cost functions RMSF and TDR
are computed for each region and increment of Vhalf. Subse-
quently, the value of Vhalf associated with optimal results for
each cost function is identified. Vhalf optimized per region is
used to calculate fitted impact functions per region. The cali-
brated impact functions are used to compute the annual aver-
age damage (AAD) per region, allowing for the comparison
of results with other studies in Sect. 3.3.
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Figure 3. World map highlighting the 53 countries used for calibration, color coded per calibration region. The tracks of 376 TCs used for
calibration are plotted as red lines. The number of resulting matched events N is displayed per region. Regions by color: red: the Caribbean
with Central America and Mexico (NA1); blue: the USA and Canada (NA2); green: North Indian Ocean (NI); purple: Oceania with Australia
(OC); orange: South Indian Ocean (SI); yellow: South East Asia (WP1), brown: the Philippines (WP2); rose: mainland China (WP3); black:
the rest of the north West Pacific Ocean (WP4). The countries per region are listed in Table A1.

3 Results

3.1 Damage ratio with default impact function

The comparison of TC damage simulated globally with a
default impact function (Eq. 1 with Vhalf = 74.7 m s−1) re-
veals (1) interregional differences and (2) considerable un-
certainties in CLIMADA’s ability to reproduce the reported
damage values per event. The distribution of uncalibrated
EDRs per region is shown in Fig. 4. EDRs per matched event
are shown in Fig. A1, and the distribution of EDRs per coun-
try is shown in Fig. S2.

3.1.1 Interregional differences

Both the ratios EDR and the cost functions RMSF and TDR
show interregional differences with regard to the deviation of
the damages simulated with the default impact function from
reported damage (Figs. 4 and 6). For most regions, total sim-
ulated and normalized reported damage deviates less than 1
order of magnitude (Table A2). The outliers are the regions
WP4 (TDR= 35.6; Hong Kong, Japan, Macao, South Korea,
Taiwan) and WP2 (TDR= 25.9; the Philippines). For those
two regions, the large value of TDRs reveals a mean overes-
timation of simulated damage as compared to reported dam-
age. In regions with TDR < 1, the uncalibrated model po-
tentially underestimates the damages caused by TCs. These
regions are the Indian Ocean (SI and NI), South East Asia
(WP1), Oceania with Australia (OC), and the Caribbean
(NA1). The region SI (Madagascar and Mozambique) shows
the overall lowest TDR of 0.2, indicating an underestimation
of damage by a factor of 5.

Figure 4. Spread of event damage ratio (EDR; boxplot)
and total damage ratio (TDR) per region before calibration
(Vhalf = 74.7 m s−1) per region. The plots are based on data from
473 TC events affecting 53 countries. The EDR boxplots show
the median (green line), the first and third quartiles (IQRs; blue
box), data points outside the IQR but not more than 1.5 · IQR dis-
tance from either the first or the third quartile (black whiskers), and
outliers (black circles). The additional markers show TDRs before
calibration (green diamond). The regions are the Caribbean with
Central America and Mexico (NA1), the USA and Canada (NA2),
North Indian Ocean (NI), Oceania with Australia (OC), South In-
dian Ocean (SI), South East Asia (WP1), the Philippines (WP2),
mainland China (WP3), and the rest of the north West Pacific Ocean
(WP4).

3.1.2 Intra-regional uncertainties

The EDR values within each region show a large spread over
several orders of magnitudes (Fig. 4). There is no significant
correlation between EDR and NRD (Fig. A3), suggesting
that the over- and underestimation of simulated event dam-
age is not related to TC severity. The largest spread, as ex-
pressed by the RMSF, can again be found in the regions WP4
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and WP2 (Fig. 6c). The lowest RMSF was found in the re-
gions NI, NA2, and NA1, i.e., the North Indian and North At-
lantic basins. While the large interregional differences show
the need for a regional calibration of impact functions, the
spread of EDRs within some regions point towards uncer-
tainties and limitations of the modeling setup that will not be
removed by calibrating the impact function alone.

3.2 Regional impact functions

We calibrated regional impact functions to address interre-
gional differences in TDRs. The resulting impact functions
calibrated with two complementary approaches are shown
in Fig. 5. The resulting impact functions vary between the
regions both in slope and level of uncertainty, with Vhalf
ranging from 46.8 to 190.5 m s−1 (Fig. 6a and Table A2).
In addition to the regional impact functions, global impact
functions were fitted based on all 473 data points combined,
resulting in Vhalf ranging from 73.4 (RMSF optimization,
i.e., RMSF=min.) to 110.1 m s−1 (TDR optimization, i.e.,
TDR= 1). Applying the regional impact functions, TDR cal-
culated for all regions combined is 4.7 for the default impact
function and 2.2 for the RMSF optimized impact functions
(Fig. 6b). With the calibration based on TDR optimization,
the bias in aggregated simulated damages can be removed,
i.e., an impact function is fitted that leads to TDR= 1. This
does not mean that the simulated damage of each single event
is equal to the reported damage. In fact, there is a large
spread in the values of Vhalf that would fit best for individ-
ual events. This uncertainty is visualized by the interquartile
range (IQR) of the array of impact functions fitted to the indi-
vidual events per region (shading in Fig. 5). For the individ-
ual fitting per event, the value of Vhalf is determined by what
would be required to obtain an EDR equal to 1. The sensitiv-
ity of TDR and RMSF per region to changes in Vhalf is visu-
alized in the Supplement. Regions with a large uncertainty,
i.e., a large spread of EDRs, generally show a relatively low
robustness of the cost functions (Fig. S3). On a globally ag-
gregated level, calibration reduces the spread of EDRs to a
certain degree, placing more than half of events in the EDR
range from 10−1 to 10.

