Articles | Volume 21, issue 8
https://doi.org/10.5194/nhess-21-2485-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2485-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An inventory of Alpine drought impact reports to explore past droughts in a mountain region
Ruth Stephan
CORRESPONDING AUTHOR
Environmental Hydrological Systems, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg 79098, Germany
Mathilde Erfurt
Environmental Hydrological Systems, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg 79098, Germany
Stefano Terzi
Institute for Earth Observation, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
Institute for Environment and Human Security (UNU-EHS), United Nations University, Platz der Vereinten Nationen 1, 53113 Bonn, Germany
Maja Žun
Agrometeorological Analysis Section, Slovenian Environment Agency, Vojkova 1b, 1000 Ljubljana, Slovenia
Boštjan Kristan
Slovene Chamber of Agriculture and Forestry, Institute of Agriculture and Forestry Maribor, Vinarska ulica 14, 2000 Maribor, Slovenia
Klaus Haslinger
Climate Research Department, Central Institute for Meteorology and Geodynamics (ZAMG), Hohe Warte 38, 1190 Vienna, Austria
Kerstin Stahl
Environmental Hydrological Systems, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg 79098, Germany
Related authors
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Marc Lemus-Canovas, Alice Crespi, Elena Maines, Stefano Terzi, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2025-1347, https://doi.org/10.5194/egusphere-2025-1347, 2025
Short summary
Short summary
We studied a severe compound drought and heatwave event in the Adige River basin in May 2022 and found that similar events are now hotter and drier due to current warming. These changes worsen water stress and river drying. We show that timing matters: events in June are now more critical than in April, as the snowmelt contribution to streamflow in June has become much lower than in the past. However, many climate models still fail to capture these changes.
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
Short summary
Surface water–groundwater interaction can vary along a river. This study used a groundwater model that reproduced relative observed longitudinal and vertical connectivity patterns in the river network to assess the system's response to imposed stress tests. For the case study, imposed groundwater abstraction appears to influence connectivity relatively more than altered recharge, but a quantification of absolute exchange flows will require further model improvements.
Yonca Cavus, Kerstin Stahl, and Hafzullah Aksoy
Hydrol. Earth Syst. Sci., 27, 3427–3445, https://doi.org/10.5194/hess-27-3427-2023, https://doi.org/10.5194/hess-27-3427-2023, 2023
Short summary
Short summary
With intensified extremes under climate change, water demand increases. Every drop of water is more valuable than before when drought is experienced particularly. We developed drought intensity–duration–frequency curves using physical indicators, the deficit in precipitation and streamflow, for a more straightforward interpretation. Tests with the observed major droughts in two climatologically different catchments confirmed the practical applicability of the curves under drought conditions.
Klaus Haslinger, Wolfgang Schöner, Jakob Abermann, Gregor Laaha, Konrad Andre, Marc Olefs, and Roland Koch
Nat. Hazards Earth Syst. Sci., 23, 2749–2768, https://doi.org/10.5194/nhess-23-2749-2023, https://doi.org/10.5194/nhess-23-2749-2023, 2023
Short summary
Short summary
Future changes of surface water availability in Austria are investigated. Alterations of the climatic water balance and its components are analysed along different levels of elevation. Results indicate in general wetter conditions with particular shifts in timing of the snow melt season. On the contrary, an increasing risk for summer droughts is apparent due to increasing year-to-year variability and decreasing snow melt under future climate conditions.
Simon Seelig, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler
Nat. Hazards Earth Syst. Sci., 23, 2547–2568, https://doi.org/10.5194/nhess-23-2547-2023, https://doi.org/10.5194/nhess-23-2547-2023, 2023
Short summary
Short summary
A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front failure, debris flow development, and river blockage hit an alpine valley in Austria during summer 2019. We analyze the environmental conditions initiating the process chain and identify the rapid evolution of a thermokarst channel network as the main driver. Our results highlight the need to account for permafrost degradation in debris flow hazard assessment studies.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Erik Tijdeman, Veit Blauhut, Michael Stoelzle, Lucas Menzel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 22, 2099–2116, https://doi.org/10.5194/nhess-22-2099-2022, https://doi.org/10.5194/nhess-22-2099-2022, 2022
Short summary
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
Stefano Terzi, Janez Sušnik, Stefan Schneiderbauer, Silvia Torresan, and Andrea Critto
Nat. Hazards Earth Syst. Sci., 21, 3519–3537, https://doi.org/10.5194/nhess-21-3519-2021, https://doi.org/10.5194/nhess-21-3519-2021, 2021
Short summary
Short summary
This study combines outputs from multiple models with statistical assessments of past and future water availability and demand for the Santa Giustina reservoir (Autonomous Province of Trento, Italy). Considering future climate change scenarios, results show high reductions for stored volume and turbined water, with increasing frequency, duration and severity. These results call for the need to adapt to reductions in water availability and effects on the Santa Giustina reservoir management.
