Articles | Volume 21, issue 7
https://doi.org/10.5194/nhess-21-2041-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2041-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysis of meteorological parameters triggering rainfall-induced landslide: a review of 70 years in Valtellina
Andrea Abbate
Department of Civil Engineering (DICA), Politecnico di Milano, Milan,
20133, Italy
Monica Papini
Department of Civil Engineering (DICA), Politecnico di Milano, Milan,
20133, Italy
Laura Longoni
CORRESPONDING AUTHOR
Department of Civil Engineering (DICA), Politecnico di Milano, Milan,
20133, Italy
Related authors
Andrea Abbate, Leonardo Mancusi, Francesco Apadula, Antonella Frigerio, Monica Papini, and Laura Longoni
Nat. Hazards Earth Syst. Sci., 24, 501–537, https://doi.org/10.5194/nhess-24-501-2024, https://doi.org/10.5194/nhess-24-501-2024, 2024
Short summary
Short summary
CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment) is a new physically based and spatially distributed rainfall-runoff model. The main novelties consist of reproducing rainfall-induced geo-hydrological hazards such as shallow landslide, debris flow and watershed erosion through a multi-hazard approach. CRHyME was written in Python, works at a high spatial and temporal resolution, and is a tool suitable for quantifying extreme rainfall consequences at the basin scale.
Andrea Abbate, Leonardo Mancusi, Francesco Apadula, Antonella Frigerio, Monica Papini, and Laura Longoni
Nat. Hazards Earth Syst. Sci., 24, 501–537, https://doi.org/10.5194/nhess-24-501-2024, https://doi.org/10.5194/nhess-24-501-2024, 2024
Short summary
Short summary
CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment) is a new physically based and spatially distributed rainfall-runoff model. The main novelties consist of reproducing rainfall-induced geo-hydrological hazards such as shallow landslide, debris flow and watershed erosion through a multi-hazard approach. CRHyME was written in Python, works at a high spatial and temporal resolution, and is a tool suitable for quantifying extreme rainfall consequences at the basin scale.
V. Yordanov, X. Q. Truong, M. Corti, L. Longoni, and M. A. Brovelli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1089–1096, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1089-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1089-2023, 2023
V. A. Tran, X. Q. Truong, D. A. Nguyen, L. Longoni, and V. Yordanov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-4-W2-2021, 197–203, https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-197-2021, https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-197-2021, 2021
Cited articles
Abbate, A., Longoni, L., Ivanov, V. I., and Papini, M.: Wildfire impacts on
slope stability triggering in mountain areas, Geosciences, 9, 417, https://doi.org/10.3390/geosciences9100417, 2019.
Abbate, A., Longoni, L., and Papini, M.: Extreme Rainfall over Complex
Terrain: An Application of the Linear Model of Orographic Precipitation to a
Case Study in the Italian Pre-Alps, MDPI Geosciences, 11, 18, https://doi.org/10.3390/geosciences11010018, 2021.
Albano, R., Mancusi, L., and Abbate, A.: Improving flood rick analysis for
effectively supporting the implementation of flood risk management plans: The case study of “Serio” Valley, 75, 158–172, https://doi.org/10.1016/j.envsci.2017.05.017, 2017a.
Albano, R., Mancusi, L., and Abbate, A.: Improving flood risk analysis for
effectively supporting the implementation of flood risk management plans: The case study of “Serio” Valley, Environ. Sci. Policy, 75, 158–172, https://doi.org/10.1016/j.envsci.2017.05.017, 2017b.
Andrews, D. G.: An Introduction to Atmospheric Physics, Cambridge Press,
Cambridge, 2010.
ARPA Lombardia: Rete Monitoraggio Idro-nivo-meteorologico, available at:
https://www.arpalombardia.it/Pages/PageNotFoundError.aspx?requestUrl=https://www.arpalombardia.it/stiti/arpalombardia/meteo,
last access: 1 April 2020.
Ballio, F., Brambilla, D., Giorgetti, E., Longoni, L., Papini, M., and
Radice, A.: Evaluation of sediment yield from valley slope, WIT Transact. Eng. Sci., 67, 149–160, https://doi.org/10.2495/DEB100131, 2010.
Bogaard, T. and Greco, R.: Invited perspectives: Hydrological perspectives
on precipitation intensity-duration thresholds for landslide initiation:
proposing hydro-meteorological thresholds, Nat. Hazards Earth Syst. Sci. 18, 31–39, https://doi.org/10.5194/nhess-18-31-2018, 2018.