The comparison of complementary calibration approaches
gives an indication of the robustness of the calibration per
region. In all regions, the calibrated impact functions based
on both approaches lie within the interquartile range of the
individually fitted curves (Fig. 5). However, the difference
between Vhalf for the two approaches ranges from 3 m s−1

(region NA2) to 104 m s−1 (WP2). The largest uncertainties
were found in the fitting of Vhalf for regions WP2–4 in the
north West Pacific. In these regions, the TDR optimization
fits values of Vhalf that are much larger than for the RMSF
optimization (Fig. 6a). This corresponds to rather flat im-
pact functions as shown in the bottom row of Fig. 5. Since
TDR gives larger weight to events with large damage val-
ues, these results indicate that these events are systemati-

cally overestimated by the model in the regions WP2–4. The
flat calibrated impact functions partly compensate for this
overestimation. As a further indication of large uncertainties,
TDR optimization in these three regions returns RMSF val-
ues that are larger than with the uncalibrated impact function
(Fig. 6c). Possible reasons for the uncertainties in the model
are explored in a case study for the Philippines in Sect. 4 and
further discussed in Sect. 5.

3.3 Annual average damage

Despite considerable interannual variability of TC occur-
rence and impacts, AAD is often used as a reference value for
the mean risk per country or region. Here, we compare AAD
computed with the regionalized TC impact model to values
from EM-DAT and the literature (Table 1). AAD from EM-
DAT represents values normalized to 2014 based on all 991
damaging events reported in the database from 1980 to 2017.
Based on the calibrated impact functions, direct damage is
simulated based on the full set of TC tracks (N = 4096) and
all countries. AAD values per country are provided in the
Supplement. The computation of global AAD considers all
countries, not only those used for calibration. Thereby, the re-
gionally calibrated impact functions are used for other coun-
tries in the same region (cf. Table A1). AAD in countries not
attributed to any region is calculated with impact functions
calibrated globally. The resulting AAD for the calibration
regions and the global aggregate are shown in Fig. 6d and
Table 1. The standard deviation of AAD is generally of the
same order of magnitude as AAD (Table 1).

For the years 1980 to 2017, we find aggregated global
AAD to range from USD 51 up to USD 121 billion (value
in 2014). In comparison, global AAD from EM-DAT is
USD 46 billion. Values from GAR 2013 and Gettelman et
al. (2017) range from USD 67.0 to USD 88.9 billion. It
should be noted, however, that the two studies consider dif-
ferent time periods than our study (1950 to 2010 and 1979
to 2012, respectively), as well as deviant TAVs per country.
Global TAV for 224 countries aggregates to USD 251 tril-
lion compared to USD 156 trillion in Gettelman et al. (2017)
and only USD 96 trillion in GAR 2013 (Table 1). Therefore,
the comparison of AAD relative to TAV is a better measure
to compare the results of the three studies. Relative to TAV,
simulated global AAD amounts to 0.2 ‰–0.5 ‰ in our cal-
ibrated model as compared to 0.4 ‰–0.5 ‰ in Gettelman et
al. (2017) and 0.9 ‰ in GAR 2013 (Table 1).

The aggregated region with the largest simulated AAD is
East Asia (WP; USD 17–71 billion), followed by the USA
with USD 19–22 billion and the North Indian Ocean with
USD 4–9 billion. The regions WP2 and WP4 show the largest
discrepancy in AAD simulated with the two alternative cali-
brated impact functions. This is consistent with the large un-
certainties found in these regions during calibration (Sect. 3.1
and 3.2). In the most southern regions NI, SI, OC, and WP1,
simulated relative AAD is consistently larger than in GAR
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Figure 5. Regional impact functions for nine calibration regions based on complementary calibration approaches: RMSF optimized (blue),
TDR optimized (red), and the median Vhalf obtained from fitting impact functions for each individual event to obtain an EDR of 1 (dashed).
The shading demarcates the range containing 50 % of the individually fitted impact functions per region, i.e., the interquartile range (IQR).

Table 1. Annual average damage (AAD) from calibrated CLIMADA, as well as AAD from EM-DAT (normalized to 2014), GAR 2013, and
Gettelman et al. (2017). Total AAD and the standard deviation of annual damage (in brackets) per region is given in billions of current US
dollars ($B). AAD relative to total asset value (TAV; cf. Table A3) is provided in per mill (‰, italics). TAV values per region and study are
reported in Table A3. Please note that both GAR 2013 and Gettelman et al. (2017) included synthetic TC tracks in their analysis which are
based on historical tracks. The last row (world, bold) considers all countries. AAD values by country are provided in the Supplement. ∗ USA
and Bermuda without Canada.

