Articles | Volume 21, issue 6
https://doi.org/10.5194/nhess-21-1785-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1785-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory
Enrique Guillermo Cordaro
Observatorios de Radiación Cósmica y Geomagnetismo, Departamento
de Física, FCFM, Universidad de Chile, Casilla 487-3, Santiago,
Chile
Facultad de Ingeniería, Universidad Autónoma de Chile, Pedro de
Valdivia 425, Santiago, Chile
Patricio Venegas-Aravena
CORRESPONDING AUTHOR
Observatorios de Radiación Cósmica y Geomagnetismo, Departamento
de Física, FCFM, Universidad de Chile, Casilla 487-3, Santiago,
Chile
Department of Structural and Geotechnical Engineering, School of
Engineering, Pontificia Universidad Católica de Chile, Vicuña
Mackenna 4860, Macul, Santiago, Chile
Research Center for Integrated Disaster Risk Management (CIGIDEN),
Santiago, Chile
David Laroze
Instituto de Alta Investigación, Universidad de Tarapacá, Casilla
7D, Arica, Chile
Related authors
Patricio Venegas-Aravena, Enrique G. Cordaro, and David Laroze
Nat. Hazards Earth Syst. Sci., 20, 1485–1496, https://doi.org/10.5194/nhess-20-1485-2020, https://doi.org/10.5194/nhess-20-1485-2020, 2020
Short summary
Short summary
Over the past few years, a number of data have emerged on predicting large earthquakes using the magnetic field. These measurements are becoming strongly supported by rock electrification mechanisms experimentally and theoretically in seismo-electromagnetic theory. However, the processes that occur within the faults have yet to be elucidated. That is why this work theoretically links the friction changes of the faults with the lithospheric magnetic anomalies that surround the faults.
Patricio Venegas-Aravena, Enrique G. Cordaro, and David Laroze
Nat. Hazards Earth Syst. Sci., 19, 1639–1651, https://doi.org/10.5194/nhess-19-1639-2019, https://doi.org/10.5194/nhess-19-1639-2019, 2019
Short summary
Short summary
Several authors have shown evidence of electromagnetic measurements prior to earthquakes. However, these investigations lack a physical mechanism to support them. That is why we developed a theory that could explain many of these phenomena. Specifically, we demonstrate that the generation of microcracks in the lithosphere due to stress changes can explain and describe these electromagnetic phenomena.
Enrique G. Cordaro, Patricio Venegas-Aravena, and David Laroze
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-9, https://doi.org/10.5194/angeo-2019-9, 2019
Manuscript not accepted for further review
Short summary
Short summary
The latest research suggests that there could be a relationship between geomagnetic field variations and seismic events in different parts of the planet. These variations have been found in both ground-level magnetometers and satellites studying the ionosphere. The magnetic variations are similar between the earthquakes in Chile (2010, 2014, 2015) and the one in Mexico 2017. Therefore, the use of magnetic variations at ground level or ionospheric could show seismic precursors.
Enrique G. Cordaro, Patricio Venegas, and David Laroze
Ann. Geophys., 36, 275–285, https://doi.org/10.5194/angeo-36-275-2018, https://doi.org/10.5194/angeo-36-275-2018, 2018
Short summary
Short summary
The interaction between the magnetic field and the particles coming from outer space, which apparently have a relationship with tectonic plates, is studied. The major earthquakes of Maule (2010, 8.8 Mw), Sumatra (2004, 9.2 Mw) and Tohoku (2011, 9.0 Mw) were studied, similar frequencies being found in the vertical component of the magnetic field (microhertz range). The temporal evolution of the magnetic oscillations showed the possible link with the seismic movement of Maule in 2010.
Patricio Venegas-Aravena, Enrique G. Cordaro, and David Laroze
Nat. Hazards Earth Syst. Sci., 20, 1485–1496, https://doi.org/10.5194/nhess-20-1485-2020, https://doi.org/10.5194/nhess-20-1485-2020, 2020
Short summary
Short summary
Over the past few years, a number of data have emerged on predicting large earthquakes using the magnetic field. These measurements are becoming strongly supported by rock electrification mechanisms experimentally and theoretically in seismo-electromagnetic theory. However, the processes that occur within the faults have yet to be elucidated. That is why this work theoretically links the friction changes of the faults with the lithospheric magnetic anomalies that surround the faults.
Patricio Venegas-Aravena, Enrique G. Cordaro, and David Laroze
Nat. Hazards Earth Syst. Sci., 19, 1639–1651, https://doi.org/10.5194/nhess-19-1639-2019, https://doi.org/10.5194/nhess-19-1639-2019, 2019
Short summary
Short summary
Several authors have shown evidence of electromagnetic measurements prior to earthquakes. However, these investigations lack a physical mechanism to support them. That is why we developed a theory that could explain many of these phenomena. Specifically, we demonstrate that the generation of microcracks in the lithosphere due to stress changes can explain and describe these electromagnetic phenomena.
Enrique G. Cordaro, Patricio Venegas-Aravena, and David Laroze
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-9, https://doi.org/10.5194/angeo-2019-9, 2019
Manuscript not accepted for further review
Short summary
Short summary
The latest research suggests that there could be a relationship between geomagnetic field variations and seismic events in different parts of the planet. These variations have been found in both ground-level magnetometers and satellites studying the ionosphere. The magnetic variations are similar between the earthquakes in Chile (2010, 2014, 2015) and the one in Mexico 2017. Therefore, the use of magnetic variations at ground level or ionospheric could show seismic precursors.