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary
Short summary
Glaciers can buffer streamflow during dry and warm periods, but under which circumstances can melt compensate precipitation deficits? Streamflow responses to warm and dry events were analyzed using
long-term observations of 50 glacierized catchments in Norway, Canada, and the European Alps. Region, timing of the event, relative glacier cover, and antecedent event conditions all affect the level of compensation during these events. This implies that glaciers do not compensate straightforwardly.
Jost Hellwig, Michael Stoelzle, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 1053–1068, https://doi.org/10.5194/hess-25-1053-2021, https://doi.org/10.5194/hess-25-1053-2021, 2021
Short summary
Short summary
Potential future groundwater and baseflow drought hazards depend on systems' sensitivity to altered recharge conditions. With three generic scenarios, we found different sensitivities across Germany driven by hydrogeology. While changes in drought hazard due to seasonal recharge shifts will be rather low, a lengthening of dry spells could cause stronger responses in regions with slow groundwater response to precipitation, urging local water management to prepare for more severe droughts.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Alexandra Nauditt, Kerstin Stahl, Erasmo Rodríguez, Christian Birkel, Rosa Maria Formiga-Johnsson, Kallio Marko, Hamish Hann, Lars Ribbe, Oscar M. Baez-Villanueva, and Joschka Thurner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-360, https://doi.org/10.5194/nhess-2020-360, 2020
Manuscript not accepted for further review
Short summary
Short summary
Recurrent droughts are causing severe damages to tropical countries. We used gridded drought hazard and vulnerability data sets to map drought risk in four mesoscale rural tropical study regions in Latin America and Vietnam/Cambodia. Our risk maps clearly identified drought risk hotspots and displayed spatial and sector-wise distribution of hazard and vulnerability. As results were confirmed by local stakeholders our approach provides relevant information for drought managers in the Tropics.
Mathilde Erfurt, Georgios Skiadaresis, Erik Tijdeman, Veit Blauhut, Jürgen Bauhus, Rüdiger Glaser, Julia Schwarz, Willy Tegel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 20, 2979–2995, https://doi.org/10.5194/nhess-20-2979-2020, https://doi.org/10.5194/nhess-20-2979-2020, 2020
Short summary
Short summary
Droughts are multifaceted hazards with widespread negative consequences for the environment and society. This study explores different perspectives on drought and determines the added value of multidisciplinary datasets for a comprehensive understanding of past drought events in southwestern Germany. A long-term evaluation of drought frequency since 1801 revealed that events occurred in all decades, but a particular clustering was found in the mid-19th century and the most recent decade.
Michael Stoelzle, Maria Staudinger, Kerstin Stahl, and Markus Weiler
Proc. IAHS, 383, 43–50, https://doi.org/10.5194/piahs-383-43-2020, https://doi.org/10.5194/piahs-383-43-2020, 2020
Short summary
Short summary
The role of recharge and catchment storage is crucial to understand streamflow drought sensitivity. Here we introduce a model experiment with recharge stress tests as complement to climate scenarios to quantify the streamflow drought sensitivities of catchments in Switzerland. We identified a pre-drought period of 12 months as maximum storage-memory for the study catchments. From stress testing, we found up to 200 days longer summer streamflow droughts and minimum flow reductions of 50 %–80 %.
