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Abstract. This study evaluates the impact of potential future
climate change on flood regimes, floodplain protection, and
electricity infrastructures across the Conasauga River wa-
tershed in the southeastern United States through ensemble
hydrodynamic inundation modeling. The ensemble stream-
flow scenarios were simulated by the Distributed Hydrol-
ogy Soil Vegetation Model (DHSVM) driven by (1) 1981—
2012 Daymet meteorological observations and (2) 11 sets
of downscaled global climate models (GCMs) during the
1966-2005 historical and 2011-2050 future periods. Sur-
face inundation was simulated using a GPU-accelerated
Two-dimensional Runoff Inundation Toolkit for Operational
Needs (TRITON) hydrodynamic model. A total of 9 out of
the 11 GCMs exhibit an increase in the mean ensemble flood
inundation areas. Moreover, at the 1 % annual exceedance
probability level, the flood inundation frequency curves indi-
cate a ~ 16 km? increase in floodplain area. The assessment
also shows that even after flood-proofing, four of the sub-
stations could still be affected in the projected future period.
The increase in floodplain area and substation vulnerability
highlights the need to account for climate change in flood-
plain management. Overall, this study provides a proof-of-
concept demonstration of how the computationally intensive
hydrodynamic inundation modeling can be used to enhance
flood frequency maps and vulnerability assessment under the
changing climatic conditions.
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sored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

1 Introduction

Floods are costly disasters that affect more people than any
other natural hazard around the world (UNISDR, 2015). Ma-
jor factors that can exacerbate flood damage include popu-
lation growth, urbanization, and climate change (Birhanu et
al., 2016; Winsemius et al., 2016; Alfieri et al., 2017, 2018;
Kefi et al., 2018). Recent observations exhibit an increase
in the frequency and the intensity of extreme precipitation
events (Pachauri and Meyer, 2014), which have strengthened
the magnitude and frequency of flooding (Milly et al., 2002;
Langerwisch et al., 2013; Alfieri et al., 2015a, 2018; Mora et
al., 2018). As a result, the damage and cost of flooding have
substantially increased across the United States (US) (Pielke
and Downton, 2000; Pielke et al., 2002; Ntelekos et al., 2010;
Wing et al., 2018) and the rest of the world (Hirabayashi
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et al., 2013; Arnell and Gosling, 2014; Alfieri et al., 2015b,
2017; Kefi et al., 2018).

Since 1968, the National Flood Insurance Program
(NFIP), administered by the Federal Emergency Manage-
ment Agency (FEMA), has implemented floodplain regu-
lation standards in the US to mitigate the escalating flood
losses (Bedient et al., 2013). For communities participating
in the NFIP, flood insurance is required for structures located
within the 1% annual exceedance probability (AEP) flood
zone (i.e., areas with probability of flooding > 1% in any
given year; FEMA, 2002). However, existing floodplain pro-
tection standards have proven to be inadequate (Galloway et
al., 2006; Ntelekos et al., 2010; Tan, 2013; Blessing et al.,
2017; HCFCD, 2018), and climate change can likely exacer-
bate these issues (Olsen, 2006; Ntelekos et al., 2010; Kollat
et al., 2012; AECOM, 2013; Wobus et al., 2017; Nyaupane
et al., 2018; Pralle, 2019). For instance, the streamflow AEP
thresholds and synthetic hydrographs used to simulate the
flood zones were derived purely based on historic observa-
tions that may underestimate the intensified hydrologic ex-
tremes in the projected future climatic conditions. Although
the possible change of future streamflow AEP thresholds
may be evaluated by an ensemble of hydrologic model out-
puts driven by multiple downscaled and bias-corrected cli-
mate models (e.g., Wobus et al., 2017), the extension from
maximum streamflow to maximum flood zone is not trivial
and cannot be explicitly addressed through the conventional
deterministic inundation modeling approach.