Enrique G. Cordaro, Patricio Venegas, and David Laroze
Ann. Geophys., 36, 275–285, https://doi.org/10.5194/angeo-36-275-2018, https://doi.org/10.5194/angeo-36-275-2018, 2018
Short summary
Short summary
The interaction between the magnetic field and the particles coming from outer space, which apparently have a relationship with tectonic plates, is studied. The major earthquakes of Maule (2010, 8.8 Mw), Sumatra (2004, 9.2 Mw) and Tohoku (2011, 9.0 Mw) were studied, similar frequencies being found in the vertical component of the magnetic field (microhertz range). The temporal evolution of the magnetic oscillations showed the possible link with the seismic movement of Maule in 2010.
Cited articles
Abad, M., Izquierdo, T., Cáceres, M., Bernárdez, E., and
Rodriguez-Vidal, J.: Coastal boulder deposit as evidence of an ocean-wide
prehistoric tsunami originated on the Atacama Desert coast (northern Chile),
Sedimentology, 67, 1505–1528, https://doi.org/10.1111/sed.12570, 2020.
Anastasiadis, C., Triantis, D., Stavrakas, I., and Vallianatos, F.: Pressure
Stimulated Currents (PSC) in marble samples, Ann. Geophys., 47, 21–28, https://doi.org/10.4401/ag-3255, 2004.
Balasis, G. and Mandea, M.: Can electromagnetic disturbances related to the
recent great earthquakes be detected by satellite magnetometers?,
Tectonophysics, 431, 173–195, https://doi.org/10.1016/j.tecto.2006.05.038, 2007.
Bedford, J. R., Moreno, M., Deng, Z., Oncken, O., Schurr, B., John, T.,
Báez, J. C., and Bevis, M.: Months-long thousand-kilometre-scale wobbling
before great subduction earthquakes, Nature, 580, 628–635, https://doi.org/10.1038/s41586-020-2212-1, 2020.
Blagoveshchensky, D. V., Maltseva, O. A., and Sergeeva, M. A.: Impact of magnetic storms on the global TEC distribution, Ann. Geophys., 36, 1057–1071, https://doi.org/10.5194/angeo-36-1057-2018, 2018.
Bloxham, J., Zatman, S., and Dumberry, M.: The origin of geomagnetic jerks,
Nature, 420, 65–68, https://doi.org/10.1038/nature01134, 2002.
Cartwright-Taylor, A., Vallianatos, F., and Sammonds, P.: Superstatistical
view of stress-induced electric current fluctuations in rocks, Physica A,
414, 368–377, 2014.
Carvajal, M., Cisternas, M., and Catalán, P. A.: Source of the 1730
Chilean earthquake from historical records: Implications for the future
tsunami hazard on the coast of Metropolitan Chile, J. Geophys. Res.-Sol.
Ea., 122, 3648–3660, https://doi.org/10.1002/2017JB014063, 2017.
Casotto, S. and Biscani, F.: A fully analytical approach to the harmonic
development of the tide-generating potential accounting for precession,
nutation, and perturbations due to figure and planetary terms, AAS Division
on Dynamical Astronomy, April 2004, vol. 36(2), 67, 2004.
Chernogor, L. F.: Possible Generation of Quasi-Periodic Magnetic Precursors
of Earthquakes, Geomagn. Aeron., 59, 374–382, https://doi.org/10.1134/S001679321903006X, 2019.
Christopoulos, S.-R. G., Skordas, E. S., and Sarlis, N. V.: On the
Statistical Significance of the Variability Minima of the Order Parameter of
Seismicity by Means of Event Coincidence Analysis, Appl. Sci., 10, 662, https://doi.org/10.3390/app10020662, 2020.
Chulliat, A., Lalanne, X., Gaya-Pique, L. R., Truong, F., and Savary, J.: The
new Easter Island magnetic observatory, in: Proceedings of the XIIIth IAGA
Workshop on Geomagnetic Observatory Instruments, Data Acquisition and
Processing, edited by: Love, J. J., 271 pp., U.S. Geological Survey Open-File
Report 2009-1226, 2009.
Contoyiannis, Y., Potirakis, S. M., Eftaxias, K., Hayakawa, M., and Schekotov,
A.: Intermittent criticality revealed in ULF magnetic fields prior to the 11
March 2011 Tohoku earthquake (Mw = 9), Physica A, 452, 19–28, https://doi.org/10.1016/j.physa.2016.01.065, 2016.
Cordaro, E. G., Olivares, E., Gálvez, D., Salazar-Aravena, D., and Laroze,
D.: New 3He neutron monitor for Chilean osmic-ray observatories from the
Altiplanic Zone to the Antarctic zone, Adv. Space Res., 49, 1670, https://doi.org/10.1016/j.asr.2012.03.015, 2012.
Cordaro, E. G., Gálvez, D., and Laroze, D.: Observation of intensity of
cosmic rays and daily magnetic shifts near meridian 70∘ in the
South America, J. Atmos. Sol.-Terr. Phys.,
142, 72–82, https://doi.org/10.1016/j.jastp.2016.02.015, 2016.
Cordaro, E. G., Venegas, P., and Laroze, D.: Latitudinal variation rate of geomagnetic cutoff rigidity in the active Chilean convergent margin, Ann. Geophys., 36, 275–285, https://doi.org/10.5194/angeo-36-275-2018, 2018.
Cordaro, E. G., Venegas-Aravena, P., and Laroze, D.: Variation of geomagnetic
cutoff rigidity in the southern hemisphere close to 70∘ W
(South-Atlantic Anomaly and Antarctic zones) in the period 1975–2010,
Adv. Space Res., 63, 2290–2299, https://doi.org/10.1016/j.asr.2018.12.019, 2019.