Region AAD EM-DAT AAD-calibrated CLIMADA: AAD-calibrated CLIMADA: AAD GAR 2013 AAD (Gettelman
RMSF optimized TDR optimized et al., 2017)

$B (2014) $B (2014) ‰ of TAV $B (2014) ‰ of TAV $B (2005) ‰ of TAV $B (2015) ‰ of TAV

NA1 5.3 (14.2) 10.3 (16.1) 2.2 6.9 (11.7) 1.5 4.6 2.1 9.5 (17.8) 0.3–1.1
NA2 19.7 (43.1) 22.4 (32.5) 0.4 19.4 (28.2) 0.3 11.8 0.5 11.0 (15.5) 0.2∗

NI 2.3 (3.8) 8.6 (13.9) 1.4 4.1 (6.7) 0.6 0.3 0.2
OC 0.7 (0.8) 2.6 (3.6) 0.4 1.1 (1.6) 0.2 0.1 0.1
SI 0.1 (0.3) 0.3 (0.6) 5.7 0.1 (0.4) 3.2 0.0 2.8
WP1 0.7 (1.2) 2.2 (3.4) 1.0 1.1 (1.6) 0.5 0.0 0.0
WP2 1.1 (1.8) 14.0 (34.6) 22.3 0.8 (2.3) 1.3 2.0 11.0
WP3 11.9 (14.8) 32.9 (39.4) 1.0 8.6 (10.3) 0.3 9.0 2.0
WP4 3.0 (4.0) 21.9 (24.3) 0.8 6.6 (7.3) 0.2 60.0 3.1
6 WP 16.8 71.0 1.2 17.0 0.3 71.1 2.8 61.4 (53.8) 0.9–1.0
6 all 45.0 (54.8) 115.2 (72.4) 0.8 48.6 (33.2) 0.3 87.9 1.6
World 46.3 (55.6) 120.9 (73.9) 0.5 50.6 (33.6) 0.2 88.9 0.9 84.6 (63.9) 0.4–0.5
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Figure 6. Calibration results and cost functions for nine calibration
regions and all regions combined, each shown before (gray) and
after (blue and red) calibration: (a) Vhalf: fitted impact function pa-
rameter; (b) TDR: ratio of total simulated and normalized reported
damage; (c) RMSF: root-mean-squared fraction; and (d) AAD: nor-
malized reported (green) and simulated annual average damage
(AAD). AAD is computed from all events available in EM-DAT
(N = 1650, green) and IBTrACS (N = 4098) and not just the 473
matched events used for calibration (a–c). Please refer to Tables 1
and A2 for numerical values. The regions are the Caribbean with
Central America and Mexico (NA1), the USA and Canada (NA2),
North Indian Ocean (NI), Oceania with Australia (OC), South In-
dian Ocean (SI), South East Asia (WP1), the Philippines (WP2),
mainland China (WP3), and the rest of the north West Pacific Ocean
(WP4).

2013. This indicates that the calibration corrects for a system-
atic underestimation of TC vulnerability in these regions. For
the Philippines (WP2), the largest AAD relative to TAV was
simulated (22.3 ‰ with the RMSF optimized impact func-
tion). While the damage estimates simulated for WP2 come
with large uncertainties, the range of relative AAD (1.3 ‰–
22.3 ‰) encompasses the 11.0 ‰ for the Philippines in GAR
2013. The case of the Philippines will be further analyzed
and discussed in Sect. 4.

4 Explorative case study: the Philippines

For a better understanding of the uncertainties involved in
the TC impact function calibration, we exploratively exam-
ine simulated and reported damages of matched events in
the Philippines (region WP2). The Philippines is the region
with the least robust calibration results, with a large spread
in EDRs and the largest discrepancy between the two cali-
bration approaches. The difference in Vhalf between the two
calibration approaches exceeds 100 m s−1 (Fig. 6a). Conse-
quently, there is a large spread in simulated AAD ranging
from USD 0.8 to USD 14 billion (Table 1). This corresponds
to an underestimation of annual risk of USD 0.3 billion up to
an overestimation of USD 21.2 billion as compared to nor-
malized values from EM-DAT with an AAD of USD 1.1 bil-
lion.

The goal of this explorative case study is to better under-
stand what drives these uncertainties in the TC impact model
within the region, discuss the limitations of the calibrated
model, and identify points for improvement for the future
development of global TC impact models. Thereby, we as-
sess the following hypotheses. (1) Potential differences be-
tween urban and rural exposures and vulnerabilities as con-
sidered in GAR 2013 (De Bono and Mora, 2014) are not
fully resolved in the model. (2) The simplified representa-
tion of the TC hazard intensity with wind speed alone is not
capable of adequately modeling the impact of TCs with over-
proportional damage caused by sub-perils like storm surges
and torrential rainfall (Baradaranshoraka et al., 2017; Park
et al., 2013). In the following, we explore these hypotheses
with the example of 83 matched TC events in the Philippines
while keeping in mind that the model setup is not designed
to represent single events perfectly due to the large inher-
ent stochastic uncertainty. To explore these hypotheses, we
review reports and the literature on TC impacts in the Philip-
pines and examine the relationship between EDRs per event
with the spatial distribution of the wind field and subsequent
simulated damages associated with each single event.

4.1 Tropical cyclones in the Philippines

The Republic of the Philippines is one of the most TC-prone
countries in the world (Blanc and Strobl, 2016). From 1951
to 2014, an annual average of 19.4 TCs entered the Philippine
Area of Responsibility (Cinco et al., 2016) with six to nine
TCs making landfall in the Philippines each year (Blanc and
Strobl, 2016; Cinco et al., 2016). This is a relatively high fre-
quency compared to five to eight landfalls in China (Zhang
et al., 2009) and an average of three landfalls per year in the
North Indian Ocean region (Wahiduzzaman et al., 2017), as
well as in the USA (Lyons, 2004). The north and east of the
Philippines are the regions most exposed to TC landfalls,
with most TCs crossing the Philippines from east to west
(Cinco et al., 2016; Espada, 2018). Rainfalls associated with
TCs contribute around 35 % of annual precipitation in the
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Philippines, with regional values ranging from 4 % to 50 %
(Cinco et al., 2016).