Bovolo, C. I. and Bathurst, J. C.: Modelling catchment-scale shallow landslide occurrence and sediment yield as a function of rainfall return period, Hydrol. Process., 26, 579–596, https://doi.org/10.1002/hyp.8158, 2011.
Bovolo, C. I. and Bathurst, J. C.: Modelling catchment-scale shallow landslide occurrence and sediment yield as a function of rainfall return
period, Hydrol. Process., 26, 579–596, https://doi.org/10.1002/hyp.8158, 2012.
Bronstert, A., Agarwal, A., Boessenkool, B., Crisologo, I., Peter, M.,
Heistermann, M., Köhn-Reich, L., López-Tarazón, J. A., Moran,
T., Ozturk, U., Reinhardt-Imjela, C., and Wendi, D.: Forensic hydro-meteorological analysis of an extreme flash flood: The 2016-05-29
event in Braunsbach, SW Germany, Sci. Total Environ., 630, 977–991, https://doi.org/10.1016/j.scitotenv.2018.02.241, 2018.
Caine, N.: The rainfall intensity duration control of shallow landslide and
debris flow, Geograf. Ann. A, 62, 659–675, https://doi.org/10.2307/520449, 1980.
Ceriani, M., Lauzi, S., and Padovan, M.: Rainfall thresholds triggering
debris-flow in the alpine area of Lombardia Region, central Alps – Italy,
in: Proceedings of the Man and Mountain'94, First International Congress for the Protection and Development of Mountain Environmen, Ponte di Legno, BS, Italy, 1994.
Ciccarese, G., Mulas, M., Alberoni, P., Truffelli, G., and Corsini, A.:
Debris flows rainfall thresholds in the Apennines of Emilia-Romagna (Italy)
derived by the analysis of recent severe rainstorms events and regional
meteorological data, Geomorphology, 358, 1–20,
https://doi.org/10.1016/j.geomorph.2020.107097, 2020.
Ciervo, F., Rianna, G., Mercogliano, P., and Papa, M. N.: Effects of climate
change on shallow landslides in a small coastal catchment in southern Italy,
Landslides, 14, 1043–1055, https://doi.org/10.1007/s10346-016-0743-1, 2017.
Copernicus C3S: Monitoring European climate using surface observations, available at:
http://surfobs.climate.copernicus.eu/surfobs.php (last access: 1 April 2021), 2020.
Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.-P.,
Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi,
F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V.,
Hervás, J., and Smith, J. T.: Recommendations for the quantitative
analysis of landslide risk, Bull. Eng. Geol. Environ., 73, 209–263, https://doi.org/10.1007/s10064-013-0538-8, 2014.
Crosta, G. and Frattini, P.: Rainfall thresholds for triggering soil slips
and debris flow, in: 2nd Plinius Conference on Mediterranean Storms, 16–18 October 2000, Siena, Italy, 463–487, 2001.
De Michele, C., Rosso, R., and Rulli, M. C.: Il Regime delle Precipitazioni
Intense sul Territorio della Lombardia: Modello di Previsione Statistica
delle Precipitazioni di Forte Intensità e Breve Durata, ARPA Lombardia,
Milano, 2005.
Faggian, P.: Climate change projection for Mediterranean Region with focus
over Alpine region and Italy, J. Environ. Sci. Eng., 4, 482–500, https://doi.org/10.17265/2162-5263/2015.09.004, 2015.
Frattini, P., Crosta, G., and Sosio, R.: Approaches for defining thresholds
and return periods for rainfall-triggered shallow landslides, Hydrol. Process., 23, 1444–1460, https://doi.org/10.1002/hyp.7269, 2009.
Gao, L., Zhang, L. M., and Cheung, R. W. M.: Relationships between natural
terrain landslide magnitudes and triggering rainfall based on a large
landslide inventory in Hong Kong, Landslides, 15, 727–740,
https://doi.org/10.1007/s10346-017-0904-x, 2018.
Gao, Y., Chen, N., Hu, G., and Deng, M.: Magnitude-frequency relationship of
debris flows in the Jiangjia Gully, China, J. Mount. Sci., 16, 1289–1299, https://doi.org/10.1007/s11629-018-4877-6, 2019.
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate, Earth-Sci. Rev., 162, 227–252, https://doi.org/10.1016/j.earscirev.2016.08.011, 2016.