De Santis, A., Cianchini, G., Favali, P., Beranzoli, L., and Boschi, E.: The Gutenberg–Richter Law and Entropy of Earthquakes: Two Case Studies in Central Italy, B. Seismol. Soc. Am., 101, 1386–1395, https://doi.org/10.1785/0120090390, 2011.
De Santis, A., De Franceschi, G., Spogli, L., Perrone, L., Alfonsi, L.,
Qamili, E., Cianchini, G., Di Giovambattista, R., Salvi, S., Filippi, E.,
Pavón-Carrasco, F. J., Monna, S., Piscini, A., Battiston, R., Vitale, V.,
Picozza, P. G., Conti, L., Parrot, M., Pinçon, J.-L., Balasis, G.,
Tavani, M., Argan, A., Piano, G., Rainone, M. L., Liu, W., and Tao, D.:
Geospace perturbations induced by the Earth: The state of the art and future
trends, Phys. Chem. Earth, Parts A/B/C, 85–86,
17–33, https://doi.org/10.1016/j.pce.2015.05.004, 2015.
De Santis, A., Balasis, G., Pavón-Carrasco, F. J. Cianchini, G., and Mandea,
M.: Potential earthquake precursory pattern from space: The 2015 Nepal event
as seen by magnetic Swarm satellites, Earth Planet. Sci. Lett.,
461, 119–126, https://doi.org/10.1016/j.epsl.2016.12.037, 2017.
De Santis, A., Marchetti, D., Pavón-Carrasco, F. J., Cianchini, G.,
Perrone, L., Abbattista, C., Alfonsi, L., Amoruso, L., Campuzano, S. A.,
Carbone, M., Cesaroni, C., De Franceschi, G., De Santis, A., Di
Giovambattista, R., Ippolito, A., Piscini, A., Sabbagh, D., Soldani, M.,
Santoro, F., Spogli, L., and Haagmans, R.: Precursory worldwide signatures of
earthquake occurrences on Swarm satellite data, Sci. Rep., 9, 20287,
https://doi.org/10.1038/s41598-019-56599-1, 2019a.
De Santis, A., Marchetti, D., Spogli, L., Cianchini, G., Pavón-Carrasco,
F. J., De Franceschi, G., Di Giovambattista, R., Perrone, L., Qamili, E.,
Cesaroni, C., De Santis, A., Ippolito, A., Piscini, A., Campuzano, S. A.,
Sabbagh, D., Amoruso, L., Carbone, M., Santoro, F., Abbattista, C., and
Drimaco, D.: Magnetic Field and Electron Density Data Analysis from Swarm
Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case
Studies from 2014 to 2016, Atmosphere, 10, 371, https://doi.org/10.3390/atmos10070371, 2019b.
Diego, P., Storini, M., Parisi, M., and Cordaro, E.: AE index variability
during corotating fast solar wind streams, J. Geophys. Res., 110, A06105,
https://doi.org/10.1029/2004JA010715, 2005.
Dieminger, W., Hartmann, G. K., and Leitinger, R.: Geomagnetic Activity
Indices, in: The Upper
Atmosphere, edited by: Dieminger, W., Hartmann, G. K., and Leitinger, R., Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-78717-1_26, 1996.
Dobrovolsky, I. R., Zubkov, S. I., and Myachkin, V. I.: Estimation of the size
of earthquake preparation zones, Pure Appl. Geophys., 117, 1025–1044, https://doi.org/10.1007/BF00876083, 1979.
Fenoglio, M. A., Johnston, M. J. S., and Byedee, J.: Magnetic and electric
fields associated with changes in high pore pressure in fault zones:
application to the Loma Prieta ULF emissions, J. Geophys. Res., 100,
12951–12958, https://doi.org/10.1029/95JB00076, 1995.
Finlay, C.: Magnetohydrodynamics Waves, Encyclopedia of Geomagnetism and
Paleomagnetism, edited by: Gubbins, D. and Herrero-Berbera, E., Springer,
Netherlands, https://doi.org/10.1007/978-1-4020-4423-6, 2007.
Florios, K., Contopoulos, I., Christofilakis, V., Tatsis, G., Chronopoulos,
S., Repapis, C., and Tritakis, V.:
Pre-seismic Electromagnetic Perturbations in Two Earthquakes in Northern
Greece, Pure Appl. Geophys., 177, 787–799,
https://doi.org/10.1007/s00024-019-02362-6, 2020.
Foppiano, A. J., Ovalle, E. M., Bataille, K., and Stepanova, M.: Ionospheric
evidence of the May 1960
earthquake over Concepción?, Geofísica Internacional, 47,
179–183, 2008.
Fraser Smith, A. C.: Ultralow-frequency magnetic fields preceding large
earthquakes, Eos Trans., 89, 23, https://doi.org/10.1029/2008EO230007, 2008.
Freund, F.: Toward a unified solid-state theory for pre-earthquake signals,
Acta Geophys., 58, 719–766, https://doi.org/10.2478/s11600-009-0066-x, 2010.
Geller, R. J.: Earthquake prediction: a critical review, Geophys. J.
Int., 131, 425–450, https://doi.org/10.1111/j.1365-246X.1997.tb06588.x, 1997.
Gjerloev, J. W.: The SuperMAG data processing technique, J. Geophys. Res., 117, A09213, https://doi.org/10.1029/2012JA017683, 2012.
Gubbins, D., Jones, A. L., and Finlay, C. C.: Fall in Earth's magnetic field is
erratic, Science, 312, 900–902, https://doi.org/10.1126/science.1124855, 2006.