The increases in the magnitude and frequency of flood-
ing, in addition to the inadequacy of floodplain measures and
the high costs of hardening (Wilbanks et al., 2008; Farber-
DeAnda et al., 2010; Gilstrap et al., 2015), have put elec-
tricity infrastructures at risk (Zamuda et al., 2015; Zamuda
and Lippert, 2016; Cronin et al., 2018; Forzieri et al., 2018;
Mikellidou et al., 2018; Allen-Dumas et al., 2019). In par-
ticular, electricity infrastructures which lie in areas vulnera-
ble to flooding can experience floodwater damages that may
lead to changes in their energy production and consumption
(Chandramowli and Felder, 2014; Ciscar and Dowling, 2014;
Bollinger and Dijkema, 2016; Gangrade et al., 2019). For in-
stance, flooding can rust metals, destroy insulation, and dam-
age interruption capacity (Farber-DeAnda et al., 2010; Vale,
2014; NERC, 2018; Bragatto et al., 2019). It is estimated that
nearly 300 energy facilities are located on low-lying lands
vulnerable to sea-level rise and flooding in the lower 48 US
states (Strauss and Ziemlinski, 2012).

Several studies have assessed the vulnerability of elec-
tricity infrastructures to flooding (Reed et al., 2009; Win-
kler et al., 2010; Bollinger and Dijkema, 2016; Fu et al.,
2017; Pant et al., 2017; Bragatto et al., 2019; Gangrade et
al., 2019). For highly sensitive water infrastructures such
as dams (McCuen, 2005), Gangrade et al. (2019) showed
that the surface inundation associated with probable maxi-
mum flood (PMF) is generally projected to increase in fu-
ture climate conditions. However, given the extremely large
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magnitude of PMF (AEP < 10~* %), the findings cannot be
directly associated with more frequent and moderate flood
events (i.e., AEP around 1 %—-0.2 %) that are the main focus
of many engineering applications. Although some of these
studies focused on evaluating the resilience of electricity
infrastructures against flood hazard and/or climate change,
only a few of them evaluated site-specific inundation risk
and quantified impacts of climate-change-induced flooding
on electricity infrastructures under different future climate
scenarios. Again, one main challenge is associated with the
high computational costs to effectively transform ensemble
streamflow projections into ensemble surface inundation pro-
jections through hydrodynamic models. With the enhanced
inundation models and high-performance computing (HPC)
capabilities (Morales-Herndndez et al., 2020), this challenge
can be gradually overcome for more spatially explicit flood
vulnerability assessment.

The objective of this study is to demonstrate the applicabil-
ity of a computationally intensive ensemble inundation mod-
eling approach to better understand how climate change may
affect flood regimes, floodplain regulation standards, and the
vulnerability of existing infrastructures. Extending from the
framework developed by Gangrade et al. (2019) for PMF-
scale events (AEP < 10~* %) based on one selected climate
model (CCSM4), we focus on more frequent extreme stream-
flow events (i.e., AEP around 1 %-0.2 %), which requires
different modeling strategies based on multiple downscaled
climate models. The unique aspects of this study are the
application of an integrated climate—hydrologic—hydraulic
modeling framework for the following.

1. The framework will evaluate the changes in flood
regime using high-resolution ensemble flood inundation
maps. The ensemble-based approach is able to incor-
porate the large hydrologic interannual variability and
model uncertainty that cannot be captured through the
conventional deterministic flood map.

2. The framework will enable direct frequency analysis
of ensemble flood inundation maps that correspond to
historic and projected future climate conditions. This
approach provides an alternative floodplain delineation
technique to the conventional approach, in which a sin-
gle deterministic design flood value is used to develop a
flood map with a given exceedance probability.

3. The framework will evaluate the vulnerability of elec-
tricity infrastructures to climate-change-induced flood-
ing and assess the adequacy of existing flood protec-
tion measures using ensemble flood inundation. This in-
formation will help floodplain managers to identify the
most vulnerable infrastructures and recommend suitable
adaptation measures.

The following technique was adopted in this study. First,
we generated streamflow projection by utilizing an ensem-
ble of simulated streamflow hydrographs driven by both
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historical observations and downscaled climate projections
(Gangrade et al., 2020) as inputs for hydrodynamic inun-
dation modeling as presented in Sect. 2.2. Then, we set
up and calibrated a 2D hydrodynamic inundation model,
Two-dimensional Runoff Inundation Toolkit for Operational
Needs (TRITON; Morales-Hernandez et al., 2021), in our
study area which is presented in Sect. 2.3. For inundation
modeling, sensitivity analyses were conducted on three se-
lected parameters to quantify and compare their respective
influences on modeled flood depths and extents. The per-
formance of TRITON was then evaluated by comparing a
simulated 1% AEP flood map with the reference 1% AEP
flood map from the Federal Emergency Management Agency
(FEMA). Finally, as presented in Sect. 2.4 and 2.5, ensemble
inundation modeling was performed to develop flood inun-
dation frequency curves and maps and to assess the vulnera-
bility of electricity infrastructures under a changing climate,
respectively.

