Articles | Volume 21, issue 6
https://doi.org/10.5194/nhess-21-1739-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1739-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing climate-change-induced flood risk in the Conasauga River watershed: an application of ensemble hydrodynamic inundation modeling
Tigstu T. Dullo
Department of Civil and Environmental Engineering, Tennessee
Technological University, Cookeville, TN 38505, USA
George K. Darkwah
Department of Civil and Environmental Engineering, Tennessee
Technological University, Cookeville, TN 38505, USA
Sudershan Gangrade
Environmental Sciences Division, Oak Ridge National Laboratory, Oak
Ridge, TN 37831, USA
Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Mario Morales-Hernández
Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Computational Sciences and Engineering Division, Oak Ridge National
Laboratory, Oak Ridge, TN 37831, USA
M. Bulbul Sharif
Department of Computer Science, Tennessee Technological University,
Cookeville, TN 38505, USA
Alfred J. Kalyanapu
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Tennessee
Technological University, Cookeville, TN 38505, USA
Shih-Chieh Kao
Environmental Sciences Division, Oak Ridge National Laboratory, Oak
Ridge, TN 37831, USA
Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Sheikh Ghafoor
Department of Computer Science, Tennessee Technological University,
Cookeville, TN 38505, USA
Moetasim Ashfaq
Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Computational Sciences and Engineering Division, Oak Ridge National
Laboratory, Oak Ridge, TN 37831, USA
Related authors
No articles found.
Pablo Vallés, Mario Morales-Hernández, Volker Roeber, Pilar García-Navarro, and Daniel Caviedes-Voullième
EGUsphere, https://doi.org/10.5194/egusphere-2025-722, https://doi.org/10.5194/egusphere-2025-722, 2025
Short summary
Short summary
This study presents a computational model for passive particle transport in water. Their trajectories depend on advection and turbulence, represented by a random-walk model. Three numerical methods are compared to estimate their trajectory, evaluating accuracy and computational cost. Tests show that the Euler method offers the best balance. Finally, a rainfall event in a catchment is simulated to validate the model’s performance over irregular terrain.
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024, https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Short summary
The Reservoir Assessment Tool (RAT) merges satellite data with hydrological models, enabling robust estimation of reservoir parameters like inflow, outflow, surface area, and storage changes around the world. Version 3.0 of RAT lowers the barrier of entry for new users and achieves scalability and computational efficiency. RAT 3.0 also facilitates open-source development of functions for continuous improvement to mobilize and empower the global water management community.
Daniel Caviedes-Voullième, Mario Morales-Hernández, Matthew R. Norman, and Ilhan Özgen-Xian
Geosci. Model Dev., 16, 977–1008, https://doi.org/10.5194/gmd-16-977-2023, https://doi.org/10.5194/gmd-16-977-2023, 2023
Short summary
Short summary
This paper introduces the SERGHEI framework and a solver for shallow-water problems. Such models, often used for surface flow and flood modelling, are computationally intense. In recent years the trends to increase computational power have changed, requiring models to adapt to new hardware and new software paradigms. SERGHEI addresses these challenges, allowing surface flow simulation to be enabled on the newest and upcoming consumer hardware and supercomputers very efficiently.
Cited articles
AECOM: The Impact of Climate Change and Population Growth on the National
Flood Insurance Program through 2100, available at: https://www.aecom.com/content/wp-content/uploads/2016/06/Climate_Change_Report_AECOM_2013-06-11.pdf (last access: 12 October 2019), 2013.
Akaike, H.: A new look at the statistical model identification,
IEEE Transactions on Automatic Control, 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705,
1974.
Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., and Feyen, L.:
Advances in Pan-European Flood Hazard Mapping, Hydrol. Process., 28,
4067–4077, https://doi.org/10.1002/hyp.9947, 2014.
Alfieri, L., Burek, P., Feyen, L., and Forzieri, G.: Global warming increases the frequency of river floods in Europe, Hydrol. Earth Syst. Sci., 19, 2247–2260, https://doi.org/10.5194/hess-19-2247-2015, 2015a.
Alfieri, L., Feyen, L., Dottori, F., and Bianchi, A.: Ensemble Flood Risk
Assessment in Europe Under High End Climate Scenarios, Global Environ.