Han, P., Zhuang J., Hattori K., Chen C.-H., Febriani F., Chen H., Yoshino
C., and Yoshida, S.: “Assessing the Potential Earthquake Precursory Information
in ULF Magnetic Data Recorded in Kanto, Japan during 2000–2010: Distance
and Magnitude Dependences, Entropy, 22, 859, https://doi.org/10.3390/e22080859,
2020.
Hayakawa, M. and Molchanov, O. A. (Eds.): Seismo Electromagnetics:
Lithosphere-Atmosphere-Ionosphere Coupling, p. 477, TERRAPUB, Tokyo, 2002.
Hayakawa, M., Schekotov, A., Potirakis, S., and Eftaxias, K.: Criticality
features in ULF magnetic fields prior to the 2011 Tohoku earthquake, Proc.
Jpn. Acad. Ser. B, Phys. Biol. Sci., 91, 25–30, https://doi.org/10.2183/pjab.91.25,
2015.
Heimisson, E. R.: Crack to pulse transition and magnitude statistics during
earthquake cycles on a self-similar rough fault, Earth Planet. Sci. Lett., 537, 116202, https://doi.org/10.1016/j.epsl.2020.116202,
2020.
Heirtzler, J.: The future of the South Atlantic Anomaly and implications for
radiation damage in space,
J. Atmos. Sol. Terr. Phys., 64, 1701–1708, https://doi.org/10.1016/S1364-6826(02)00120-7, 2002.
Herbst, K., Kopp, A., and Heber, B.: Influence of the terrestrial magnetic field geometry on the cutoff rigidity of cosmic ray particles, Ann. Geophys., 31, 1637–1643, https://doi.org/10.5194/angeo-31-1637-2013, 2013.
Herman, M. W., Furlong, K. P., Hayes, G. P., and Benz, H. M.: Foreshock
triggering of the 1 April 2014 Mw 8.2 Iquique, Chile, earthquake, Earth Planet. Sci. Lett., 447, 119–129, https://doi.org/10.1016/j.epsl.2016.04.020, 2016.
Hitchmn, A. P., Lilley, F. E. M., and Campbell, W. H.: The quiet daily variation
in the total magnetic field: global curves, Geophys. Res. Lett.,
25, 2007–2010, https://doi.org/10.1029/98GL51332, 1998.
Hough, S. E.: Predicting the Unpredictable: The Tumultuous Science of
Earthquake Prediction, Vol. 272, Princeton: Princeton University Press, https://doi.org/10.1515/9781400883547, 2010.
Ippolito, A., Perrone. L., De Santis, A., and Sabbagh D.: Ionosonde Data
Analysis in Relation to the 2016 Central Italian Earthquakes, Geosciences,
10, 354, https://doi.org/10.3390/geosciences10090354, 2020.
Johnston, M. J. S., Sasai, Y., Egbert, G. D., and Mueller, R. J.: Seismomagnetic Effects from the Long-Awaited 28 September 2004 M 6.0 Parkfield Earthquake, B. Seismol. Soc. Am., 96, S206–S220, https://doi.org/10.1785/0120050810, 2006.
Jordan, T., Chen, Y., Gasparini, P., Madariaga, R., Main, I., Marzocchi, W.,
Papadopoulos, G., Sobolev, G., Yamaoka, K., and Zschau, J.: Operational
earthquake forecasting. State of Knowledge and Guidelines for Utilization,
Ann. Geophys., 54, 315–391, https://doi.org/10.4401/ag-5350, 2011.
Kanamori, H.: The Energy Release in Great Earthquakes, J. Geophys. Res.,
82, 2981–2987, https://doi.org/10.1029/JB082i020p02981, 1977.
Karakeliana, D., Klemperera, S. L., Fraser-Smith, A. C., and Thompson, G.
A.: Ultra-low frequency electromagnetic measurements associated with the
1998 Mw 5.1 San Juan Bautista, California earthquake and implications for
mechanisms of electromagnetic earthquake precursors, Tectonophysics, 359,
65–79, https://doi.org/10.1016/S0040-1951(02)00439-0, 2002.
Kivelson, M, G. and Russell, C. T.: Introduction to Space Physics, Cambridge,
Cambridge University Press, https://doi.org/10.1017/9781139878296, 1995.
Kulsrud, R.: Plasma Physics for Astrophysics, Princeton University Press NJ, ISBN 978-0-691-12073-7, 2004.
Lassak, T., McNamara, A., Garnero, E., and Zhong, S.: Core–mantle boundary
topography as a possible constraint on lower mantle chemistry and dynamics, Earth Planet. Sci. Lett., 289,
232–241, https://doi.org/10.1016/j.epsl.2009.11.012, 2010.
Lazarian, A., Eyink, G. L., Jafari, A., Kowal, G., Li, H., Xu, S., and
Vishniac, E. T.: 3D turbulent reconnection: Theory, tests, and astrophysical
implications, Physics of Plasmas, 27, 012305, https://doi.org/10.1063/1.5110603,
2020.
Li, Z., Zhang, X., Wei, Y., and Ali, M.: Experimental Study of Electric
Potential Response Characteristics of Different Lithological Samples Subject
to Uniaxial Loading, Rock Mech. Rock Eng., 54, 397–408,
https://doi.org/10.1007/s00603-020-02276-z, 2020.
Liu, J. Y.: Earthquake precursors observed in the ionospheric F-region, in:
Electromagnetic Phenomena Associated with Earthquakes, edited by: Hayakawa, M.,
Transworld Research Network, Trivandrum, India, pp. 187–204, 2009.