In total, 83 matched TCs making landfall in the Philippines
were used for calibration. For 11 of the 21 most damaging
TC events, reports and scientific literature on associated sub-
perils and impacts were reviewed (Table A4). In summary,
TCs making landfall in the Philippines cause damage due
to great wind speed, storm surges, and rain-induced floods
and landslides. Meteorologically, the storm systems interact
with the monsoon season affecting both the dynamics and
the severity of torrential rain (Bagtasa, 2017; Cayanan et al.,
2011; Yumul et al., 2012). TCs in the Philippines inflict dam-
age on several sectors; it is most costly for housing and agri-
culture but also for schools, hospitals, power and water sup-
ply, roads, and bridges (Table A4). Single events were also
reported to cause damage and business disruption to airports
and ports (Typhoon Haiyan) and dikes (Nesat and Xangsane).
This complexity of how and where TCs cause damage in the
Philippines is in stark contrast to the relatively simple rep-
resentation of hazard and exposure in our modeling setup.
It is therefore not surprising that our calibrated TC impact
model is over- and underestimating the damage of individual
events, as illustrated for the Philippines by the wide spread of
EDRs. In the following, we will take a closer look at events
with over- and underestimated simulated damage to explore
the two hypotheses above.

4.2 Urban vs. rural exposure

Most of the asset exposure value of the Philippines
is concentrated around the metropolitan area of Manila
(Metro Manila). Located around 14.5◦ N, 121.0◦ E (Fig. 7a),
Metro Manila is Philippine’s political and socio-economic
center (Porio, 2011). The typhoons Angela (1995),
Xangsane (2006), and Rammasun (2014) are prominent TCs
hitting the Metro Manila directly. In our analysis, these TCs
come with particularly large EDRs, i.e., an overestimation
of simulated vs. reported damages, even with calibrated im-
pact functions (Table A4). All three typhoons show maxi-
mum sustained wind speeds in Manila greater than 50 m s−1

(Fig. 7b, e, f), corresponding to relative damage ranging from
6 % up to 37 % of asset exposure value with the calibrated
impact function. These large relative damage values in com-
bination with the concentration of asset exposure value in
the Manila region are likely to explain the large EDRs of
these events. The analysis of all 83 TC events used for cali-
bration support this hypothesis, underpinning the crucial role
the large asset exposure values in the Metro Manila plays
for the wind-based simulated damage. An overestimation of
simulated damages (e.g., EDR > 10) consistently coincides
with large wind speeds over Metro Manila. Out of 19 TCs af-
fecting Manila directly, we find 16 (84 %) with an EDR > 10
and zero occurrences of EDR < 0.1 (Fig. 8). In contrast, only
9 of 64 TCs not affecting Manila directly come with an
EDR > 10. In summary, we found that simulated damage of

an event would more usually substantially exceed normal-
ized reported damage if the event hit Manila directly. This
confirms hypothesis (1) in that a special treatment of the im-
pact functions for urban areas could improve the TC impact
model.

4.3 Impact of storm surges and torrential rain

While urban vulnerability to strong winds in Metro Manila
appears to be overestimated by the calibrated impact func-
tion, Metro Manila is known to be highly exposed and vul-
nerable to regular, large-scale flooding (Porio, 2011). The
main drivers of flood vulnerability are its geographical setup,
largely unregulated urban growth and sprawl, and substan-
dard sewerage systems, especially in low-income areas (Po-
rio, 2011). Tropical Storm Ketsana, locally known as On-
doy (2009) is an example with very low simulated dam-
ages coinciding with large reported damages associated with
flooding in Metro Manila; Ketsana’s EDR is 0.002, i.e., simu-
lated damage is more than 2 orders of magnitude smaller than
reported. The large reported damage (NRD=USD 401 mil-
lion) was mainly due to floods and landslides. Torrential
rainfall caused severe river flooding in Metro Manila and
landslides around Baguio City resulting in severe damage
(Abon et al., 2011; Cruz and Narisma, 2016; Nakasu et al.,
2011; NDCC, 2009a). The flood damage was not resolved
by the wind-based impact model with intensities well below
50 m s−1 and affected neither Manila nor the northern Baguio
City directly (Fig. 7d). Notably, even for TCs with large over-
estimations of simulated damage due to high wind speeds in
Metro Manila, namely Fengshen and Xangsane, a substantial
part of the reported damage was actually caused by pluvial
flooding and landslides and not by wind alone (Yumul et al.,
2008, 2011, 2012).