Godson, W. L.: A new tendency equation and its application to the analysis of surface pressure changes, J. Meteorol., 5, 227–235, 1948.
Grazzini, F.: Predictability of a large-scale flow conducive to extreme
precipitation over the western Alps, Meteorol. Atmos. Phys., 95, 123–138, https://doi.org/10.1007/s00703-006-0205-8, 2007.
Grazzini, F. and Vitart, F.: Atmospheric predictability and Rossby wave packets, Q. J. Roy. Meteorol. Soc., 141, 2793–2802, https://doi.org/10.1002/qj.2564, 2015.
Gutenberg, B. and Richter, C. F.: Frequency of earthquakes in California,
Bull. Seismol. Soc. Am., 34, 185–188, 1944.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F.:
Probabilistic landslide hazard assessment at the basin scale, Geomorphology,
72, 272–299, https://doi.org/10.1016/j.geomorph.2005.06.002, 2005.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rainfall thresholds for the initiation of landslides in central and southern Europe,
Meteorol. Atmos. Phys., 98, 239–267, https://doi.org/10.1007/s00703-007-0262-7, 2007.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall
intensity–duration control of shallow landslides and debris flows: an update, Landslides, 5, 3–17, https://doi.org/10.1007/s10346-007-0112-1, 2008.
Ibsen, M.-L. and Casagli, N.: Rainfall patterns and related landslide incidence in the Porretta-Vergato region, Italy, Landslides, 1, 143–150,
https://doi.org/10.1007/s10346-004-0018-0, 2004.
Iida, T.: Theoretical research on the relationship between return period of
rainfall and shallow landslides, Hydrol. Process., 18, 739–756, https://doi.org/10.1002/hyp.1264, 2004.
ISPRA: Inventario Fenomeni Franosi, available at:
http://www.isprambiente.gov.it/it/progetti/suolo-e-territorio-1/iffi-inventario-dei-fenomeni-franosi-in-italia (last access: 1 April 2021), 2018a.
ISPRA: Dissesto idrogeologico in Italia: pericolosità e indicatori di
rischio, ISPRA, Ispra, 2018b.
Iverson, R. M.: Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897–1910, https://doi.org/10.1029/2000WR900090, 2000.
Jie, T., Zhang, B., He, C., and Yang, L.: Variability In Soil Hydraulic
Conductivity And Soil Hydrological Response Under Different Land Covers In
The Mountainous Area Of The Heihe River Watershed, Northwest China, Land
Degrad. Dev., 28, 1437–1449, https://doi.org/10.1002/ldr.2665, 2016.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–472,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kim, S. W., Chun, K. W., Kim, M., Catani, F., Choi, B., and Seo, J. I.:
Effect of antecedent rainfall conditions and their variations on shallow
landslide-triggering rainfall thresholds in South Korea, Landslides, 18, 569–582, https://doi.org/10.1007/s10346-020-01505-4, 2021.
Lazzari, M., Piccarreta, M., and Manfreda, S.: The role of antecedent soil moisture conditions on rainfall-triggered shallow landslides, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2018-371, 2018.
Longoni, L., Papini, M., Arosio, D., and Zanzi, L.: On the definition of
rainfall thresholds for diffuse landslides, Trans. State Art Sci. Eng., 53, 27–41, https://doi.org/10.2495/978-1-84564-650-9/03, 2011.
Longoni, L., Papini, M., Arosio, D., Zanzi, L., and Brambilla, D.: A new
geological model for Spriana landslide, Bull. Eng. Geol. Environ., 73, 959–970, https://doi.org/10.1007/s10064-014-0610-z, 2014.
Longoni, L., Ivanov, V. I., Brambilla, D., Radice, A., and Papini, M.:
Analysis of the temporal and spatial scales of soil erosion and transport in
a Mountain Basin, Ital. J. Eng. Geol. Environ., 16, 17–30, https://doi.org/10.4408/IJEGE.2016-02.O-02, 2016.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide inventories and their statistical properties, Earth Surf. Proc. Land., 29, 687–711, https://doi.org/10.1002/esp.1064, 2004.
Martin, J. E.: Mid-Latitude Atmosphere Dynamics, Wiley, Chichester, West
Sussex, England, 2006.
MeteoCiel: Observations, Prévisions, Modèles en temps réel, available at: https://www.meteociel.fr/ (last access: 1 April 2021), 2020.
Montrasio, L.: Stability of soil-slip, Risk Anal., 45, 357–366, https://doi.org/10.2495/RISK000331, 2000.