Ma, L., Zhao, J., and Ni, B.: A Zener-Stroh crack interacting with an edge
dislocation, Theor. Appl. Mech. Lett., 2, 021003,
https://doi.org/10.1063/2.1102103, 2011.
Marchetti, D. and Akhoondzadeh, M.: Analysis of Swarm satellites data
showing seismo-ionospheric anomalies around the time of the strong Mexico
(Mw=8.2) earthquake of 08 September 2017. Adv. Space Res.,
62, 614–623, https://doi.org/10.1016/j.asr.2018.04.043, 2018.
Marchetti, D., De Santis, A., D'Arcangelo, S., Poggio, F., Piscini, A.,
Campuzano, S. A., and De Carvalho, W. V. J. O.: Pre-earthquake chain processes
detected from ground to satellite altitude in preparation of the 2016–2017
seismic sequence in Central Italy, Remote Sens. Environ.,
229, 93–99, https://doi.org/10.1016/j.rse.2019.04.033, 2019a.
Marchetti, D., Santis, A. D., Shen, X., Campuzano, S. A., Perrone, L.,
Piscini, A., Di Giovambattista, R., Jin, S., Ippolito, A., Cianchini, G.,
Cesaroni C., Sabbagh, D., Spogli, L. Zhima, Z., and Huang, J.: Possible
Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018
Mw=7.5 Indonesia earthquake from seismic, atmospheric and ionospheric
data, J. Asian Earth Sci., 188, 104097, https://doi.org/10.1016/j.jseaes.2019.104097, 2019b.
McBeck, J. A., Zhu, W., and Renard, F.: The competition between fracture nucleation, propagation, and coalescence in dry and water-saturated crystalline rock, Solid Earth, 12, 375–387, https://doi.org/10.5194/se-12-375-2021, 2021.
McFadden, P. L. and Merrill, R. T.: Geomagnetic Field, Asymmetries,
Encyclopedia of Geomagnetism and Paleomagnetism, edited by: Gubbins, D. and
Herrero-Berbera, E., Springer, Netherlands, https://doi.org/10.1007/978-1-4020-4423-6_116, 2007.
Molchanov, O. A. and Hayakawa, M.: Seismo Electromagnetics and Related
Phenomena: History and Latest Results, TERRAPUB, Tokyo, p. 198, ISBN 978-4-88704-143-1, 2008.
Moldwin, M.: An introduction to space weather, Cambridge University Press, UK, 16 pp.,
https://doi.org/10.1017/CBO9780511801365, 2008.
Oikonomou, C., Haralambous, H., and Muslim, B.: Investigation of ionospheric
precursors related to deep and intermediate earthquakes based on spectral
and statistical analysis, Adv. Space Res., 59, 587–602,
https://doi.org/10.1016/j.asr.2016.10.026, 2017.
Olson, P.: Core Dynamics: An Introduction and Overview, Treatise on Geophysics (Second Edition) 2015, pp. 1–25, Reference Module in Earth Systems and Environmental Sciences Volume 8: Core Dynamics, Elsevier, https://doi.org/10.1016/B978-0-444-53802-4.00137-8, 2015.
Olson, P., Christensen, U. R., and Glatzmaier, G. A.: Numerical modeling of the
geodynamo: mechanisms of field generation and equilibration, J. Geophys.
Res., 104, 10383–10404, https://doi.org/10.1029/1999JB900013, 1999.
Oppenheim, A. V., Schafer, R. W., and Buck, J. R.: Discrete-Time Signal
Processing, 2nd Ed., Upper Saddle River, NJ: Prentice Hall, 58–61, ISBN 0-13-754920-2, 1999.
Park, J., Song, T.-R. A., Tromp, J., Okal, E., Stein, S., Roult, G.,
Clevede, E., Laske, G., Kanamori, H., Davis, P., Berger, J., Braitenberg,
C., Van Camp, M., Lei, X., Sun, H., Xu, H., and Rosat, S.: Earth's Free
Oscillations Excited by the 26 December 2004 Sumatra-Andaman Earthquake,
Science, 308, 1139–1144, https://doi.org/10.1126/science.1112305, 2005.
Pasiou, E. D. and Triantis, D.: Correlation between the electric and acoustic
signals emitted during compression of brittle materials, Frattura ed
Integrità Strutturale, 40, 41–51, https://doi.org/10.3221/IGF-ESIS.40.04,
2017.
Pedrera, A., Galindo-Zaldívar, J., Ruiz-Constán, A., Bohoyo, F.,
Torres-Carbonell, P., Ruano, P., Maestro, A., and González-Castillo, L.:
The last major earthquakes along the Magallanes-Fagnano fault system
recorded by disturbed trees (Tierra del Fuego, South America), Terra Nova,
26, 448–453, https://doi.org/10.1111/ter.12119, 2014.
Pomerantz, M. A.: Cosmic Rays. Published by The Commission on College
Physics. Rd. Van Nostrand Reinhold Company, 450 West 33rd Street, New York, NY, ISBN-13 978-6001456640, 1971.
Potirakis, S., Eftaxias, K., Schekotov, A., Yamaguchi, H., and Hayakawa, M.:
Criticality features in ultra-low frequency magnetic fields prior to the
2013 M6.3 Kobe earthquake, Ann. Geophys., 59, S0317, https://doi.org/10.4401/ag-6863, 2016.
Potirakis, S. M., Asano, T., and Hayakawa, M.: Criticality Analysis of the
Lower Ionosphere Perturbations Prior to the 2016 Kumamoto (Japan)
Earthquakes as Based on VLF Electromagnetic Wave Propagation Data Observed
at Multiple Stations, Entropy, 20, 199, https://doi.org/10.3390/e20030199, 2018.