For the most severe TC in the recent history of the Philip-
pines, Typhoon Haiyan (2013), normalized reported dam-
age and simulated damage are on the same order of mag-
nitude resulting in an EDR of 0.17. Haiyan, with sustained
1 min surface wind speeds up to 87.5 m s−1, caused thou-
sands of casualties and around USD 10 billion of economic
damage in the Philippines (Guha-Sapir, 2018; Mas et al.,
2015). Devastating wind and storm surges associated with
Haiyan caused damage to multiple sectors, including ports
and an airport. It should be noted that sector-specific impacts
are not resolved in the impact model and that Haiyan did
not affect Manila directly. Relatively large damage was sim-
ulated around Tacloban City, Leyte, which was actually dev-
astated by Haiyan’s storm surge. Large wind impacts were
also simulated further west around the cities of Iloilo and
Cebu (Fig. 7c) that were not as exposed to surges as Leyte
province. The relatively good performance of the model in
the case of Haiyan is thus not explained by a perfect location
and representation of the impact in the model. It is rather
based on overestimated urban wind damages partly balanc-
ing the lack of damages caused by storm surges.
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Figure 7. Maps of the Philippines showing (a) the spatial distribution of asset exposure value in the Philippines (US dollar value in 2014)
based on Eberenz et al. (2020) and (b–f) mapped TC impacts for Typhoon Rammasun (b), Typhoon Haiyan (c), Tropical Storm Ketsana (d),
Typhoon Xangsane (e), and Typhoon Angela (f). For each event, the map shows the TC track from IBTrACS (bold solid line), the spatial
distribution of simulated maximum 1 min sustained wind speed at 10 m above ground in meters per second (m s−1) (dashed lines at 25, 50,
and 70 m s−1), and simulated direct damage at a 10 km resolution (color shading). Coast lines and the location of major cities are marked on
the map based on Cartopy (Met Office, 2010).

4.4 Conclusions from the case study

The case of the Philippines reveals limitations of the model
and calibration due to the lack of an explicit representation of
sub-perils such as storm surges, torrential rainfall, and land-
slides (Sect. 4.3). The flood damage caused by Ketsana is a
showcase example for severe damage associated with a TC
with relatively low wind speeds, which is to say an event that
cannot be adequately reproduced with a wind-based impact
function. Adding to the stochastic uncertainty, the magnitude
of rainfall during TC events in the Philippines is not only

determined by the intensity of the TC event but also by the
coinciding monsoon season, as in the case of typhoons Feng-
shen and Haiyan (Espada, 2018; IFRC, 2009; Yumul et al.,
2012).

Next to a lack of representation of all components of haz-
ard intensity, differences in exposure and vulnerability be-
tween urban and rural areas exposed to TCs are likely to
contribute to the large spread in EDRs and subsequently un-
certainty in the impact function calibration. This has been
illustrated in Sect. 4.2; the large overestimation of simulated
event damage of TCs affecting the Manila metropolitan area
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Figure 8. Distribution of the event damage ratios (EDRs) for 83
TCs making landfall in the Philippines from 1980 to 2017. The
number of events for three ranges of EDRs are compared, differ-
entiating whether Manila was directly affected by the TC’s wind
field (orange) or not (purple). Manila is considered to be affected if
the hazard intensity exceeds 25 m s−1 at 14.5◦ N, 121.0◦ E.

points towards relevant sources of epistemic uncertainty. On
the one hand, a large share of exposed asset values in the
model are concentrated in urban areas, while exposed agri-
cultural assets in rural areas are neglected. On the other hand,
one single impact function might not be sufficient to rep-
resent both urban and rural building vulnerability. Another
factor contributing to the high simulated damages in Manila
could be the wind field model. Manila is located in a bay on
the west coast of the main island Luzon. Most TCs approach
Luzon from the east. The wind field model adapted from Hol-
land (2008) does not, however, take into account variations
in topography and surface roughness. This could lead to an
overestimation of simulated wind speeds downstream of ele-
vated land, as in the case of Manila. A better representation
of wind speed over land could mitigate this problem (Done
et al., 2020).

5 Discussion

5.1 Relevance for TC risk assessments

In this study, we showed how the regionalization of impact
functions improves the assessment of TC risk in numerous
world regions, correcting an overestimation of aggregated
TC damages by a factor of potentially up to 36 in the north
West Pacific and an underestimation by a factor of 5 in the
South Indian Ocean. To complement the global perspective,
we explored the limitations of the TC impact modeling setup
through the case study of TC events in the Philippines.

The calibration resulted in large regional differences in the
slope of impact functions with considerable consequences
for the magnitude of simulated damages. In Sect. 3.2, we
compared average simulated damage with regionalized im-
pact functions to results from the literature. While the com-
parison is limited by differences in the model setups, we

found that regional damage estimations relative to the ex-
posed asset values generally agree well with the results of
previous studies. However, the results for the north West Pa-
cific region (WP4), consisting of Japan, South Korea, Macao,
Hong Kong, and Taiwan, deviate substantially from GAR
2013. Simulated relative AAD in the region ranges from
0.2 ‰–0.8 ‰ as compared to 3.1 ‰ in GAR 2013. This dif-
ference implies that, besides the use of building-type-specific
impact functions, the TC impact model of GAR 2013 sub-
stantially overestimates TC damages in WP4 compared to
reported data. Consistent with this finding, the uncalibrated
simulation showed the largest overestimation of aggregated
damage in this region. Assuming that the order of magnitude
of reported direct damage from EM-DAT is reasonable, the
regionalization of impact functions presented here is an im-
provement for TC risk assessments in the region.

For calibration, two complementary approaches were em-
ployed: the optimization of aggregated simulated compared
to reported damage (TDR) and the minimization of the
spread of damage ratios of single events (RMSF).

Annual average simulated damage based on the TDR-
optimized set of impact functions is generally closer to the
values found in EM-DAT than the values based on RMSF
optimization. This is not surprising since TDR is designed
to represent aggregated damage per region. For the assess-
ment of TC risk on an aggregated level, it is therefore most
appropriate to employ the more conservative TDR-optimized
model, even though single events can be massively underesti-
mated with the flatter impact functions. Complementary, im-
pact functions based on RMSF optimization and the spread
of individual event fitting can be included in risk assessments
for sensitivity analysis.