Change, 35, 199–212, https://doi.org/10.1016/j.gloenvcha.2015.09.004, 2015b.
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon,
P., Wyser, K., and Feyen, L.: Global Projections of River Flood Risk in a
Warmer World, Earth's Future, 5, 171–182, https://doi.org/10.1002/2016EF000485, 2017.
Alfieri, L., Dottori, F., Betts, R., Salamon, P., and Feyen, L.: Multi-Model
Projections of River Flood Risk in Europe under Global Warming, Climate,
6, https://doi.org/10.3390/cli6010006, 2018.
Allen-Dumas, M. R., Binita, K. C., and Cunliff, C. I.: Extreme Weather and
Climate Vulnerabilities of the Electric Grid: A Summary of Environmental
Sensitivity Quantification Methods, ORNL/TM-2019/1252, Oak Ridge National
Laboratory, available at: https://www.energy.gov/sites/prod/files/2019/09/f67/Oak Ridge National Laboratory EIS Response.pdf,
last access: 17 December 2019.
Anderson, T. W. and Darling, D. A. Asymptotic theory of certain
“goodness-of-fit” criteria based on stochastic processes, Ann. Math. Stat.,
23, 193–212, https://www.jstor.org/stable/2236446 (last access: 26 May 2021), 1952.
Archuleta, C.-A. M., Constance, E. W., Arundel, S. T., Lowe, A. J., Mantey,
K. S., and Phillips, L. A.: The National Map Seamless Digital Elevation
Model Specifications, US Geological Survey Techniques and Methods 11-B9,
https://doi.org/10.3133/tm11B9, 2017.
Arnell, N. W. and Gosling, S. N.: The Impacts of Climate Change on River
Flood Risk at the Global Scale, Clim. Change, 134, 387–401,
doi.10.1007/s10584-014-1084-5, 2014.
Ashfaq, M., Bowling, L. C., Cherkauer, K., Pal, J. S., and Diffenbaugh, N.
S.: Influence of Climate Model Biases and Daily-scale Temperature and
Precipitation Events on Hydrological Impacts Assessment: A Case Study of the
United States, J. Geophys. Res., 115, D14116, https://doi.org/10.1029/2009JD012965,
2010.
Ashfaq, M., Ghosh, S., Kao, S.-C., Bowling, L. C., Mote, P., Touma, D.,
Rauscher, S. A., and Diffenbaugh, N. S.: Near-term Acceleration of
Hydroclimatic Change in the Western U.S., J. Geophys. Res., 118, 10676–10693, https://doi.org/10.1002/jgrd.50816, 2013.
Ashfaq, M., Rastogi, D., Mei, R., Kao, S.-C., Gangrade, S., Naz, B. S., and
Touma, D.: High-resolution Ensemble Projections of Near-term Regional
Climate over the Continental United States. J. Geophys. Res., 121,
9943–9963, https://doi.org/10.1002/2016JD025285, 2016.
Baechler, M. C., Gilbride, T. L., Cole, P. C., Hefty, M. G., and Ruiz, K.:
Building America Best Practices Series, Volume 7.3, High-Performance Home
Technologies: Guide to Determining Climate Regions by County, Pacific
Northwest National Laboratory, US Department of Energy under Contract
DE-AC05-76RLO 1830, PNNL-17211 Rev. 3, available at: https://www.energy.gov/sites/prod/files/2015/10/f27/ba_climate_region_guide_7.3.pdf
(last access: 27 September 2020), 2015.
Bedient, P. B., Huber, W. C., and Vieux, B. E.: Hydrology and Floodplain Analysis, Prentice Hall, Upper Saddle River, New Jersey, 2013.
Bhuyian, Md. N. M., Kalyanapu, A. J., and Nardi, F.: Approach to Digital
Elevation Model Correction by Improving Channel Conveyance, J. Hydrol. Eng.,
20, 04014063, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001020, 2014.
Bhuyian, Md. N. M., Dullo, T. T., Kalyanapu, A. J., Gangrade, S., and Kao,
S.-C.: Application of Geomorphic Correlations for River Bathymetry
Correction in Two-dimensional Hydrodynamic Modeling for Long-term Flood Risk
Evaluation, World Environmental and Water Resources Congress, Pittsburgh,
Pennsylvania, USA, 19–23 May 2019, 2019.