Priest, E. R. and Forbes, T.: Magnetic Reconnection: Mhd Theory and
Applications, Cambridge University Press, New York, 187–200, https://doi.org/10.1017/CBO9780511525087, 2000.
Prutkin, I.: Gravitational and magnetic models of the core–mantle boundary
and their correlation, J. Geodynam., 45, 146–153, https://doi.org/10.1016/j.jog.2007.09.001, 2008.
Pulinets, S. and Boyarchuk, K: Ionospheric Precursors of Earthquakes,
Springer, Berlin, https://doi.org/10.1007/b137616, 2004.
Pulinets, S. A., Davidenko, D. V., and Budnikov, P. A.: Method for Cognitive
Identification of Ionospheric Precursors of Earthquakes, Geomagn. Aeron., 61,
14–24, https://doi.org/10.1134/S0016793221010126, 2021.
Rabiner, L. R. and Schafer, R. W.: Digital Processing of Speech Signals,
J. Acoust. Soc. Am., 67, 1406, https://doi.org/10.1121/1.384160, 1980.
Russel, C. T., Zhou, X. W., Chi, P. J., Kawano, H., Moore, T. E., Peterson,
W. K., Cladis, J. B., and Singer, H. J.: Sudden compression of the outer
magnetosphere associated with an ionospheric mass ejection, Geophys. Res.
Lett., 26, 2343, https://doi.org/10.1029/1999GL900455, 1999.
Saltiel, S., Bonner, B. P., Mittal, T., Delbridge, B., and Ajo-Frankl, J. B.:
Experimental evidence for dynamic friction on rock fractures from
frequency-dependent nonlinear hysteresis and harmonic generation, J.
Geophys. Res.-Sol. Ea., 122, 4982–4999, https://doi.org/10.1002/2017JB014219,
2017.
Sarlis, N. V., Christopoulos, S.-R. G., and Skordas, E. S.: Minima of the
fluctuations of the order parameter of global seismicity, Chaos, 25,
063110, https://doi.org/10.1063/1.4922300, 2015.
Sarlis, N. V., Skordas, E. S., Varotsos, P. A., Ramirez-Rojas, A., and
Flores-Marquez, E. L.: Identifying the Occurrence Time of the Deadly Mexico
M8.2 Earthquake on 7 September 2017, Entropy, 21, 301, https://doi.org/10.3390/e21030301, 2019.
Sarson, G. R.: Dynamo Waves, Encyclopedia of Geomagnetism and Paleomagnetism,
edited by: Gubbins, D. and Herrero-Berbera, E., Springer, Netherlands, 161–163, https://doi.org/10.1007/978-1-4020-4423-6_68, 2007.
Satake, K., Heidarzadeh, M., Quiroz, M., and Cienfuegos, R.: History and
features of trans-oceanic tsunamis and implications for paleo-tsunami
studies, Earth-Sci. Rev., 202, 103112, https://doi.org/10.1016/j.earscirev.2020.103112, 2020.
Scoville, J., Heraud, J., and Freund, F.: Pre-earthquake magnetic pulses, Nat. Hazards Earth Syst. Sci., 15, 1873–1880, https://doi.org/10.5194/nhess-15-1873-2015, 2015.
Shea, M. A. and Smart, D. F.: Vertical cutoff rigidities for cosmic ray
stations since 1955, Proc. 27th Int. Cosmic Ray Conf., Hamburg, 10,
4063–4066, 2001.
Scholz, C. H.: The Mechanics of Earthquakes and Faulting, 2nd edition,
Cambridge University Press, ISBN 978-0-521-65540-8, 2002.
Selvadurai, P. A.: Laboratory insight into seismic estimates of energy
partitioning during dynamic rupture: An observable scaling breakdown.
J. Geophys. Res.-Sol. Ea., 124, 11350–11379, https://doi.org/10.1029/2018jb017194,
2019.
Silva, R. P., Sobral, J. H. A., Koga, D., and Souza, J. R.: Evidence of prompt penetration electric fields during HILDCAA events, Ann. Geophys., 35, 1165–1176, https://doi.org/10.5194/angeo-35-1165-2017, 2017.
Simmons, N. A., Forte, A. M., Boschi, L., and Grand, S. P.: Gypsum: A joint
tomographic model of mantle density and seismic wave speeds, J.
Geophys. Res., 115, B12310, https://doi.org/10.1029/2010JB007631, 2010.
Slifkin, L.: Seismic electric signals from displacement of charged
dislocations, Tectonophysics, 224, 149–152,
https://doi.org/10.1016/0040-1951(93)90066-S, 1993.
Smart, D. F. and Shea, M. A.: Geomagnetic Cutoff Rigidity computer program
Theory, Software Description and Example, Final Report, Grant NAG5-8009,
Center for Space Plasmas and Aeronomic Research, the University of Alabama
in Huntsville, 2001.
Smart, D. F. and Shea, M. A.: A review of geomagnetic cutoff rigidities for
earth-orbiting spacecraft, Adv. Space Res., 36,
2012–2020, https://doi.org/10.1016/j.asr.2004.09.015, 2005.
Smart, D. F., Shea, M. A., and Flückiger, E. O.: Magnetospheric models and
trajectory computations, Space Sci. Rev., 93, 305–333, https://doi.org/10.1023/A:1026556831199, 2000.
Soldati, G., Boschi, L., and Forte, A. M.: Tomography of core–mantle
boundary and lowermost mantle coupled by geodynamics, Geophys. J.