5.2 Uncertainties and limitations

The deviation between the results of the two calibration ap-
proaches indicates how robust the calibration is with regards
to the model’s ability to represent the correct order of mag-
nitude of single event damage. Whereas the model setup re-
turns reasonable risk estimates and consistent calibration re-
sults for Central and North America, we found an extensive
spread in EDR and calibration results for other regions, espe-
cially in East Asia. While the correlation between simulated
and reported event damages is improved by the calibration,
the simulated damage of single TC events can deviate several
orders of magnitude from reported damage (Figs. 4, A1, and
A2). In the regions of the north West Pacific (WP2–4), the fit-
ted impact functions are ambiguous with large discrepancies
between the two calibration approaches. The low robustness
found in these regions stems from multiple causes, including
the stochastic uncertainty in TCs as natural phenomena, as
well as epistemic uncertainties located in the hazard, expo-
sure, and vulnerability components of the impact model. An
additional source of uncertainties is located in the reported
damage data used for reference. Future improvements in the

https://doi.org/10.5194/nhess-21-393-2021 Nat. Hazards Earth Syst. Sci., 21, 393–415, 2021



406 S. Eberenz et al.: Regional tropical cyclone impact

TC impact model and a sound judgment of the limitations of
the calibrated impact functions require better understanding
of the epistemic uncertainties. In the following, we will dis-
cuss these uncertainties for the different components of the
model.

The case of the Philippines provides insights into the un-
certainties located in the model setup, both in the representa-
tion of hazard intensity and in differences between the struc-
ture and vulnerability of exposed assets in urban and rural
areas (Sect. 4). The hazard is represented by wind fields mod-
eled from TC track data, and the same impact functions are
applied for urban and rural areas. These are considerable sim-
plifications of the actual interaction of cyclones with the nat-
ural and built environment. To reduce these uncertainties, the
hazard component could be improved by considering topog-
raphy (Done et al., 2020) and complementing wind speed
with sub-perils like storm surges, torrential rain, and land-
slides. For a better representation of urban assets, building-
type-specific impact functions, and a differentiation of urban
and rural exposure as applied for GAR 2013 (De Bono and
Mora, 2014), could be beneficial. Furthermore, geospatial
agricultural yield data could be added to the exposure data,
although reported damage for calibration is mostly not avail-
able at such sectoral granularity. Next to the model setup, the
reported damage data obtained from EM-DAT are another
relevant source of uncertainty. Reported damage data are ex-
pected to come with considerable uncertainties partly due the
heterogeneity of data sources, the blending of direct and indi-
rect economic damages, and political and structural reporting
biases (Guha-Sapir and Below, 2002; Guha-Sapir and Chec-
chi, 2018). Further uncertainty is introduced by the lack of
international standards for reported damage datasets, lead-
ing to inconsistencies between data providers (Bakkensen
et al., 2018b). These uncertainties limit our understanding
of the robustness of the calibration. For future calibration
studies relying on reported damage data, calibration robust-
ness could be increased by combining datasets from differ-
ent sources in an ensemble of datasets (see Zumwald et al.,
2020).

In this study, we did not explicitly quantify the uncertain-
ties related to the model setup, the input data for hazard and
exposure, and the reported data used as reference data for
calibration. Rather, the robustness of the calibrated impact
functions was judged based on the deviation between the
two calibration approaches and the spread of impact func-
tions fitted to the individual TC events. Based on the limita-
tions discussed above, we conclude that the resulting array
of regionalized impact functions should be applied with cau-
tion, being aware that the model setup is not suitable to rep-
resent single TC events adequately. However, the calibrated
impact functions mark an improvement for the modeling of
aggregated risk estimates, such as the annual average damage
(AAD). Impact functions sampled from the range of calibra-
tion results can be applied for a more probabilistic modeling
of TC impacts. It should also be noted that the impact func-

tions calibrated for the years 1980–2017 cannot be expected
to be stable in the future. Applying these impact functions
for the assessment of future TC risk requires, ceteris paribus,
an assumption with regard to vulnerability.

While the results of this study are not specific to the CLI-
MADA modeling framework, the precise shape and scaling
of the calibrated impact functions are, however, to a certain
degree specific to the choices and input data of the modeling
setup: (1) the choice of free parameters in the impact func-
tion (cf. Sect. 2.2.3 and Lüthi, 2019), (2) the TAVs (cf. Ta-
ble A3; impact functions would scale differently with a dif-
ferent assumed inventory of exposed assets), (3) spatial res-
olution, and (4) the representation of hazard intensity. The
regionalized impact functions presented here were calibrated
for wind-based damage modeling on a spatially aggregated
level. Model setups with an explicit representation of related
sub-perils like storm surges or torrential rain require different
(i.e., flatter) impact functions for the wind-induced share of
TC damage, as well as additional impact functions for each
sub-peril. Likewise, impact models with an explicit repre-
sentation of building types and agricultural assets require a
more differentiated set of impact functions. Considering the
irreducible stochastic uncertainties in the system, it remains
to be shown to which degree the large interregional differ-
ences in calibrated impact functions found in this study can
be explained by regional differences in building types and
standards, physical TC characteristics, or other factors.