Birhanu, D., Kim, H., Jang, C., and Park, S.: Flood Risk and Vulnerability
of Addis Ababa City Due to Climate Change and Urbanization, Procedia
Engineer, 154, 696–702, https://doi.org/10.1016/j.proeng.2016.07.571, 2016.
Blessing, R., Sebastian, A., and Brody, S. D.: Flood Risk Delineation in the
United States: How Much Loss Are We Capturing?, Nat. Hazards Rev., 18,
04017002, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000242, 2017.
Bollinger, L. A. and Dijkema, G. P. J.: Evaluating Infrastructure Resilience
to Extreme Weather – the Case of the Dutch Electricity Transmission
Network, EJTIR, 16, 214–239, https://doi.org/10.18757/ejtir.2016.16.1.3122, 2016.
Bragatto, T., Cresta, M., Cortesi, F., Gatta, F. M., Geri, A., Maccioni, M.,
and Paulucci, M.: Assessment and Possible Solution to Increase Resilience:
Flooding Threats in Terni Distribution Grid, Energies, 12, 744,
https://doi.org/10.3390/en12040744, 2019.
Brunner, G. W., Warner, J. C., Wolfe, B. C., Piper, S. S., and Marston, L.:
Hydrologic Engineering Center – River Analysis System (HEC-RAS)
Applications Guide 2016, Version 5.0, US Army Corps of Engineers, CA,
available at: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 5.0 Applications Guide.pdf
(last access: 27 December 2019), 2016.
Burkey, J.: Log-Pearson Flood Flow Frequency using USGS 17B, available at:
https://www.mathworks.com/matlabcentral/fileexchange/22628-log-pearson-flood-flow-frequency-using-usgs-17b
(last access: 23 December 2019), 2009.
Chandramowli, S. N. and Felder, F. A.: Impact of Climate Change on
Electricity Systems and Markets – A Review of Models and Forecasts,
Sustain. Energy Technol. Assess., 5, 62–74, https://doi.org/10.1016/j.seta.2013.11.003,
2014.
Ciscar, J. C. and Dowling, P.: Integrated Assessment of Climate Impacts and
Adaptation in the Energy Sector, Energ. Econ., 46, 531–538,
https://doi.org/10.1016/j.eneco.2014.07.003, 2014.
Cronin, J., Anandarajah, G., and Dessens, O.: Climate Change Impacts on the
Energy System: A Review of Trends and Gaps, Clim. Change, 151, 79–93,
https://doi.org/10.1007/s10584-018-2265-4, 2018.
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor,
G. H., Curtis, J., and Pasteris, P. P.: Physiographically Sensitive Mapping
of Climatological Temperature and Precipitation Across the Conterminous
United States, Int. J. Climatol., 28, 2031–2064, https://doi.org/10.1002/joc.1688,
2008.
Elliott, K. J. and Vose, J. M.: Initial Effects of Prescribed Fire on
Quality of Soil Solution and Streamwater in the Southern Appalachian
Mountains, South. J. Appl. For., 29, 5–15, https://doi.org/10.1093/sjaf/29.1.5,
2005.
Elsner, M. M., Cuo, L., Voisin, N., Deems, J. S., Hamlet, A. F., Vano, J.
A., Mickelson, K. E. B., Lee, S.-Y., and Lettenmaier, D. P.: Implications of
21st Century Climate Change for the Hydrology of Washington State, Climatic
Change, 102, 225–260, https://doi.org/10.1007/s10584-010-9855-0, 2010.
England Jr., J. F., Cohn, T. A., Faber, B. A., Stedinger, J. R., Thomas Jr.,
W. O., Veilleux, A. G., Kiang, J. E., and Mason Jr., R. R.: Guidelines for
Determining Flood Flow Frequency–Bulletin 17C, Techniques and Methods
4-B5, US Geological Survey, https://doi.org/10.3133/tm4B5, 2019.