Kerstin Stahl, Jean-Philippe Vidal, Jamie Hannaford, Erik Tijdeman, Gregor Laaha, Tobias Gauster, and Lena M. Tallaksen
Proc. IAHS, 383, 291–295, https://doi.org/10.5194/piahs-383-291-2020, https://doi.org/10.5194/piahs-383-291-2020, 2020
Short summary
Short summary
Numerous indices exist for the description of hydrological drought, some are based on absolute thresholds of overall streamflows or water levels and some are based on relative anomalies with respect to the season. This article discusses paradigms and experiences with such index uses in drought monitoring and drought analysis to raise awareness of the different interpretations of drought severity.
Cited articles
Abegg, B., Agrawala, S., Crick, F., and de Montfalcon, A.: Climate change
impacts and adaptation in winter tourism, Climate change in the European
Alps: Adapting winter tourism and natural hazards management, OECD Publishing, Paris, 25–58, 2007. a
Bachmair, S., Kohn, I., and Stahl, K.: Exploring the link between drought indicators and impacts, Nat. Hazards Earth Syst. Sci., 15, 1381–1397, https://doi.org/10.5194/nhess-15-1381-2015, 2015. a
Bachmair, S., Svensson, C., Hannaford, J., Barker, L. J., and Stahl, K.: A
quantitative analysis to objectively appraise drought indicators and model
drought impacts, Hydrol. Earth Syst. Sci., 20, 2589–2609,
https://doi.org/10.5194/hess-20-2589-2016, 2016. a, b, c
Blauhut, V., Stahl, K., and Kohn, I. (Eds.): The dynamics of vulnerability to
drought from an impact perspective, in: Drought: Research and Science-Policy
Interfacing, edited by: Andreu, J., Solera, A., Paredes-Arquiola, J.,
Haro-Monteagudo, D., and van Lanen, H. A. J., CRC Press, Lodon, 2015. a
Blauhut, V., Stahl, K., Stagge, J. H., Tallaksen, L. M., de Stefano, L., and
Vogt, J.: Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors, Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, 2016. a
Bouma, E.: Development of comparable agro-climatic zones for the international exchange of data on the efficacy and crop safety of plant protection products, EPPO Bull., 35, 233–238, 2005. a
Brunner, M. I. and Tallaksen, L. M.: Proneness of European Catchments to
Multiyear Streamflow Droughts, Water Resour. Res., 55, 8881–8894,
https://doi.org/10.1029/2019WR025903, 2019. a
Cammalleri, C., Naumann, G., Mentaschi, L., Formetta, G., Forzieri, G.,
Gosling, S., Bisselink, B., de Roo, A., and Feyen, L.: Global Warming and
drought impacts in the EU, EUR 29956 EN, JRC118585, Publications Office of the European Union, Luxembourg, ISBN 978-92-76-12947-9, https://doi.org/10.2760/597045, 2020. a
Cleveland, W. S.: Robust Locally Weighted Regression and Smoothing
Scatterplots, J. Am. Stat. Assoc., 74, 829–836, https://doi.org/10.1080/01621459.1979.10481038, 1979. a
Cuzick, J.: A wilcoxon–type test for trend, Stat. Med., 4, 87–90, https://doi.org/10.1002/sim.4780040112, 1985. a
Eurostat: NUTS – Nomenclature of territorial units for statistics: Background, available at: https://ec.europa.eu/eurostat/web/nuts/background, last access: 9 June 2020. a
Flury, C., Huber, R., and Tasser, E.: Future of mountain agriculture in the
Alps, in: The future of mountain agriculture, Springer, Berlin, Heidelberg, 105–126, 2013. a
Gilaberte-Búrdalo, M., López-Martín, F., Pino-Otín, M. R., and López-Moreno, J. I.: Impacts of climate change on ski industry, Environ. Sci. Policy, 44, 51–61, https://doi.org/10.1016/j.envsci.2014.07.003, 2014. a
Glaser, R., Riemann, D., Kellersohn, A., Lentz, S., Hanewinkel, C., Beck, A.,
Vogt, S., Borel, F., Sidawi, W., and Kahle, M.: Tambora – the climate and
environmental history collaborative research environment, FreiDok plus,
Albert-Ludwigs-Universität Freiburg, Freiburg, 2015. a