6 Conclusion and outlook

In this article, the global assessment of TC risk was improved
by regionalizing the vulnerability component of the TC im-
pact assessment. To better account for regional differences,
a TC impact model was calibrated by fitting regional im-
pact functions. The impact functions were calibrated within
the CLIMADA risk modeling framework using reported esti-
mates of direct economic damage from the EM-DAT dataset
as reference data. For calibration, two complementary opti-
mization approaches were applied, one aiming at minimizing
the deviation of single event damage from the reported data
and one aiming at minimizing the deviation for total dam-
age aggregated over 38 years of data. By fitting impact func-
tions, we were able to reduce regional biases as compared
to reported damage data, especially for countries in the north
West Pacific and South Indian Ocean regions. The substantial
overestimation of TC damages in the north West Pacific with
the default impact function opens the question for the drivers
of the apparently lower vulnerability in this region. Consid-
ering the inability of the model setup to directly represent
the impacts from TC surges and pluvial flooding, one would
rather expect aggregated calibrated impact functions to be
steeper than the default wind impact function. Therefore, we
suggest investigating interregional differences in other pos-
sible drivers, including building standards but also damage-
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reporting practices. A study combining the empirical evi-
dence provided by reported damage data on the one hand
with socio-economic indicators on the other hand would be
desirable but rather challenging as this would add even more
layers of complexity and cascading uncertainties to the cali-
bration, especially on a global level.

The calibrated model comes with considerable uncertain-
ties related both to the impact model setup and the reported
damage data. The largest uncertainties were found for the
north West Pacific regions, while the calibration produced
consistent results for the North Atlantic regions. The spread
of fitted impact functions within each region can be exploited
to better account for these uncertainties in probabilistic risk
assessments. Based on our findings, we recommend to al-
ways consider interregional differences in vulnerability for
the application in global TC impact models. For model setups
comparable to the one described here, we recommend the use
of TDR-optimized functions for risk assessments on an ag-
gregated level. The resulting simulated damage can comple-
ment reported damage data. Assuming that reported damages
are more likely to underestimate actual impacts, it could be
advisable to sample impact functions from the range between
the complementary calibration results. For probabilistic im-
pact modeling, a random sampling from the array of impact
functions fitted to individual events could be considered. This
becomes especially relevant for regions with large uncertain-
ties attached to the calibration results, such as the north West
Pacific and Oceania. Limitations of our research motivate
future work. For TC impact models, we echo the call for
a more refined representation of TC hazards as a combina-
tion of wind-, surge-, and rain-induced flood and landslide
events. When modeling multiple TC sub-perils, aggregated
reported damage data are not sufficient to constrain impact
function calibration. This might be resolved by consulting
socio-economic- and engineering-type data and knowledge.
Furthermore, our case study for the Philippines suggests that
model accuracy could be further improved by differentiating
between urban and rural asset exposure, considering topog-
raphy in wind speed estimations, and including exposed agri-
cultural assets.
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Appendix A

Figure A1. Event damage ratio (EDR) from 1980 to 2017 for 473 matched TC events worldwide. The nine calibration regions are differenti-
ated by color. The area size of the dots represents the absolute normalized reported damage (NRD) per event. The green shading demarcates
the range from EDR= 0.1 to 10. Regions by color: red: the Caribbean with Central America and Mexico (NA1); blue: the USA and Canada
(NA2); green: North Indian Ocean (NI); purple: Oceania with Australia (OC); orange: South Indian Ocean (SI); yellow: South East Asia
(WP1), brown: the Philippines (WP2); rose: mainland China (WP3); black: the rest of the north West Pacific Ocean (WP4).

Figure A2. Simulated event damage (SED) vs. normalized reported damage (NRD) for 473 TC events worldwide computed with three
different sets of impact functions: (a) uncalibrated default (Vhalf = 74.7 m s−1), (b) RMSF optimized, and (c) TDR optimized. The nine
calibration regions are differentiated by color.

Figure A3. No significant correlation between event damage ratio (EDR) and normalized reported damage (NRD) was found. The scatter
plots show the relationship for 473 TC events worldwide computed with three different sets of impact functions: (a) uncalibrated default
(Vhalf = 74.7 m s−1), (b) RMSF optimized, and (c) TDR optimized. The nine calibration regions are differentiated by color.
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Table A1. List of countries per calibration region. Countries marked with an asterisk (∗) are considered for calibration (53 in total).

Region N countries Countries
(calibration)

North Atlantic 1 (NA1) 48 (21) Anguilla; Antigua and Barbuda∗; Argentina; Aruba; Bahamas∗; Barba-
dos; Belize∗; Bermuda∗; Plurinational State of Bolivia; Cabo Verde∗;
Cayman Islands; Chile; Colombia; Costa Rica; Cuba∗; Dominica∗;
Dominican Republic∗; Ecuador; El Salvador; Falkland Islands (Malv-
inas); French Guiana; Grenada; Guadeloupe; Guatemala; Guyana; Haiti;
Honduras∗; Jamaica∗; Martinique; Mexico∗; Montserrat∗; Nicaragua∗;
Panama; Paraguay; Peru; Puerto Rico∗; Saint Helena, Ascension and Tris-
tan da Cunha; Saint Kitts and Nevis∗; Saint Lucia∗; Saint Vincent and the
Grenadines∗; Sint Maarten (Dutch part); Suriname; Trinidad and Tobago∗;
Turks and Caicos Islands∗; Uruguay; Bolivarian Republic of Venezuela;
British Virgin Islands∗; US Virgin Islands∗

