Articles | Volume 21, issue 8
https://doi.org/10.5194/nhess-21-2285-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2285-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial and temporal subsidence characteristics in Wuhan (China), during 2015–2019, inferred from Sentinel-1 synthetic aperture radar (SAR) interferometry
School of Geography and Information Engineering, China University
of Geosciences, Wuhan 430078, China
Shaocheng Zhang
School of Geography and Information Engineering, China University
of Geosciences, Wuhan 430078, China
Mi Jiang
School of Geospatial Engineering and Science, Sun Yat-Sen
University, Guangzhou 510275, China
Yuanyuan Pei
School of Civil Engineering, Anhui Jianzhu University, Hefei
230601, China
Tengteng Qu
College of Engineering, Peking University, Beijing 100871, China
China–Pakistan Joint Research Center on Earth Sciences, Islamabad
45320, Pakistan
School of Geography and Information Engineering, China University
of Geosciences, Wuhan 430078, China
Chen Yang
Institute of Karst Geology, CAGS/ Key Laboratory of Karst Dynamics, MNR & GZAR, Guilin 541004, China
Related authors
X. Q. Qin, Y. J. Huang, X. G. Shi, L. F. Xie, and X. S. Chen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1257–1263, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1257-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1257-2023, 2023
T. Qu, Z. Su, H. Yang, X. Shi, and W. Shao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 873–878, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-873-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-873-2021, 2021
Bing Han and Tengteng Qu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W14-2025, 55–60, https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-55-2025, https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-55-2025, 2025
Bing Han and Tengteng Qu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 555–560, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-555-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-555-2025, 2025
Bing Han and Tengteng Qu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 233–238, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-233-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-233-2024, 2024
X. Q. Qin, Y. J. Huang, X. G. Shi, L. F. Xie, and X. S. Chen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1257–1263, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1257-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1257-2023, 2023
Qi Liang, Wanxin Xiao, Ian Howat, Xiao Cheng, Fengming Hui, Zhuoqi Chen, Mi Jiang, and Lei Zheng
The Cryosphere, 16, 2671–2681, https://doi.org/10.5194/tc-16-2671-2022, https://doi.org/10.5194/tc-16-2671-2022, 2022
Short summary
Short summary
Using multi-temporal ArcticDEM and ICESat-2 altimetry data, we document changes in surface elevation of a subglacial lake basin from 2012 to 2021. The long-term measurements show that the subglacial lake was recharged by surface meltwater and that a rapid drainage event in late August 2019 induced an abrupt ice velocity change. Multiple factors regulate the episodic filling and drainage of the lake. Our study also reveals ~ 64 % of the surface meltwater successfully descended to the bed.
T. Qu, Z. Su, H. Yang, X. Shi, and W. Shao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 873–878, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-873-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-873-2021, 2021
Cited articles
Bai, L., Jiang, L., Wang, H., and Sun, Q.: Spatiotemporal Characterization
of Land Subsidence and Uplift (2009–2010) over Wuhan in Central China
Revealed by TerraSAR-X InSAR Analysis, Remote Sensing, 8, 350, https://doi.org/10.3390/rs8040350, 2016.
Bai, L., Jiang, L., and Wang, H.: Monitoring Ground Subsidence in Wuhan City
with High-Resolution TerraSAR-X Images from 2013 to 2015, Journal of Geodesy
and Geodynamics, 39, 832–836, 2019.
Benattou, M. M., Balz, T., and Liao, M.: MEASURING SURFACE SUBSIDENCE IN WUHAN, CHINA WITH SENTINEL-1 DATA USING PSINSAR, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 73–77, https://doi.org/10.5194/isprs-archives-XLII-3-73-2018, 2018.
Chaussard, E., Amelung, F., Abidin, H., and Hong, S.-H.: Sinking cities in
Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas
extraction, Remote Sens. Environ., 128, 150–161,
https://doi.org/10.1016/j.rse.2012.10.015, 2013.
Chen, D.: Study on mechhanism and numerical simulation of Karst collapse in Qingling Town Wuhan City, PhD thesis, China University of Geosciences, Wuhan, China, 2016.
Costantini, M., Bai, J., Malvarosa, F., Minati, F., Vecchioli, F., Wang, R.,
Hu, Q., Xiao, J., and Li, J.: Ground deformations and building stability
monitoring by COSMO-SkyMed PSP SAR interferometry: Results and validation
with field measurements and surveys, 2016 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), 6847–6850, 2016.
Cui, X., Liu, Q., Zhang, C., Huang, Y., Fan, Y., and Wang, H.: Land
subsidence due to groundwater pumping and recharge: considering the
particle-deposition effect in ground-source heat-pump engineering,
Hydrogeol. J., 26, 789–802, https://doi.org/10.1007/s10040-018-1723-4, 2018.