Int., 189, 730–746, https://doi.org/10.1111/j.1365-246X.2012.05413.x,
2012.
Soloviev, A., Chulliat, A., Bogoutdinov, S., Gvishiani, A., Agayan, S.,
Peltier, A., and Heumez, B.: Automated recognition of spikes in 1 Hz data
recorded at the Easter Island magnetic observatory, Earth Planets Space, 64,
743–752, https://doi.org/10.5047/eps.2012.03.004, 2012.
Stavrakas, I., Triantis, D., Agioutantis, Z., Maurigiannakis, S., Saltas, V., Vallianatos, F., and Clarke, M.: Pressure stimulated currents in rocks and their correlation with mechanical properties, Nat. Hazards Earth Syst. Sci., 4, 563–567, https://doi.org/10.5194/nhess-4-563-2004, 2004.
Stavrakas, I., Kourkoulis, S., and Triantis, D.: Damage evolution in marble
under uniaxial compression monitored by Pressure Stimulated Currents and
Acoustic Emissions, Frattura Ed Integrità Strutturale, 13, 573–583,
https://doi.org/10.3221/IGF-ESIS.50.48, 2019.
Stewart, D. N., Busse, F. H., Whaler, K., and Gubbins, D.: Geomagnetism Earth
rotation and the electrical conductivity of the lower mantle, Phys. Earth
Planet. Inter., 92, 199–214, https://doi.org/10.1016/0031-9201(95)03035-4, 1995.
Storini, M., Shea, M. A., Smart, D. F., and Cordaro, E. G.: Cutoff
Variability for the Antarctic Laboratory for Cosmic Rays
(LARC: 1955–1995), 26th International Cosmic Ray Conference,
SH.3.6.30.7.402, 17–25 August 1999, Salt Lake City, UT, USA, 1999.
Stroh, A. N.: The Formation of Cracks in Plastic Flow II, Philos. T. R. Soc.
Lond., A232, 548–560, https://doi.org/10.1098/rspa.1954.0124, 1955.
Sun, S.: Seismic velocities, anisotropy and elastic properties of
crystalline rocks and implications for interpretation of seismic data, PhD
thesis, École Polytechnique de Montréal, available at:
https://publications.polymtl.ca/725/ (last access: 7 June 2021), 2011.
Tarduno, J. A., Watkeys, M. K., Huffman, T. N., Cottrell, R. D., Blackman, E. G.,
Wendt, A., Scribner, C. A., and Wagner, C. L.: Antiquity of the South Atlantic
Anomaly and evidence for top-down control on the geodynamo, Nat Commun., 6,
7865, https://doi.org/10.1038/ncomms8865, 2015.
Telesca, L., Lapenna, V., and Alexis, N.: Multiresolution wavelet analysis of
earthquakes, Chaos, Solitons and Fractals, 22, 741, https://doi.org/10.1016/j.chaos.2004.02.021, 2004.
Telesca, L., Hloupis, G., Nikolintaga, I., and Vallianatos, F.: Temporal patterns in
southern Aegean seismicity revealed by the multiresolution wavelet analysis,
Commun. Nonlinear Sci., 12, 1418, https://doi.org/10.1016/j.cnsns.2005.12.005,
2007.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis,
B. Am. Meteorol. Soc., 79, 61–78,
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2,
1998.
Triantis, D., Anastasiadis, C., and Stavrakas, I.: The correlation of electrical charge with strain on stressed rock samples, Nat. Hazards Earth Syst. Sci., 8, 1243–1248, https://doi.org/10.5194/nhess-8-1243-2008, 2008.
Triantis D., Vallianatos F., Stavrakas I., and Hloupis G.: Relaxation
phenomena of electrical signal emissions from rock following application of
abrupt mechanical stress, Ann. Geophys., 55, 207–212,
https://doi.org/10.4401/ag-5316, 2012.
Triantis, D., Stavrakas, I., Kyriazopoulos, A., Pasiou, E. D., and Kourkoulis,
S. K.: Monitoring the mechanical response of early aged cement-mortar
specimens using the Pressure Stimulated Currents technique, Procedia
Structural Integrity, 28, 502–510, https://doi.org/10.1016/j.prostr.2020.10.059, 2020.
Tsyganenko, N. A.: A model of the near magnetosphere with a dawn-dusk
asymmetry 1. Mathematical structure, J. Geophys. Res., 107, 1179, https://doi.org/10.1029/2001JA000219, 2002a.
Tsyganenko, N. A.: A model of the near magnetosphere with a dawn-dusk
asymmetry 2: parametrization and fitting to observation, J. Geophys. Res.,
107, 1176, https://doi.org/10.1029/2001JA000219, 2002b.
Tzanis, A. and Vallianatos, F.: A physical model of electrical earthquake
precursors due to crack propagation and the motion of charged edge
dislocations, Seismo Electromagnetics
(Lithosphere–Atmosphere–Ionosphere-Coupling), TerraPub,
117–130, 2002.
Utada, H., Shimizu, H., Ogawa, T., Maeda, T., Furumura, T., Yamamoto, T.,
Yamazaki, N., Yoshitake, Y., and Nagamachi, S.: Geomagnetic field changes in
response to the 2011 off the Pacific Coast of Tohoku earthquake and tsunami,
Earth Planet. Sc. Lett., 311, 11–27, https://doi.org/10.1016/j.epsl.2011.09.036, 2011.
Vallianatos, F. and Tzanis, A.: On the nature, scaling and spectral properties of pre-seismic ULF signals, Nat. Hazards Earth Syst. Sci., 3, 237–242, https://doi.org/10.5194/nhess-3-237-2003, 2003.