North Atlantic 2 (NA2) 2 (2) Canada∗; United States of America∗

North Indian (NI) 36 (6) Afghanistan; Armenia; Azerbaijan; Bahrain; Bangladesh∗; Bhutan; Djibouti;
Eritrea; Ethiopia; Georgia; India∗; Islamic Republic of Iran; Iraq; Israel;
Jordan; Kazakhstan; Kuwait; Kyrgyzstan; Lebanon; Maldives; Mongolia;
Myanmar∗; Nepal; Oman∗; Pakistan; Qatar; Saudi Arabia; Somalia; Sri
Lanka∗; Syrian Arab Republic; Tajikistan; Turkmenistan; Uganda; United
Arab Emirates; Uzbekistan; Yemen∗

Oceania (OC) 26 (11) American Samoa; Australia∗; Cook Islands; Fiji∗; French Polynesia∗;
Guam∗; Kiribati; Marshall Islands; Federated States of Micronesia∗; Nauru;
New Caledonia∗; New Zealand; Niue; Norfolk Island; northern Mariana Is-
lands; Palau; Papua New Guinea∗; Pitcairn; Samoa∗; Solomon Islands∗;
Timor-Leste; Tokelau; Tonga∗; Tuvalu; Vanuatu∗; Wallis and Futuna

South Indian (SI) 11 (2) Comoros; Democratic Republic of the Congo; Eswatini; Madagascar∗;
Malawi; Mali; Mauritius; Mozambique∗; South Africa; United Republic of
Tanzania; Zimbabwe

North West Pacific 1
(WP1)

6 (4) Cambodia∗; Indonesia; Lao People’s Democratic Republic; Malaysia∗;
Thailand∗; Viet Nam∗

North West Pacific 2
(WP2)

1 (1) Philippines∗

North West Pacific 3
(WP3)

1 (1) Mainland China∗

North West Pacific 4
(WP4)

5 (5) Hong Kong∗; Japan∗; Republic of Korea∗; Macao∗; Taiwan∗
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Table A2. Resulting impact function slope parameter Vhalf and optimization metrics RMSF and TDR per region for (a) the global default
impact function (uncalibrated), (b) calibrated by optimizing RMSF, and (c) calibrated by optimizing TDR. The regions NA1 to WP4 are
defined in Table A1. The row “combined” summarizes results for all regions combined based on the regionalized calibration; the row “global
calibration” is based on one unified global calibration based on all matched TC 473 events. RMSF: root-mean-squared fraction; TDR: total
damage ratio.

Region Number of Vhalf (m s−1) RMSF TDR

countries events (a) (b) (c) (a) (b) (c) (a) (b) (c)

NA1 21 73 74.7 59.6 66.3 11.8 9.8 10.3 0.68 1.44 1.0
NA2 2 43 74.7 86 89.2 9.5 8.7 8.7 2.11 1.16 1.0
NI 6 31 74.7 58.7 70.8 7.8 6 7.2 0.85 2.03 1.0
OC 11 48 74.7 49.7 64.1 22.5 14.7 17.7 0.6 2.31 1.0
SI 2 19 74.7 46.8 52.4 20.1 8.6 9.1 0.2 1.8 1.0
WP1 4 43 74.7 56.7 66.4 15.2 11.3 12.6 0.62 2.05 1.0
WP2 1 83 74.7 84.7 188.4 38.2 36.7 104.9 25.89 16.44 1.0
WP3 1 69 74.7 80.2 112.8 15.2 14.8 20.5 5.32 3.83 1.0
WP4 5 64 74.7 135.6 190.5 73.8 35.9 43.8 35.56 3.35 1.0
Combined 53 473 74.7 – – 22.2 16.8 24.4 4.69 2.15 1.0
Global calibration 53 473 74.7 73.4 110.1 22.2 22.2 33.1 4.69 4.84 1.0

Table A3. Total asset exposure values (TAVs) per region. First column: TAV based on Eberenz et al. (2020) as used in this study. Second and
third columns: reference values of TAV from GAR 2013 and Gettelman et al. (2017). The unit is 1012 US dollars ($T) valued according to
the year noted in brackets. AAD relative to TAV is reported in Table 1. ∗ USA and Bermuda.

Region TAV Eberenz et al. (2020) TAV GAR 2013 TAV Gettelman et al. (2017)
$T of 2014 $T of 2005 $T of 2015

NA1 4.66 2.19 8.6
NA2 62.19 24.06 73.3∗

NI 6.32 1.64
OC 5.94 1.85
SI 0.04 0.01
WP1 2.27 0.83
WP2 0.63 0.19
WP3 31.40 4.51
WP4 26.98 19.51
WP 61.28 25.04 58.8
World 250.88 96.45 155.9
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Code and data availability. The full array of fitted im-
pact function parameters can be found in the Supple-
ment of this paper. The scripts reproducing the main
results of the paper and the figures are available at
https://github.com/CLIMADA-project/climada_papers (Aznar-
Siguan et al., 2020; https://doi.org/10.5281/zenodo.4467858,
Eberenz et al., 2021). The CLIMADA repository (Aznar-Siguan
and Bresch, 2019; CLIMADA-Project, 2019) is openly available
(https://github.com/CLIMADA-project/climada_python, Bresch
et al., 2020) under the GNU GPL license (GNU Operating
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