The article is organized as follows: the data and methods
are discussed in Sect. 2; Sect. 3 presents the result and dis-
cussion; and the summary is presented in Sect. 4.

2 Data and methods
2.1 Study area

Our study area is the Conasauga River watershed (CRW) lo-
cated in southeastern Tennessee and northwestern Georgia
(Fig. 1). The CRW is an eight-digit Hydrologic Unit Code
(HUCO08) subbasin (03150101) with a total drainage area of
~ 1880 km?. The northeastern portions of the watershed are
rugged, mountainous areas largely covered with forests (Ivey
and Evans, 2000; Elliott and Vose, 2005). The CRW, which
is one headwater basin of the Alabama—Coosa—Tallapoosa
(ACT) River basin, rises high on the Blue Ridge Mountains
of Georgia and Tennessee and flows for 145 km before join-
ing the Coosawattee River to form the Oostanaula River (Ivey
and Evans, 2000; USACE, 2013). The CRW climate is char-
acterized by warm, humid summers and mild winters with
mean annual temperature of 15 to 20 °C and average annual
precipitation of 1300 to 1400 mm (FIS, 2007, 2010; Baech-
ler et al., 2015). The watershed encompasses five counties:
Bradley, Polk, Fannin, Maury, and Whitfield. It also includes
the cities of Dalton and Chatsworth, Georgia. There is no
major reservoir located in the CRW.

2.2 Streamflow projections

The ensemble streamflow projections were generated by a hi-
erarchical modeling framework, which started with regional
climate downscaling followed by hydrologic modeling (Gan-
grade et al., 2020). The climate projections were gener-
ated by dynamically downscaling 11 GCMs from the Cou-
pled Model Intercomparison Project Phase-5 (CMIP5) data
archive. Each GCM was used as lateral and lower bound-
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ary forcing in a regional climate model RegCM4 (Giorgi et
al., 2012) at a horizontal grid spacing of 18 km over a do-
main that covered the continental US and parts of Canada
and Mexico (Ashfaq et al., 2016) (Table 1). Each RegCM4
integration covered 40 years in the historic period (1966—
2005; hereafter baseline) and another 40 years in the future
period (2011-2050) under the Representative Concentration
Pathway 8.5 (RCP8.5) emission scenario, with a combined
880 years of data across all RegCM4 simulations. To cap-
ture the multi-decadal climate variability, a minimum period
of 30 years has been used in many studies (e.g., Alfieri et
al., 2015a, b). Given the additional data available from Gan-
grade et al.(2020), we have adopted a longer 40-year period
that may further enlarge the sample space to better support
the statistical analyses in this study.

The RegCM4 simulated daily precipitation and tem-
perature were further statistically bias-corrected to a spa-
tial resolution of 4 km following a quantile mapping tech-
nique, described in Ashfaq et al. (2010, 2013). The 4 km
Parameter-elevation Regressions on Independent Slopes
Model (PRISM; Daly et al., 2008) data were used as the
historic observations to support bias correction. In the base-
line period, the simulated quantiles of precipitation and
temperature were corrected by mapping them onto the ob-
served quantiles. In the future period, the monthly quan-
tile shifts were calculated based on the simulated baseline
and future quantiles which were subsequently added to the
bias-corrected baseline quantiles to generate bias-corrected
monthly future data. Finally, the original daily values were
rescaled to meet the corrected monthly precipitation and tem-
perature. This approach substantially improves the biases in
the modeled daily precipitation and temperature while pre-
serving the simulated climate change signal. Further details
of the bias correction are provided in Ashfaq et al. (2010,
2013) while the information regarding the RegCM4 config-
uration, evaluation, and future climate projections is detailed
in Ashfaq et al. (2016).