Varotsos, P. and Alexopoulos, K.: Physical properties of the variations of
the electric field of the earth preceding earthquakes, I, Tectonophysics, 110,
73–98, https://doi.org/10.1016/0040-1951(84)90059-3, 1984.
Varotsos, P. A.: The Physics of Seismic Electric Signals, Terra Pub, Tokyo, 388 pp., 2005.
Varotsos, P. A., Sarlis, N. V., and Skordas, E. S.: Phenomena preceding major earthquakes interconnected through a physical model, Ann. Geophys., 37, 315–324, https://doi.org/10.5194/angeo-37-315-2019, 2019.
Venegas-Aravena, P., Cordaro, E. G., and Laroze, D.: A review and upgrade of the lithospheric dynamics in context of the seismo-electromagnetic theory, Nat. Hazards Earth Syst. Sci., 19, 1639–1651, https://doi.org/10.5194/nhess-19-1639-2019, 2019.
Venegas-Aravena, P., Cordaro, E. G., and Laroze, D.: The spatial–temporal total friction coefficient of the fault viewed from the perspective of seismo-electromagnetic theory, Nat. Hazards Earth Syst. Sci., 20, 1485–1496, https://doi.org/10.5194/nhess-20-1485-2020, 2020.
Vezzoli, L. and Acoocella, V.: Easter Island, SE Pacific: An end-member type
of hotspot volcanism, Geol. Soc. Am. Bull., 121, 869–886, https://doi.org/10.1130/B26470.1, 2009.
Vigny, C., Socquet, A., Peyrat, S., Ruegg, J.-C., Metois, M., Madariaga, R.,
Morvan, S.,Lancieri, M., Lacassin, R., Campos, J., Carrizo, D.,
Bejar-Pizarro, M., Barrientos, S., Armijo, R., Aranda, C., Valderas-Bermejo,
M.-C., Ortega, I., Bondoux, F., Baize, S.,Lyon-Caen, H., Pavez, A., Vilotte,
J. P., Bevis, M., Brooks, B., Smalley, R., Parra, H., Baez, J.-C., Blanco,
M., Cimbaro, S., and Kendrick, E.: The 2010 Mw 8.8 Maule Megathrust
Earthquake of Central Chile, monitored by GPS, Science, 332, 1417–1421,
https://doi.org/10.1126/science.1204132, 2011.
Villalobos, C. U., Bravo, M. A., Ovalle, E. M., and Foppiano, A. J.: Ionospheric
characteristics prior to the greatest earthquake in recorded history,
Adv. Space Res., 57, 1345–1359, https://doi.org/10.1016/j.asr.2015.09.015, 2016.
Vogel, E. E., Brevis, F. G., Pastén, D., Muñoz, V., Miranda, R. A., and Chian, A. C.-L.: Measuring the seismic risk along the Nazca–South American subduction front: Shannon entropy and mutability, Nat. Hazards Earth Syst. Sci., 20, 2943–2960, https://doi.org/10.5194/nhess-20-2943-2020, 2020.
Yamanaka, C., Matsumoto, H., and Asahara, H.: Preseismic Electromagnetic
Phenomena, IEEJ Transactions on Fundamentals and Materials, 136, 310–314, https://doi.org/10.1541/ieejfms.136.310,
2016.
Yeeram, T.: The solar wind-magnetosphere coupling and daytime disturbance
electric fields in equatorial ionosphere during consecutive recurrent
geomagnetic storms, J. Atmos. Sol.-Terr. Phys.,
187, 40–52, https://doi.org/10.1016/j.jastp.2019.03.004, 2019.
Yoshida, M.: Core–mantle boundary topography estimated from numerical
simulations of instantaneous mantle flow, Geochem. Geophy.
Geosy., 9, 1–8, https://doi.org/10.1029/2008GC002008, 2008.
Yu, Z., Hattori, K., Zhu, K., Fan, M., Marchetti, D., He, X., and Chi, C.:
Evaluation of Pre-Earthquake Anomalies of Borehole Strain Network by Using
Receiver Operating Characteristic Curve, Remote Sens, 13, 515,
https://doi.org/10.3390/rs13030515, 2021.
Zhang, Y., Zhang, G., Hetland, E. A., Shan, X., Wen, S., and Zuo, R.:
Coseismic Fault Slip of the September 16, 2015 Mw 8.3 Illapel, Chile
Earthquake Estimated from InSAR Data, in: The Chile-2015 (Illapel) Earthquake and Tsunami, edited by: Braitenberg, C. and Rabinovich, A.,
Pageoph Topical
Volumes, Birkhäuser, Cham, https://doi.org/10.1007/978-3-319-57822-4_7, 2017.
Zlotnicki, J., Kossobokov, V., and Le Mouel, J.-L.: Frequency spectral
properties of an ULF electromagnetic signal around the 21 July 1995,
M=5.7, Yong Deng (China) earthquake, Tectonophysics, 334, 259–270,
https://doi.org/10.1016/S0040-1951(00)00222-5, 2001.
Short summary
We developed a methodology that generates free externally disturbed magnetic variations in ground magnetometers close to the Chilean convergent margin. Spectral analysis (~ mHz) and magnetic anomalies increased prior to large Chilean earthquakes (Maule 2010, Mw 8.8; Iquique 2014, Mw 8.2; Illapel 2015, Mw 8.3). These findings relate to microcracks within the lithosphere due to stress state changes. This physical evidence should be thought of as a last stage of the earthquake preparation process.
We developed a methodology that generates free externally disturbed magnetic variations in...
Altmetrics
Final-revised paper
Preprint