Hari, V., Rakovec, O., Markonis, Y., Hanel, M., and Kumar, R.: Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming, Scient. Rep., 10, 12207, https://doi.org/10.1038/s41598-020-68872-9, 2020. a, b
Haslinger, K. and Blöschl, G.: Space-Time Patterns of Meteorological
Drought Events in the European Greater Alpine Region Over the Past 210 Years,
Water Resour. Res., 53, 9807–9823, https://doi.org/10.1002/2017WR020797, 2017. a, b
Haslinger, K., Holawe, F., and Blöschl, G.: Spatial characteristics of
precipitation shortfalls in the Greater Alpine Region – a data-based analysis from observations, Theor. Appl. Climatol., 136, 717–731,
https://doi.org/10.1007/s00704-018-2506-5, 2019. a, b
Hayes, M. J., Svoboda, M. D., Wardlow, B. D., Anderson, M. C., and Kogan, F.:
Drought Monitoring: Historical and Current Perspectives, Drought Mitigation
Center Faculty Publications, available at:
http://digitalcommons.unl.edu/droughtfacpub/94 (last access: 15 December 2020), 2012. a
Hoy, A., Hänsel, S., and Maugeri, M.: An endless summer: 2018 heat episodes in Europe in the context of secular temperature variability and change, Int. J. Climatol., 40, 6315–6336, https://doi.org/10.1002/joc.6582, 2020. a
Interreg – Alpine Space Programme: Which area is covered?, available at:
https://www.alpine-space.eu/about/the-programme/which-area-is-covered-
(last access: 30 May 2020), 2014–2020. a
Isotta, F. A., Frei, C., Weilguni, V., Perčec Tadić, M., Lassègues, P., Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G., Ratto, S. M., Munari, M., Micheletti, S., Bonati, V., Lussana, C., Ronchi,
C., Panettieri, E., Marigo, G., and Vertačnik, G.: The climate of daily
precipitation in the Alps: development and analysis of a high-resolution grid
dataset from pan-Alpine rain-gauge data, Int. J. Climatol., 34, 1657–1675, https://doi.org/10.1002/joc.3794, 2014. a
Jäger, H., Peratoner, G., Tappeiner, U., and Tasser, E.: Grassland biomass balance in the European Alps: current and future ecosystem service
perspectives, Ecosyst. Serv., 45, 101163, https://doi.org/10.1016/j.ecoser.2020.101163, 2020. a
Kruse, S., Seidl, I., and Stähli, M.: Informationsbedarf zur
Früherkennung von Trockenheit in der Schweiz, Die Sicht potentiell
betroffener Nutzergruppen, Wasser Energie Luft, 102, 301–304, 2010. a
Laaha, G. and Blöschl, G.: Seasonality indices for regionalizing low flows, Hydrol. Process., 20, 3851–3878, https://doi.org/10.1002/hyp.6161, 2006. a
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prudhomme,
C., Heudorfer, B., Vlnas, R., Ionita, M., van Lanen, H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J., Kingston, D., van Loon, A. F., Mediero, L., Osuch, M., Romanowicz, R.,
Sauquet, E., Stagge, J. H., and Wong, W. K.: The European 2015 drought from a
hydrological perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, 2017. a, b
Livneh, B. and Badger, A. M.: Drought less predictable under declining future
snowpack, Nat. Clim. Change, 10, 452–458, https://doi.org/10.1038/s41558-020-0754-8, 2020. a
Logar, I. and van den Bergh, J.: Methods to Assess Costs of Drought Damages
and Policies for Drought Mitigation and Adaptation: Review and Recommendations, Water Resour. Manage., 27, 1707–1720, https://doi.org/10.1007/s11269-012-0119-9, 2013. a, b
Mastrotheodoros, T., Pappas, C., Molnar, P., Burlando, P., Manoli, G., Parajka, J., Rigon, R., Szeles, B., Bottazzi, M., Hadjidoukas, P., and Fatichi, S.: More green and less blue water in the Alps during warmer summers, Nat. Clim. Change, 10, 155–161, https://doi.org/10.1038/s41558-019-0676-5, 2020. a
McDowell, N., Allen, C. D., and Marshall, L.: Growth, carbon-isotope
discrimination, and drought-associated mortality across a Pinus ponderosa
elevational transect, Global Change Biol., 16, 399–415,