Dang, V. K., Doubre, C., Weber, C., Gourmelen, N., and Masson, F.: Recent land subsidence caused by the rapid urban development in the Hanoi region (Vietnam) using ALOS InSAR data, Nat. Hazards Earth Syst. Sci., 14, 657–674, https://doi.org/10.5194/nhess-14-657-2014, 2014.
Ferretti, A., Prati, C., and Rocca, F.: Permanent scatterers in SAR
interferometry, IEEE T. Geosci. Remote, 39,
8–20, https://doi.org/10.1109/36.898661, 2001.
Deng, J., Wu, W., and Qin, Z.: The
Division of the Quanternary System of Wuhan, Journal of Hubei University
(Natural Science Edition), 13, 178–183, 1991.
Guan, S., Zhu, R., Pang, S., and Jiang, D.: The Study for Engineering
Geological Zonation of Metropolitan Development Area in Wuhan, Urban
Geotechnical Investigation and Surveying, 172–176, 2016.
Han, Y., Zou, J., Lu, Z., Qu, F., Kang, Y., and Li, J.: Ground Deformation
of Wuhan, China, Revealed by Multi-Temporal InSAR Analysis, Remote Sensing,
12, 3788, https://doi.org/10.3390/rs12223788, 2020.
Hooper, A.: A multi-temporal InSAR method incorporating both persistent
scatterer and small baseline approaches, Geophys. Res. Lett., 35,
L16302, https://doi.org/10.1029/2008GL034654, 2008.
Hooper, A. and Zebker, H. A.: Phase unwrapping in three dimensions with
application to InSAR time series, J. Opt. Soc. Am. A, 24, 2737–2747, 2007.
Hu, L., Dai, K., Xing, C., Li, Z., Tomás, R., Clark, B., Shi, X., Chen,
M., Zhang, R., Qiu, Q., and Lu, Y.: Land subsidence in Beijing and its
relationship with geological faults revealed by Sentinel-1 InSAR
observations, Int. J. Appl. Earth Obs., 82, 101886, https://doi.org/10.1016/j.jag.2019.05.019, 2019.
Jiang, H., Balz, T., Cigna, F., and Tapete, D.: Land Subsidence in Wuhan
Revealed Using a Non-Linear PSInSAR Approach with Long Time Series of
COSMO-SkyMed SAR Data, Remote Sensing, 13, 1256, https://doi.org/10.3390/rs13071256, 2021.
Jiang, M.: Sentinel-1 TOPS co-registration over low-coherence areas and its
application to velocity estimation using the all pairs shortest path
algorithm, J. Geodesy, 94, 95, https://doi.org/10.1007/s00190-020-01432-1, 2020.
Jiang, M. and Guarnieri, A. M.: Distributed Scatterer Interferometry With
the Refinement of Spatiotemporal Coherence, IEEE T. Geosci.
Remote, 58, 3977–3987, https://doi.org/10.1109/TGRS.2019.2960007, 2020.
Kim, J.-W., Lu, Z., and Kaufmann, J.: Evolution of sinkholes over Wink,
Texas, observed by high-resolution optical and SAR imagery, Remote Sens. Environ., 222, 119–132, https://doi.org/10.1016/j.rse.2018.12.028, 2019.
Li, C., Zhang, Y., Pang, S., and Guan, S.: Study on engineeering geological
zonging: base on geomorphic units – case study of the Wuhan metropolitan
development development area, Geological Review, 65, 645–652, 2019.
Li, Y., He, Z. Z., Yan, G. H., and Han, F. Y.: Foundation Pit Dewatering and
Ground Subsidence in Binary Structural Stratum of Wuhan, Adv. Mater.
Res., 639–640, 694–699, 2013.
Ng, A. H.-M., Ge, L., Li, X., Abidin, H. Z., Andreas, H., and Zhang, K.:
Mapping land subsidence in Jakarta, Indonesia using persistent scatterer
interferometry (PSI) technique with ALOS PALSAR, Int. J.
Appl. Earth Obs., 18, 232–242, 2012.
Perissin, D., Wang, Z., and Lin, H.: Shanghai subway tunnels and highways
monitoring through Cosmo-SkyMed Persistent Scatterers, ISPRS J.
Photogramm., 73, 58–67,
https://doi.org/10.1016/j.isprsjprs.2012.07.002, 2012.
Ruiz-Constán, A., Ruiz-Armenteros, A. M., Galindo-Zaldívar, J.,
Lamas-Fernández, F., Sousa, J. J., Galdeano, C. S. D., Pedrera, A.,
Martos-Rosillo, S., Cuenca, M. C., and Delgado, J. M.: Factors determining
subsidence in urbanized floodplains: evidences from MT-InSAR in Seville
(Southern Spain), Earth Surf. Proc. Land., 42, 2484–2497, 2017.
Shi, X., Liao, M., Li, M., Zhang, L., and Cunningham, C.: Wide-Area
Landslide Deformation Mapping with Multi-Path ALOS PALSAR Data Stacks: A
Case Study of Three Gorges Area, China, Remote Sensing, 8, 136, https://doi.org/10.3390/rs8020136, 2016.