Farber-DeAnda, M., Cleaver, M., Lewandowski, C., and Young, K.: Hardening
and Resiliency: US Energy Industry Response to Recent Hurricanes Seasons,
Office of Electricity Delivery and Energy Reliability, US Department of
Energy, available at: https://www.oe.netl.doe.gov/docs/HR-Report-final-081710.pdf (last access:
17 December 2019), 2010.
FEMA (Federal Emergency Management Agency): Emergency Power Systems for
Critical Facilities: A Best Practices Approach to Improving Reliability,
FEMA P-1019, Applied Technology Council, Redwood City, CA, available at:
https://www.fema.gov/media-library/assets/documents/101996
(last access: 17 December 2019), 2014.
FEMA (Federal Emergency Management Agency): FEMA Flood Map Service Center,
available at: https://msc.fema.gov/portal/availabilitySearch?#searchresultsanchor, last access: 28 December 2019.
FIS (Flood Insurance Study): Flood Insurance Study: Whitfield County,
Georgia and Incorporated Areas, Flood Insurance Study Number: 13313CV000A,
Federal Emergency Management Agency, available at: https://georgiadfirm.com/pdf/panels/13313CV000A.pdf (last access: 25
December 2019), 2007.
FIS (Flood Insurance Study): Flood Insurance Study: Murray County, Georgia
and Incorporated Areas, Flood Insurance Study Number: 13213CV000A, Federal
Emergency Management Agency, available at: https://georgiadfirm.com/pdf/panels/13213CV000A.pdf (last access: 27
December 2019), 2010.
Forzieri, G., Bianchi, A., e Silva, F. B., Herrera, M. A. M., Leblois, A.,
Lavalle, C., Aerts, J. C. J. H., and Feyen, L.: Escalating Impacts of
Climate Extremes on Critical Infrastructures in Europe, Global Environ.
Chang., 48, 97–107, https://doi.org/10.1016/j.gloenvcha.2017.11.007, 2018.
Fu, G., Wilkinson, S., Dawson, R. J., Fowler, H. J., Kilsby, C., Panteli,
M., and Mancarella, P.: Integrated Approach to Assess the Resilience of
Future Electricity Infrastructure Networks to Climate Hazards, IEEE Syst.
J., 12, 3169–3180, https://doi.org/10.1109/JSYST.2017.2700791, 2017.
Galloway, G. E., Baecher, G. B., Plasencia, D., Coulton, K. G., Louthain,
J., Bagha, M., and Levy, A. R.: Assessing the Adequacy of the National Flood
Insurance Program's 1 Percent Flood Standard, Water Policy Collaborative,
University of Maryland, available at: https://www.fema.gov/media-library/assets/documents/9594 (last access: 17
December 2019), 2006.
Gangrade, S., Kao, S.-C., Naz, B. S., Rastogi, D., Ashfaq, M., Singh, N.,
and Preston, B. L.: Sensitivity of Probable Maximum Flood in a Changing
Environment, Water Resour. Res., 54, 3913–3936,
https://doi.org/10.1029/2017WR021987, 2018.
Gangrade, S., Kao, S.-C., Dullo, T. T., Kalyanapu, A. J., and Preston, B.
L.: Ensemble-based Flood Vulnerability Assessment for Probable Maximum Flood
in a Changing Environment, J. Hydrol., 576, 342–355,
https://doi.org/10.1016/j.jhydrol.2019.06.027, 2019.
Gangrade, S., Kao, S.-C., and McManamay, R. A.: Multi-model Hydroclimate
Projections for the Alabama-Coosa-Tallapoosa River Basin in the Southeastern
United States, Sci. Rep.-UK, 10, 2870,
https://doi.org/10.1038/s41598-020-59806-6, 2020.
Gilstrap, M., Amin, S., and DeCorla-Souza, K.: United States Electricity
Industry Primer, DOE/OE-0017, Office of Electricity Delivery and Energy
Reliability, US Department of Energy, Washington DC, available at:
https://www.energy.gov/sites/prod/files/2015/12/f28/united-states-electricity-industry-primer.pdf
(last access: 17 December 2019), 2015.
Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X.,
Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U.,
Cozzini, S., Güttler, I., O'Brien, T. A., Tawfik, A. B., Shalaby, A.,
Zakey, A. S., Steiner, A. L., Stordal, F., Sloan, L. C., and Brankovic, C.:
RegCM4: model description and preliminary tests over multiple CORDEX
domains, Climate Res., 52, 7–29, https://doi.org/10.3354/cr01018, 2012.
HCFCD (Harris County Flood Control District): Hurricane Harvey – Storm and
Flood Information, available at: https://www.hcfcd.org/Portals/62/Harvey/immediate-flood-report-final-hurricane-harvey-2017.pdf
(last access: 16 December 2019), 2018.
HIFLD (Homeland Infrastructure Foundation-Level Data): Homeland
Infrastructure Foundation-Level Data, Electric Substations, US Department of
Homeland Security, available at: https://hifld-geoplatform.opendata.arcgis.com/datasets/electric-substations, last access: 20 December 2019.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., Kim, H., and Kanae, S.: Global Flood Risk under Climate
Change, Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/NCLIMATE1911, 2013.
Hou, Z., Ren, H., Sun, N., Wigmosta, M. S., Liu, Y., Leung, L. R., Yan, H.,
Skaggs, R., and Coleman, A.: Incorporating Climate Nonstationarity and
Snowmelt Processes in Intensity–Duration–Frequency Analyses with Case
Studies in Mountainous Areas, J. Hydrometeorol., 20, 2331–2346,
https://doi.org/10.1175/JHM-D-19-0055.1, 2019.
Ivey, G. and Evans, K.: Conasauga River Alliance Business Plan: Conasauga
River Watershed Ecosystem Project, available at: https://www.fs.fed.us/largewatershedprojects/businessplans/ (last access:
22 December 2019), 2000.
Kalyanapu, A. and Dullo, T.: Projected Change in Flood Depth Frequency Maps, figshare [dataset], https://doi.org/10.6084/m9.figshare.12330929.v2, 2020a.
Kalyanapu, A. and Dullo, T.: Model Evaluation, figshare [dataset], https://doi.org/10.6084/m9.figshare.12330917.v1, 2020b.
Kalyanapu, A. J., Shankar, S., Pardyjak, E. R., Judi, D. R., and Burian, S.
J.: Assessment of GPU Computational Enhancement to a 2D Flood Model,
Environ. Modell. Softw., 26, 1009–1016,
https://doi.org/10.1016/j.envsoft.2011.02.014, 2011.
Kefi, M., Mishra, B. K., Kumar, P., Masago, Y., and Fukushi, K.: Assessment
of Tangible Direct Flood Damage Using a Spatial Analysis Approach under the
Effects of Climate Change: Case Study in an Urban Watershed in Hanoi,
Vietnam, Int. J. Geo-Inf., 7, 29, https://doi.org/10.3390/ijgi7010029, 2018.
Kollat, J. B., Kasprzyk, J. R., Thomas Jr., W. O., Miller, A. C., and
Divoky, D.: Estimating the Impacts of Climate Change and Population Growth
on Flood Discharges in the United States, J. Water Res. Plan. Man.,
138, 442–452, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000233, 2012.
Langerwisch, F., Rost, S., Gerten, D., Poulter, B., Rammig, A., and Cramer, W.: Potential effects of climate change on inundation patterns in the Amazon Basin, Hydrol. Earth Syst. Sci., 17, 2247–2262, https://doi.org/10.5194/hess-17-2247-2013, 2013.
Li, H., Sun, J., Zhang, H., Zhang, J., Jung, K., Kim, J., Xuan, Y., Wang,
X., and Li, F.: What Large Sample Size Is Sufficient for Hydrologic
Frequency Analysis? – A Rational Argument for a 30-Year Hydrologic Sample
Size in Water Resources Management, Water, 10, 430, https://doi.org/10.3390/w10040430,
2018.
Marshall, R., Ghafoor, S., Rogers, M., Kalyanapu, A., and Dullo, T. T.:
Performance Evaluation and Enhancements of a Flood Simulator Application for
Heterogeneous HPC Environments, Int. J. Network Comput., 8, 387–407,
2018.
McCuen, R. H.: Hydrologic Analysis and Design, Third Edition,
Pearson-Prentice Hall, Upper Saddle River, New Jersey, 2005.