The hydrologic simulations were then conducted using
the Distributed Hydrology Soil Vegetation Model (DHSVM;
Wigmosta et al.,, 1994), which is a process-based high-
resolution hydrologic model that can capture heterogeneous
watershed processes and meteorology at a fine resolution.
DHSVM uses spatially distributed parameters, including to-
pography, soil types, soil depths, and vegetation types. The
input meteorological data include precipitation, incoming
shortwave and longwave radiation, relative humidity, air tem-
perature, and wind speed (Wigmosta et al., 1994, 2002;
Storck et al., 1998). The DHSVM performance and appli-
cability have been reported in various earlier climate- and
flood-related studies (Elsner et al., 2010; Hou et al., 2019;
Gangrade et al., 2018, 2019, 2020). A calibrated DHSVM
implementation from Gangrade et al. (2018) at 90 m grid
spacing was used to produce 3-hourly streamflow projections
using the RegCM4 meteorological forcings described in the
previous section (Table 1). In addition, a control simulation
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Table 1. Summary of the 11 dynamically downscaled climate models (adopted from Ashfaq et al., 2016).

S.no. Climate model name

per climate model

Number of flood events

Time period

ACCESS1-0
BCC-CSM1-1
CCSM4
CMCC-CM
FGOALS-g2
GFDL-ESM2M
MIROC5
MPI-ESM-MR
MRI-CGCM3
NorESM1-M
IPSL-CM5A-LR

40

— = 0 00 1O LN~ W~

—_ O

1966-2005 (baseline),  2011-2050 (future/RCP8.5)

driven by 1981-2012 Daymet meteorologic forcings (Thorn-
ton et al., 1997) was conducted for model evaluation and val-
idation. The hydrologic simulations used in this study are a
part of a larger hydroclimate assessment effort for the ACT
River basin, as detailed in Gangrade et al. (2020). Since there
is no major reservoir in the CRW, the additional reservoir
operation module (Zhao et al., 2016) was not needed in this
study.

Note that while the ensemble streamflow projections based
on dynamical downscaling and high-resolution hydrologic
modeling from Gangrade et al. (2020) are suitable to ex-
plore extreme hydrologic events in this study, they do not
represent the full range of possible future scenarios. Addi-
tional factors such as other GCMs, RCP scenarios, downscal-
ing approaches, and hydrologic models and parameterization
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may also affect future streamflow projections. In other words,
although these ensemble streamflow projections can tell us
how likely the future streamflow magnitude may change
from the baseline level, they are not the absolute prediction
into the future. In practice, these modeling choices will likely
be study-specific based on the agreement among key stake-
holders. It is also noted that the new Coupled Model Inter-
comparison Project Phase-6 (CMIP6) data have also become
available to update the ensemble streamflow projections but
is not pursued in this study.

2.3 Inundation modeling

The ensemble inundation modeling was performed using
TRITON, which is a computationally enhanced version
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of Flood2D-GPU (Kalyanapu et al., 2011). TRITON al-
lows parallel computing using multiple graphics processing
units (GPUs) through a hybrid Message Passing Interface
(MPI) and Compute Unified Device Architecture (CUDA)
(Morales-Hernandez et al., 2021). TRITON solves the non-
linear hyperbolic shallow water equations using an explicit
upwind finite-volume scheme, based on Roe’s linearization.
The shallow water equations are a simplified version of the
Navier—Stokes equations in which the horizontal momen-
tum and continuity equations are integrated in the vertical
direction (see Morales-Hernandez et al., 2021, for further
model details). An evaluation of TRITON performance for
the CRW is presented and discussed in Sect. 3.3.

TRITON’s input data include digital elevation model
(DEM), surface roughness, initial depths, flow hydrographs,
and inflow source locations (Kalyanapu et al., 2011; Marshall
et al., 2018; Morales-Hernandez et al., 2020, 2021). In this
study, the hydraulic and geometric parameters from the flood
model evaluation section (Sect. 3.3) were used in the flood
simulation. The topography was represented using the one-
third arc-second (~ 10 m) spatial resolution DEM (Archuleta
et al., 2017) from the US Geological Survey (USGS). To im-
prove the quality of the base DEM, as discussed in the flood
model evaluation section, the main channel elevation was re-
duced by 0.15 m. Elevated roads and bridges that obstruct the
flow of water were also removed. For surface roughness, we
used a single channel Manning’s n value of 0.05 and a sin-
gle floodplain Manning’s n value of 0.35. The selection of
channel and floodplain Manning’s n value was based on the
Whitfield County Flood Insurance Study (FIS, 2007), which
reported a range of Manning’s n values estimated from field
observations and engineering judgment for about 15 streams
inside the CRW (Sect. 3.2). Furthermore, a water depth value
of 0.35 m was defined for the main river channel as an initial
boundary condition. The zero velocity gradients were used
as the downstream boundary condition. Further discussion
of model parameter sensitivity and model evaluation are pro-
vided in Sect. 3.2 and 3.3.