https://doi.org/10.1111/j.1365-2486.2009.01994.x, 2010. a
Ministère de la Transition Écologique et Solidaire: La consultation
des arrêtés de restriction d'eau: Propluvia, available at:
http://propluvia.developpement-durable.gouv.fr/propluvia/faces/index.jsp,
last access: 15 December 2020. a
Ogle, K., Whitham, T. G., and Cobb, N. S.: Tree–ring variation in pinyon
predicts likelihood of death following severe drought, Ecology, 81, 3237–3243, 2000. a
Poljanšek, K., Casajus Valles, A., Marin Ferrer , M., de Jager, A., Dottori, F., Galbusera, L., Garcia Puerta, B., Giannopoulos, G., Girgin, S., Hernandez Ceballos, M., Iurlaro, G., Karlos, V., Krausmann, E., Larcher, M., Lequarre, A., Theocharidou, M., Montero Prieto, M., Naumann, G., Necci, A., Salamon, P., Sangiorgi, M., Sousa, M. L., Trueba Alonso, C., Tsionis, G., Vogt, J., and Wood, M. (Eds.): Recommendations for national risk assessment for disaster risk management in EU, eur 29557 en Edn., Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/084707, 2019. a
San-Miguel-Ayanz, J., Durrant, T., Boca, R., Maianti, P., Libertá, G., Artés-Vivancos, T., Oom, D., Branco, A., de Rigo, D., Ferrari, D., Pfeiffer, H., Grecchi, R., and Nuijten, D.: Advance EFFIS Report on Forest Fires in Europe, Middle East and North Africa 2019, Publications Office of the European Union, Luxembourg, JRC120692, EUR 30222 EN, ISBN 978-92-76-18942-8, https://doi.org/10.2760/192469, 2020. a
Schär, C. and Jendritzky, G.: Climate change: hot news from summer 2003,
Nature, 432, 559–560, https://doi.org/10.1038/432559a, 2004. a
Spandre, P., François, H., Verfaillie, D., Pons, M., Vernay, M.,
Lafaysse, M., George, E., and Morin, S.: Winter tourism under climate change
in the Pyrenees and the French Alps: relevance of snowmaking as a technical
adaptation, The Cryosphere, 13, 1325–1347, https://doi.org/10.5194/tc-13-1325-2019,
2019. a
Spinoni, J., Naumann, G., Vogt, J. V., and Barbosa, P.: The biggest drought
events in Europe from 1950 to 2012, J. Hydrol.: Reg. Stud., 3, 509–524, 2015. a
Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., van Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A., Massarutto, A., Assimacopoulos, D., and van Lanen, H. A. J.: Impacts of
European drought events: insights from an international database of
text-based reports, Nat. Hazards Earth Syst. Sci., 16, 801–819,
https://doi.org/10.5194/nhess-16-801-2016, 2016. a, b, c, d, e, f, g, h, i
Stephan, R., Erfurt, M., Terzi, S., Žun, M., Kristan, B., Haslinger, K., and Stahl, K.: The Alpine Drought Impact report Inventory (EDIIALPS V1.0), [data set], Uni Freiburg, Freiburg, https://doi.org/10.6094/UNIFR/218623, 2021. a
Tallaksen, L. M. and van Lanen, H. A. J. (Eds.): Hydrological drought:
Processes and estimation methods for streamflow and groundwater, in: vol. 48 of Developments in water science, 1st Edn., Elsevier, Amsterdam, 2004. a
Teuling, A. J.: A hot future for European droughts, Nat. Clim. Change, 8,
364–365, 2018. a
Theocharis, A., Clément, C., and Barka, E. A.: Physiological and molecular changes in plants grown at low temperatures, Planta, 235, 1091–1105, https://doi.org/10.1007/s00425-012-1641-y, 2012. a
Tramblay, Y., Koutroulis, A., Samaniego, L., Vicente-Serrano, S. M., Volaire, F., Boone, A., Le Page, M., Llasat, M. C., Albergel, C., Burak, S., Cailleret, M., Ksenija, C. K., Davi, H., Dupuy, J.-L., Greve, P., Grillakis, M., Hanich, L., Jarlan, L., Martin-St. Paul, N., Martinez-Vilalta, J., Mouillot, F., Pulido-Velazquez, D., Quintana-Segui, P., Renard, D., Turco, M., Türkes, M., Trigo, R., Vidal, J.-P., Vilagrosa, A., Zribi, M., and Polcher, J.: Challenges for drought assessment in the Mediterranean region under future climate scenarios, Earth-Sci. Rev., 210, 103348,