Mikellidou, C. V., Shakou, L. M., Boustras, G., and Dimopoulos, C.: Energy
Critical Infrastructures at Risk from Climate Change: A State of the Art
Review, Saf. Sci., 110, 110–120, https://doi.org/10.1016/j.ssci.2017.12.022, 2018.
Milly, P. C. D., Wetherald, R. T., Dunne, K. A., and Delworth, T. L.:
Increasing Risk of Great Floods in a Changing Climate, Nature, 415,
514–517, https://doi.org/10.1038/415514a, 2002.
Mora, C., Spirandelli, D., Franklin, E. C., Lynham, J., Kantar, M. B.,
Miles, W., Smith, C. Z., Freel, K., Moy, J., Louis, L. V., Barba, E. W.,
Bettinger, K., Frazier, A. G., Colburn IX, J. F., Hanasaki, N., Hawkins, E.,
Hirabayashi, Y., Knorr, W., Little, C. M., Emanuel, K., Sheffield, J., Patz,
J. A., and Hunter, C. L.: Broad Threat to Humanity from Cumulative Climate
Hazards Intensified by Greenhouse Gas Emissions, Nat. Clim. Change, 8,
1062–1071, https://doi.org/10.1038/s41558-018-0315-6, 2018.
Morales-Hernández, M., Sharif, M. B., Gangrade, S., Dullo, T. T., Kao, S.-C., Kalyanapu, A., Ghafoor, S. K., Evans, K. J., Madadi-Kandjani, E., and Hodges, B. R.: High-performance computing in water resources hydrodynamics,
J. Hydroinform.,
22, 1217–1235, https://doi.org/10.2166/hydro.2020.163, 2020.
Morales-Hernández, M., Sharif, Md. B., Kalyanapu, A., Ghafoor, S. K., Dullo, T. T., Gangrade, S., Kao, S.-C., Norman, M. R., and Evans, K. J.:
TRITON: A Multi-GPU open source 2D hydrodynamic flood model,
Environ. Modell. Softw.,
141,
105034, https://doi.org/10.1016/j.envsoft.2021.105034,
2021.
NERC (North American Electric Reliability Corporation): Hurricane Harvey
Event Analysis Report, North American Electric Reliability Corporation,
Atlanta, GA, available at: https://www.nerc.com/pa/rrm/ea/Hurricane_Harvey_EAR_DL/NERC_Hurricane_Harvey_EAR_20180309.pdf (last access: 17 December 2019), 2018.
Ntelekos, A. A., Oppenheimer, M., Smith, J. A., and Miller, A. J.:
Urbanization, Climate Change and Flood Policy in the United States, Clim.
Chang., 103, 597–616, https://doi.org/10.1007/s10584-009-9789-6, 2010.
Nyaupane, N., Thakur, B., Kalra, A., and Ahmad, S.: Evaluating Future Flood
Scenarios Using CMIP5 Climate Projections, Water, 10, 1866,
https://doi.org/10.3390/w10121866, 2018.
Olsen, J. R.: Climate Change and Floodplain Management in the United States,
Clim. Change, 76, 407–426, https://doi.org/10.1007/s10584-005-9020-3, 2006.
Pachauri, R. K. and Meyer, L. A.: Intergovernmental Panel on Climate Change
(IPCC): Climate Change 2014: Synthesis Report, in Proceedings of
Contribution of Working Groups I, II and III to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, Geneva, Switzerland,
available at: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf
(last access: 16 December 2019), 2014.
Pant, R., Thacker, S., Hall, J. W., Alderson, D., and Barr, S.: Critical
Infrastructure Impact Assessment Due to Flood Exposure, J. Flood Risk
Manag., 11, 22–33, https://doi.org/10.1111/jfr3.12288, 2017.
Pielke Jr., R. A. and Downton, M. W.: Precipitation and Damaging Floods:
Trends in the United States, 1932–97, J. Climate, 13, 3625–3637,
https://doi.org/10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2,
2000.