The simulated DHSVM streamflow was used to prepare
inflow hydrographs for ensemble inundation modeling. To
provide a large sample size for frequency analysis, we se-
lected all annual maximum peak streamflow events (the max-
imum corresponded to the outlet of CRW Fig. 1) from the
1981-2012 control simulation (32 years), the 1966-2005
baseline simulation (440 years; 40 years x 11 models), and
the 2011-2050 future simulation (440 years; 40 years x 11
models), with a total of 912 events. For each annual maxi-
mum event, the 3h time step and 10d hydrographs (which
capture the peak CRW outlet discharge) across all DHSVM
river segments were summarized. Following a procedure
similar to Gangrade et al. (2019), these streamflow hydro-
graphs were converted to TRITON inputs at 300 inflow lo-
cations selected along the NHD+- river network in the CRW
(Fig. 1). The TRITON model extent, shown in Fig. 1, has
an approximate area of 3945 km? and includes ~ 44 million
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model grid cells (7976 rows x 5474 columns in a uniform
structured mesh). The ensemble flood simulations resulted in
gridded flood depth and velocity output at 30 min intervals.
The simulations generated approximately 400 TB of data and
utilized ~ 2000 node hours on the Summit supercomputer,
managed by the Oak Ridge Leadership Computing Facility
at Oak Ridge National Laboratory.

2.4 Flood inundation frequency analysis

Given the nature of GCM experiments, each set of climate
projections can be considered a physics-based realization of
historic and future climate under specified emission scenar-
i0s. Therefore, an ensemble of multimodel simulations can
effectively increase the data lengths and sample sizes that are
keys to support frequency analysis, especially for low-AEP
events. In this study, we conducted flood frequency analyses
separately for the 1966-2005 baseline and 2011-2050 future
periods so that the difference between the two periods repre-
sents the changes in flood risk due to climate change.

To prepare the flood frequency analysis, we first calcu-
lated the maximum flood depth at every grid in each simula-
tion. A minimum threshold of 10 cm flood depth was used to
judge whether a cell was wet or dry (Gangrade et al., 2019).
Further, for a given grid cell, if the total number of non-
zero flood depth values (i.e., of the 440 depth values) was
fewer than 30, the grid cell was also considered dry. This
threshold was selected based on the minimum sample size
requirement for flood depth frequency analysis suggested by
Li et al. (2018). Next, we calculated the maximum flooded
area (hereafter used alternatively with “floodplain area”) for
each simulation. A log-Pearson type III (LP3) distribution
was then used for frequency analysis following the guide-
lines outlined in Bulletins 17B (USGS, 1982; Burkey, 2009)
and 17C (England et al., 2019). Two types of LP3 fitting
were performed. The first type of fitting is event-based that
fitted LP3 on the maximum inundation area across all ensem-
ble members. The second type of fitting is grid-based (more
computationally intensive) that fitted LP3 on the maximum
flood depth at each grid cell across all ensemble members.
For both types of fittings, the frequency estimates at 4 %,
2%, 1%, and 0.5 % AEP (corresponding to 25-, 50-, 100-,
and 200-year return levels) were derived for further analysis.

It is also noted that in addition to the annual maximum
event approach used in this study, one may also use the
peak-over-threshold (POT) approach which can select mul-
tiple streamflow events in a very wet year. While such an ap-
proach can lead to higher extreme streamflow and inundation
estimates, the timing of POT samples is fully governed by the
occurrences of wet years. In other words, if the trend of ex-
treme streamflow is significant in the future period, the POT
samples will likely occur more in the far future period. We
hence select the annual maximum event approach that can
sample maximum streamflow events more evenly in time,
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which can better capture the evolution of extreme events with
time under the influence of climate change.