https://doi.org/10.1016/j.earscirev.2020.103348, 2020. a, b
Trotsiuk, V., Hartig, F., Cailleret, M., Babst, F., Forrester, D. I.,
Baltensweiler, A., Buchmann, N., Bugmann, H., Gessler, A., Gharun, M., Minunno, F., Rigling, A., Rohner, B., Stillhard, J., Thürig, E., Waldner,
P., Ferretti, M., Eugster, W., and Schaub, M.: Assessing the response of
forest productivity to climate extremes in Switzerland using model-data
fusion, Global Change Biol., https://doi.org/10.1111/gcb.15011, in press, 2020. a
UNDRR (Ed.): Global Assessment Report on Disaster Risk Reduction: Chapter 6:
Special section on drought, Geneva, Switzerland, 2019. a
UNISDR (Ed.): Drought Risk Reduction Framework and Practices: Contributing to
the Implementation of the Hyogo Framework for Action, Geneva, Switzerland,
2009. a
van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S.,
Wanders, N., Gleeson, T., van Dijk, A. I. J. M., Tallaksen, L. M.,
Hannaford, J., Uijlenhoet, R., Teuling, A. J., Hannah, D. M., Sheffield, J.,
Svoboda, M., Verbeiren, B., Wagener, T., and van Lanen, H. A. J.: Drought in a human-modified world: reframing drought definitions, understanding, and
analysis approaches, Hydrol. Earth Syst. Sci., 20, 3631–3650,
https://doi.org/10.5194/hess-20-3631-2016, 2016. a
Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner, R.: Mountains of the world, water towers for humanity: Typology, mapping, and
global significance, Water Resour. Res., 43, W07447, https://doi.org/10.1029/2006WR005653, 2007. a, b, c
Water Management in the Alps Platform of the Alpine Convention (Ed.): Facing
droughts in the Alpine region: Experiences, approaches and common challenges,
Expert paper, available at:
https://www.alpconv.org/fileadmin/user_upload/Organization/TWB/Water/Facing_droughts_in_the_Alpine_region.pdf
(last access: 15 December 2020), 2018. a
Weingartner, R., Viviroli, D., and Schädler, B.: Water resources in
mountain regions: a methodological approach to assess the water balance in a
highland-lowland-system, Hydrol. Process., 21, 578–585, https://doi.org/10.1002/hyp.6268, 2007. a
Wilhite, D. A. (Ed.): Drought: A global assessment, in: Routledge hazards and
disasters series, Routledge, London, 2000a. a
Wilhite, D. A.: Drought as a Natural Hazard: Concepts and Definitions, in: vol. 69, Routledge hazards and disasters series, Routledge, London, available at: http://digitalcommons.unl.edu/droughtfacpub/69 (last access: 15 December 2020), 2000b. a
Wilhite, D. A. and Glantz, M. H.: Understanding: the drought phenomenon: the
role of definitions, Water Int., 10, 111–120, 1985. a
Zappa, M., Bernhard, L., Spirig, C., Pfaundler, M., Stahl, K., Kruse, S.,
Seidl, I., and Stähli, M.: A prototype platform for water resources
monitoring and early recognition of critical droughts in Switzerland, Proc. Int. Assoc. Hydrol. Sci., 364, 492–498, https://doi.org/10.5194/piahs-364-492-2014, 2014. a
Zentralanstalt für Meteorologie und Geodynamik: Unwetterchronik:
Dürre und Trockenheit, available at:
https://www.zamg.ac.at/cms/de/klima/klima-aktuell/unwetterchronik?jahr=2018&monat=7,
last access: 15 December 2020. a
Short summary
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the European Alpine region with an increasing number of impacts over time. The most affected sectors are agriculture and livestock farming and public water supply, for which management strategies are essential for future climate regimes. We show spatial heterogeneity and seasonal differences between the impacted sectors and between impacts triggered by soil moisture drought and hydrological drought.
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the...
Altmetrics
Final-revised paper
Preprint