Montrasio, L. and Valentino, R.: Modelling Rainfall-induced Shallow Landslides at Different Scales Using SLIP – Part II, Proced. Eng., 158, 482–486, https://doi.org/10.1016/j.proeng.2016.08.476, 2016.
Moreiras, S., Vergara Dal Pont, I., and Araneo, D.: Were merely storm-landslides driven by the 2015–2016 Niño in the Mendoza River
valley?, Landslides, 15, 997–1014, https://doi.org/10.1007/s10346-018-0959-3, 2018.
NOAA: National Center for Environmental Information, available at: https://www.ncei.noaa.gov/, last access: 1 April 2021.
Olivares, L., Damiano, E., Mercogliano, P., Picarelli, L., Netti, N.,
Schiano, P., Savastano, V., Cotroneo, F., and Manzi, M. P.: A simulation
chain for early prediction of rainfall-induced landslides, Landslides, 11,
765–777, https://doi.org/10.1007/s10346-013-0430-4, 2014.
Ozturk, U., Tarakegn, Y., Longoni, L., Brambilla, D., Papini, M., and Jensen, J.: A simplified early-warning system for imminent landslide prediction based on failure index fragility curves developed through numerical analysis, Geomat. Nat. Hazards Risk, 7, 1406–1425, https://doi.org/10.1080/19475705.2015.1058863, 2015.
Ozturk, U., Wendi, D., Crisologo, I., Riemer, A., Agarwal, A., Vogel, K.,
López-Tarazón, J. A., and Korup, O.: Rare flash floods and debris
flows in southern Germany, Sci. Total Environ., 626, 941–952, https://doi.org/10.1016/j.scitotenv.2018.01.172, 2018.
Papini, M., Ivanov, V., Brambilla, D., Arosio, D., and Longoni, L.:
Monitoring bedload sediment transport in a pre-Alpine river: An experimental
method, Rendiconti Online della Società Geologica Italiana, 43, 57–63,
https://doi.org/10.3301/ROL.2017.35, 2017.
Peres, D. J., Cancelliere, A., Greco, R., and Bogaard, T. A.: Influence of
uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds, Nat. Hazards Earth Syst. Sci., 18, 633–646, https://doi.org/10.5194/nhess-18-633-2018, 2018.
Peruccacci, S., Brunetti, M. T., Gariano, S. L., Melillo, M., Rossi, M., and
Guzzetti, F.: Rainfall thresholds for possible landslide occurrence in Italy, Geomorphology, 290, 39–57, https://doi.org/10.1016/j.geomorph.2017.03.031, 2017.
Piciullo, L., Gariano, S. L., Melillo, M., Brunetti, M. T., Peruccacci, S.,
Guzzetti, F., and Calvello, M.: Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides, Landslides, 14, 995–1008, https://doi.org/10.1007/s10346-016-0750-2, 2017.
Ralph, F. M., Neiman, P. J., and Wick, G. A.: Satellite and CALJET Aircraft
Observations of Atmospheric Rivers over the Eastern North Pacific Ocean during the Winter of 1997/98, Mon. Weather Rev., 132, 1721–1745,
https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2, 2004.
Rappelli, F.: Definizione delle soglie pluviometriche d'innesco frane
superficiali e colate torrentizie: accorpamento per aree omogenee, IRER –
Istituto Regionale di Ricerca della Lombardia, Milano, 2008.
Reid, L. and Page, M. J.: Magnitude and frequency of landsliding in a large
New Zealand catchment, Geomorphology, 49, 71–88, https://doi.org/10.1016/S0169-555X(02)00164-2, 2003.
Ronchetti, F., Borgatti, L., Cervi, F., C, G., Piccinini, L., Vincenzi, V.,
and Alessandro, C.: Groundwater processes in a complex landslide, northern
Apennines, Italy, Nat. Hazards Earth Syst. Sci., 9, 895–904,
https://doi.org/10.5194/nhess-9-895-2009, 2009.
Rosi, A., Peternel, T., Jemec-Auflič, M., Komac, M., Segoni, S., and
Casagli, N.: Rainfall thresholds for rainfall-induced landslides in Slovenia, Landslides, 13, 1571–1577, https://doi.org/10.1007/s10346-016-0733-3, 2016.