Pielke Jr., R. A., Downton, M. W., and Barnard Miller, J. Z.: Flood Damage
in the United States, 1926–2000: A reanalysis of National Weather Service
Estimates, National Center for Atmospheric Research, Boulder, CO, available
at: https://sciencepolicy.colorado.edu/flooddamagedata/flooddamagedata.pdf
(last access: 16 December 2019), 2002.
Pralle, S.: Drawing Lines: FEMA and the Politics of Mapping Flood Zones,
Clim. Chang., 152, 227–237, https://doi.org/10.1007/s10584-018-2287-y, 2019.
Reed, D. A., Kapur, K. C., and Christie, R. D.: Methodology for Assessing
the Resilience of Networked Infrastructure, IEEE Syst. J., 3, 174–180,
https://doi.org/10.1109/JSYST.2009.2017396, 2009.
Saksena, S., Dey, S., Merwade, V., and Singhofen, P. J.: A
computationally efficient and physically based approach for urban flood
modeling using a flexible spatiotemporal structure. Water Resour.
Res., 56, e2019WR025769, https://doi.org/10.1029/2019WR025769,
2020.
Storck, P., Bowling, L., Wetherbee, P., and Lettenmaier, D.: Application of
a GIS-Based Distributed Hydrology Model for Prediction of Forest Harvest
Effects on Peak Stream Flow in the Pacific Northwest, Hydrol. Process.,
12, 889–904, https://doi.org/10.1002/(SICI)1099-1085(199805)12:6<889::AID-HYP661>3.0.CO;2-P, 1998.
Strauss, B. and Ziemlinski, R.: Sea Level Rise Threats to Energy
Infrastructure: A Surging Seas Brief Report by Climate Central, Climate
Central, Washington, DC, available at: http://slr.s3.amazonaws.com/SLR-Threats-to-Energy-Infrastructure.pdf (last
access: 17 December 2019), 2012.
Tan, A.: Sandy and Its Impacts: Chapter 1, NYC Special Initiative for
Rebuilding and Resiliency, NYC Resources, NY, available at: http://www.nyc.gov/html/sirr/downloads/pdf/final_report/Ch_1_SandyImpacts_FINAL_singles.pdf (last access: 17 December 2019), 2013.
Thornton, P. E., Running, S. W., and White, M. A.: Generating surfaces of
daily meteorological variables over large regions of complex terrain, J.
Hydrol., 190, 214–251, https://doi.org/10.1016/S0022-1694(96)03128-9, 1997.
UNISDR (United Nations Office for Disaster Risk Reduction): Making
Development Sustainable: The Future of Disaster Risk Management, Global
Assessment Report on Disaster Risk Reduction, Geneva, Switzerland, available
at: https://www.preventionweb.net/english/hyogo/gar/2015/en/gar-pdf/GAR2015_EN.pdf (last access: 16 December 2019), 2015.
USACE (US Army Corps of Engineers): Master Water Control Manual:
Alabama-Coosa-Tallapoosa (ACT) River Basin, Alabama, Georgia, US Army Corps
of Engineers, available at: https://www.sam.usace.army.mil/Portals/46/docs/planning_environmental/act/docs/New/ACT Master Manual_March 13.pdf (last access: 22 December 2019), 2013.
USGS (US Geological Survey): Guidelines for Determining Flood Flow
Frequency, Bulletin #17B of the Hydrology Subcommittee, Interagency
Advisory Committee on Water Data, US Geological Survey, Reston, VA, 1982.
Vale, M.: Securing the US Electrical Grid, Center for the Study of the
Presidency and Congress (CSPC), Washington DC, available at: https://protectourpower.org/resources/cspc-2014.pdf (last access: 14
March 2017), 2014.
Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P.: A Distributed
Hydrology-Vegetation Model for Complex Terrain, Water Resour. Res., 30,
1665–1679, https://doi.org/10.1029/94WR00436, 1994.
Wigmosta, M. S., Nijssen, B., Storck, P., and Lettenmaier, D. P.: The
Distributed Hydrology Soil Vegetation Model, in Mathematical Models of Small
Watershed Hydrology and Applications, edited by: Singh, V. P. and Frevert, D. K., Wat. Resour. Publications, Littleton, CO, 2002.