2.5 Vulnerability of electricity infrastructure

The vulnerability of electricity infrastructures to climate-
change-induced flooding was evaluated using the ensemble
flood inundation results. The 44 electric substations (Fig. 1)
collected from the publicly available Homeland Infrastruc-
ture Foundation-Level Data (HIFLD, 2019) were considered
to be the electrical components susceptible to flooding. To
evaluate the vulnerability of these substations, we overlapped
the maximum flood extent from each ensemble member with
all substations to identify the substations that might be inun-
dated under the baseline and future climate conditions. Fur-
ther, as an additional flood hazard indicator, the duration of
inundation was estimated at each of the affected substations
using the ensemble flood simulation results.

The vulnerability analysis was performed for two different
flood mitigation scenarios. In the first scenario, we assumed
that no flood protection measures were provided at all sub-
stations. Hence, the substations that intersected with the flood
footprint were considered to be failed. In the second scenario,
it was assumed that flood protection measures were adopted
for all substations following the FEMA P-1019 recommen-
dation (FEMA, 2014). According to FEMA P-1019 (FEMA,
2014), for emergency power systems within critical facili-
ties, the highest elevation among (1) the base flood elevation
(BFE: 1 % FEMA AEP flood elevation) plus 3 ft (~0.91 m),
(2) the locally adopted design flood elevation, and (3) the
500-year flood elevation can be used to design flood protec-
tion measures. Since the three recommended elevations were
not available at all substation locations, we focused only on
the BFE plus ~ 0.91 m option. In addition, since in the CRW
the majority of existing flood insurance maps were classi-
fied as Zone A — meaning that the special flood hazard ar-
eas were determined by approximate methods without BFE
values (FEMA, 2002) — we used the maximum flood depth
values across all control simulation years as the BFE values
in this second mitigation scenario.

During the vulnerability analysis, we also assumed that
(1) the one-third arc-second spatial resolution DEM might
reasonably represent the elevation of substations, (2) existing
substations would remain functional and would not be relo-
cated, and (3) no additional hardening measures (i.e., protec-
tions such as levees, berms, anchors, and housings) will be
adopted in the future period. Also, the cascading failure of a
substation due to grid interconnection was not considered in
this study.
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Figure 2. A comparison of annual maximum peak streamflow at
the outlet of the Conasauga River watershed. The sample size in-
cludes 32 events from the control (1981-2012), 440 from the base-
line (1966-2005), and another 440 from the future (2011-2050) pe-
riods.

3 Results and discussion
3.1 Streamflow projections

This section presents a comparison of the annual maximum
peak streamflow (at the outlet of CRW) used in the control,
baseline, and future simulations. The sample size included 32
events from the control (1981-2012) simulation, 440 events
from the baseline (1966-2005) simulations, and another 440
events from the future (2011-2050) simulations. These sam-
ples are illustrated in box-and-whisker plots in Fig. 2, where
the central mark indicates the median, while the bottom and
top edges indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the furthest data points not consid-
ered outliers, which correspond to approximately £2.7 stan-
dard deviations and 99.3 % coverage if the data are normally
distributed. As is evident from Fig. 2, the distributions of an-
nual maximum peak streamflow values in the control and
baseline simulations are comparable. The upper and lower
whiskers in the control simulation are 727.6 and 84.2 m3/s,
which compare well to the 722.5 and 65.2 m%/s values in the
baseline simulation. In addition, we also conducted a two-
tailed two-sample ¢ test (o =0.05) to compare whether the
means of control and baseline annual maximum streamflow
are statistically different. The results yielded a p value of
0.09, which suggested that there is no significant difference
between the means of both control and baseline simulations.
A larger number of outliers are present in the baseline sim-
ulation, which is due to the larger sample size (440 versus
32).

Under the future projection, an increase in the maximum
peak streamflow is shown, where the upper whisker in the
future projection is ~ 21 % higher than the baseline. More-
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over, the maximum of distribution in the future climate
(2036.7 m3/s) is also much higher than that in the baseline
climate (1436.7 m3/s), suggesting a higher future flood risk
in the CRW. The increasing trend of streamflow extremes in
the CRW is consistent with the overall findings in the ACT
River basin (Gangrade et al., 2020).