Sun, W., Li, J., Bai, J., and Tong, X.: Using the PS-InSAR Technique to
Monitor Wuhan Urban District Land Subsidence, Urban Geotechnical
Investigation and Surveying, 120–125, 2019.
Takaku, J., Tadono, T., Tsutsui, K., and Ichikawa, M.: VALIDATION OF “AW3D” GLOBAL DSM GENERATED FROM ALOS PRISM, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-4, 25–31, https://doi.org/10.5194/isprs-annals-III-4-25-2016, 2016.
Tan, R., Liu, Y., Liu, Y., He, Q., Ming, L., and Tang, S.: Urban growth and
its determinants across the Wuhan urban agglomeration, central China,
Habitat Int., 44, 268–281, https://doi.org/10.1016/j.habitatint.2014.07.005,
2014.
Tu, J., Wei, R., Yang, G., Liu, C., Jin, X., and Li, H.: Analysis on
spatial and temporal distribution characteristics of karst, The Chinese
Journal of Geological Hazard and Control, 30, 68–73, 2019.
Wang, X., Lai, J., He, S., Garnes, R. S., and Zhang, Y.: Karst geology and
mitigation measures for hazards during metro system construction in Wuhan,
China, Nat. Hazards, 103, 2905–2927, https://doi.org/10.1007/s11069-020-04108-3,
2020.
Wuhan Bureau of Natural Resources and Planning: Geological disaster prevention and control plan of Wuhan City (2016–2020), available at: http://zrzyhgh.wuhan.gov.cn/zwgk_18/fdzdgk/ghjh/zzqgh/202001/t20200107_602757.shtml (last access:
12 July 2020), 2018.
Xu, G.: Mechanism and Hazard Assessment of Covered Karst Sink-
holes in Wuhan City, China, PhD thesis, China University of Geosciences, Wuhan, China, 2016.
Xue, Y.-Q., Zhang, Y., Ye, S.-J., Wu, J.-C., and Li, Q.-F.: Land subsidence
in China, Environ. Geol., 48, 713–720, https://doi.org/10.1007/s00254-005-0010-6,
2005.
Yin, Y., Zhang, Z., and Zhang, K.: Land subsidence and countermeasures for
its prevention in China, The Chinese Journal of Geological Hazard and
Control, 16, 1–8, 2005.
Yu, Y., Balz, T., Luo, H., Liao, M., and Zhang, L.: GPU accelerated
interferometric SAR processing for Sentinel-1 TOPS data, Comput.
Geosci., 129, 12–25, 2019.
Zhang, Y., Liu, Y., Jin, M., Jing, Y., Liu, Y., Liu, Y., Sun, W., Wei, J.,
and Chen, Y.: Monitoring Land Subsidence in Wuhan City (China) using the
SBAS-InSAR Method with Radarsat-2 Imagery Data, Sensors, 19, 743, https://doi.org/10.3390/s19030743, 2019.
Zhao, C., Liu, C., Zhang, Q., Lu, Z., and Yang, C.: Deformation of
Linfen-Yuncheng Basin (China) and its mechanisms revealed by Π-RATE
InSAR technique, Remote Sens. Environ., 218, 221–230,
https://doi.org/10.1016/j.rse.2018.09.021, 2018.
Zheng, X., Jin, X., Chen, B., Liu, P., Yang, G., Li, H., and Yang, T.:
Mechanism and modes of karst collapes in Wuhan city, China, The Chinese
Journal of Geological Hazard and Control, 30, 75–82, 2019.
Zhou, C., Gong, H., Chen, B., Li, X., Li, J., Wang, X., Gao, M., Si, Y.,
Guo, L., Shi, M., and Duan, G.: Quantifying the contribution of multiple
factors to land subsidence in the Beijing Plain, China with machine learning
technology, Geomorphology, 335, 48–61, https://doi.org/10.1016/j.geomorph.2019.03.017,
2019.
Zhou, L., Guo, J., Hu, J., Li, J., Xu, Y., Pan, Y., and Shi, M.: Wuhan
Surface Subsidence Analysis in 2015–2016 Based on Sentinel-1A Data by
SBAS-InSAR, Remote Sensing, 9, 982, https://doi.org/10.3390/rs9100982, 2017.
Short summary
We mapped the subsidence of Wuhan using Sentinel-1 synthetic aperture radar (SAR) images acquired during 2015–2019. Overall subsidence coincides with the distribution of engineered geological regions with soft soils, while the subsidence centers shifted with urban construction activities. Correlation between karst subsidence and concentrated rainfall was identified in Qingling–Jiangdi. Results indicate that interferometric SAR can be employed to routinely monitor and identify geohazards.
We mapped the subsidence of Wuhan using Sentinel-1 synthetic aperture radar (SAR) images...
Altmetrics
Final-revised paper
Preprint