Rossi, M., Peruccacci, S., Brunetti, M., Marchesini, I., Luciani, S., Ardizzone, F., Balducci, V., Bianchi, C., Cardinali, M., Fiorucci, F., Mondini, A., Paola, R., Salvati, P., Santangelo, M., Bartolini, D., Gariano,
S. L., Palladino, M., Vessia, G., Viero, A., Tonelli, G., Antronico, L.,
Borselli, L., Deganutti, A. M., Iovine, G., Luino, F., Parise, M., Polemio,
M., and Guzzetti, F.: SANF: National warning system for rainfall-induced
landslides in Italy, edited by: Eberhardt, E., Froese, C., Turner, A. K., and Lerouil, S., Landslides and Engineered Slopes, in: Protecting Society through
Improved Understanding, Proceedings 11th Int. Symp. Landslides, 3–8 June 2012, Banff, Canada, 1895–1899, https://doi.org/10.13140/2.1.4857.9527, 2012.
Rossi, M., Guzzetti, F., Salvati, P., Donnini, M., Napolitano, E., and Bianchi, C.: A predictive model of societal landslide risk in Italy, Earth-Sci. Rev., 196, 102849, https://doi.org/10.1016/j.earscirev.2019.04.021, 2019.
Rosso, R., Rulli, M. C., and Vannucchi, G.: A physically based model for the
hydrologic control on shallow landsliding, Water Resour. Res., 42, W06410, https://doi.org/10.1029/2005WR004369, 2006.
Rotunno, R. and Houze, R.: Lessons on orographic precipitation for the Mesoscale Alpine Programme, Q. J. Roy. Meteorol. Soc., 133, 811–830, https://doi.org/10.1002/qj.67, 2007.
Sanders, F. and Gyakum, J. R.: Synoptic-Dynamic Climatology of the “Bomb”,
Mon. Weather Rev., 108, 1589–1606,
https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2, 1980.
SCIA: Sistema Nazionale per l'elaborazione e diffusione di dati climatici, available at: http://www.scia.isprambiente.it (last access: 1 April 2021), 2020.
Segoni, S., Rossi, G., Rosi, A., and Catani, F.: Landslides triggered by
rainfall: A semi-automated procedure to define consistent intensity–duration thresholds, Comput. Geosci., 63, 123–131, https://doi.org/10.1016/j.cageo.2013.10.009, 2014.
Sistema Informativo sulle Catastrofi idrogeologiche: available at: http://sici.irpi.cnr.it/ (last access: 1 April 2021), 2020.
Stull, R. B.: Practical Meteorology: An Algebra-based Survey of Atmospheric
Science, University of British Columbia, Vancouver, Canada, 2017.
Tropeano, D.: Inondazioni e frane in Lombardia: un problema storico, in:
Utilizzo dei dati storici per la determinazione delle aree esondabili nelle
zone alpine, CNR-IRPI, Torino, 47–109, 1997.
Vessia, G., Parise, M., Brunetti, M. T., Peruccacci, S., Rossi, M., Vennari,
C., and Guzzetti, F.: Automated reconstruction of rainfall events responsible for shallow landslides, Nat. Hazards Earth Syst. Sci., 14, 2399–2408, https://doi.org/10.5194/nhess-14-2399-2014, 2014.
Vessia, G., Pisano, L., Vennari, C., Rossi, M., and Parise, M.: Mimic expert
judgement through automated procedure for selecting rainfall events responsible for shallow landslide: A statistical approach to validation,
Comput. Geosci., 86, 146–153, https://doi.org/10.1016/j.cageo.2015.10.015, 2016.
Wallace, J. M. and Hobbs, P. V.: Atmospheric Science: an introductory survey, Elsevier, Oxford, 2006.
Xiao, L., Wang, J., Zhu, Y., and Zhang, J.: Quantitative Risk Analysis of a
Rainfall-Induced Complex Landslide in Wanzhou County, Three Gorges
Reservoir, China, Int. J. Disast. Risk Sci., 11, 347–363, https://doi.org/10.1007/s13753-020-00257-y, 2020.
Short summary
In this paper the relation between the intensity of meteorological events and the magnitude of triggered geo-hydrological issues was examined. A back analysis was developed across a region of the central Alps. The meteorological triggers were interpreted using two approaches: the first using local rain gauge data and a new one considering meteorological reanalysis maps. The results obtained were compared and elaborated for defining a magnitude of each geo-hydrological event.
In this paper the relation between the intensity of meteorological events and the magnitude of...
Altmetrics
Final-revised paper
Preprint