Wilbanks, T. J., Bhatt, V., Bilello, D., Bull, S., Ekmann, J., Horak, W.,
Huang, Y. J., Levine, M. D., Sale, M. J., Schmalzer, D., and Scott, M. J.:
Effects of Climate Change on Energy Production and Use in the United States,
US Climate Change Science Program Synthesis and Assessment Product 4.5,
available at: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1005&context=usdoepub (last access: 17 December 2019),
2008.
Wing, O. E. J., Bates, P. D., Sampson, C. C., Smith, A. M., Johnson, K. A.,
and Erickson, T. A.: Validation of a 30 m Resolution Flood Hazard Model of
the Conterminous United States, Water Resour. Res., 53, 7968–7986,
https://doi.org/10.1002/2017WR020917, 2017.
Wing, O. E. J., Bates, P. D., Smith, A. M., Sampson, C. C., Johnson, K. A.,
Fargione, J., and Morefield, P.: Estimates of Present and Future Flood Risk
in the Conterminous United States, Environ. Res. Lett., 13, 034023,
https://doi.org/10.1088/1748-9326/aaac65, 2018.
Winkler, J., Duenas-Osorio, L., Stein, R., and Subramanian, D.: Performance
Assessment of Topologically Diverse Power Systems Subjected to Hurricane
Events, Reliability Engineering and System Safety, 95, 323–336,
https://doi.org/10.1016/j.ress.2009.11.002, 2010.
Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens, M. F.
P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L.,
van Vuuren, D. P., and Ward, P. J.: Global Drivers of Future River Flood
Risk, Nat. Clim. Chang., 6, 381–385, https://doi.org/10.1038/NCLIMATE2893, 2016.
Wobus, C., Gutmann, E., Jones, R., Rissing, M., Mizukami, N., Lorie, M., Mahoney, H., Wood, A. W., Mills, D., and Martinich, J.: Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States, Nat. Hazards Earth Syst. Sci., 17, 2199–2211, https://doi.org/10.5194/nhess-17-2199-2017, 2017.
Zamuda, C., Antes, M., Gillespie, C. W., Mosby, A., and Zotter, B.: Climate
Change and the US Energy Sector: Regional Vulnerabilities and Resilience
Solutions, Office of Energy Policy and Systems Analysis, US Department of
Energy, available at: https://toolkit.climate.gov/sites/default/files/Regional_Climate_Vulnerabilities_and_Resilience_Solutions_0.pdf (last access: 17
December 2019), 2015.
Zamuda, C. and Lippert, A.: Climate Change and the Electricity Sector: Guide
for Assessing Vulnerabilities and Developing Resilience Solutions to Sea
Level Rise, Office of Energy Policy and Systems Analysis, US Department of
Energy, available at: http://www.ourenergypolicy.org/wp-content/uploads/2017/09/Climate-Change-and-the-Electricity-Sector-Guide-for-Assessing-Vulnerabilities-and-Developing-Resilience-Solutions-to-Sea-Level-Rise-July-2016.pdf
(last access: 18 December 2019), 2016.
Zhao, G., Gao, H., Naz, B. S., Kao, S.-C., and Voisin, N.: Integrating a
Reservoir Regulation Scheme into a Spatially Distributed Hydrological Model,
Adv. Water Resour., 98, 16–31, https://doi.org/10.1016/j.advwatres.2016.10.014, 2016.
Zheng, X., Maidment, D. R., Tarboton, D. G., Liu, Y. Y., and Passalacqua,
P.: GeoFlood: Large-scale Flood Inundation Mapping Based on High-Resolution
Terrain Analysis, Water Resour. Res., 54, 10013–10033,
https://doi.org/10.1029/2018WR023457, 2018.
Short summary
We studied the effect of potential future climate change on floods, flood protection, and electricity infrastructure in the Conasauga River watershed in the US using ensemble hydrodynamic modeling. We used a GPU-accelerated Two-dimensional Runoff Inundation Toolkit for Operational Needs (TRITON) hydrodynamic model to simulate floods. Overall, this study demonstrates how a fast hydrodynamic model can enhance flood frequency maps and vulnerability assessment under changing climatic conditions.
We studied the effect of potential future climate change on floods, flood protection, and...
Altmetrics
Final-revised paper
Preprint