3.2 Sensitivity analysis for flood model

For a better understanding and selection of suitable TRITON
parameters, a series of sensitivity analyses were conducted
using different combinations of Manning’s roughness, initial
water depths, and river bathymetry correction factors (Ta-
ble 2).

In calibrating a hydraulic model, it is a common practice
to adjust the estimated Manning’s n value, as it is the most
uncertain and variable input hydraulic parameter (Brunner et
al., 2016). In this study, we tested six different scenarios (Ta-
ble 2) based on the Whitfield County Flood Insurance Study
(FIS, 2007), which reported a range of Manning’s n values
estimated from field observations and engineering judgment
for about 15 streams inside the CRW. It is noted that the
depth variation in Manning’s roughness is not considered in
the current study. Readers are referred to studies such as Sak-
sena et al. (2020) for additional information on the dynamic
Manning’s roughness for potential hydrology and hydraulics
applications.

To establish an initial condition for TRITON, a sensitivity
analysis was performed on selected initial water depth values
(ranging from O to 0.65 m, Table 2) to understand their rel-
ative effects. To select ranges for the initial water depth, we
summarized the observed water depth values that correspond
to low flow values at five USGS gauge stations inside the
CRW. The distribution of observed water depth values from
the five gauges showed average values ranging from 0.25 to
0.65 m. Existing DEM products, even those with high spa-
tial resolution (i.e., 10 m or finer), do not represent the ele-
vation of river bathymetry accurately (Bhuyian et al., 2014).
For the CRW, Bhuyian et al. (2019) found that the one-third
arc-second spatial resolution base DEM over-predicted the
inundation extent because of the bathymetric error, which re-
duced the channel conveyance. In this study, we tested var-
ious bathymetry correction factors (ranging from —1.25 to
0 m, Table 2) by reducing the DEM elevation along the main
channel to understand the sensitivity of TRITON.

The sensitivity analysis was performed using the 13—
22 February 1990 flood event that has the maximum dis-
charge among all 32 control simulation events. To evaluate
relative sensitivity of TRITON, we extracted simulated flood
depths at four arbitrary selected locations (Fig. 1) and esti-
mated the relative inundation area differences. The impacts
of initial water depths were significant only at the beginning
where low flow values dominated the hydrographs (Fig. 3a,
d, g, and j). Larger initial water depth values generated higher
flood inundation depths for all sample locations. Although
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the differences in flood inundation extents relative to the dry
bed show an increasing trend, the relative differences are less
than 1.4 % (Fig. 4a). Similarly, the differences in average
peak water depths and time to peak relative to the 0.35m
initial water depth were less than 1.0 % (Table 3). Increase
in the channel and floodplain Manning’s n values resulted
in higher flood depths for both sample locations (Fig. 3b, e,
h, and k). The relative flood inundation area differences in-
crease from about 23 % to 31 % (Fig. 4b) when the channel
and floodplain Manning’s n values are increased from 0.035
to 0.06 and from 0.06 to 0. 50, respectively. In terms of simu-
lated maximum flood extent, the relative difference between
scenario 3 (N_3) and scenario 7 (i.e., Manning’s n map based
on different land use types [N_7]) showed ~ 16 % (22 km?)
change in inundation area (Fig. 4b). Similarly, the last sce-
nario (N_7) resulted in ~9 % increase in the average peak
water depth (Table 3), when compared to scenario 3 (N_3).
Reduction in the elevation of river bathymetry (to improve
the quality of the base DEM) results in a direct increase in
maximum flood depth due to change in the river conveyance
(Fig. 3c, f, 1, and 1; Table 3). It also results in a decrease in the
maximum flood extent (Fig. 4c), as more water is allowed to
transport through the main channel instead of the floodplain.
Overall, the results showed that TRITON was more sensitive
to the Manning’s n values than the initial water depths and
bathymetric correction factors.

3.3 Flood model evaluation

Because of a lack of observed streamflow data in the CRW,
the performance of TRITON was evaluated by comparing the
simulated 1% AEP flood map with the published 1 % AEP
flood map from FEMA (FEMA, 2019). The purpose of this
assessment is to understand whether TRITON can provide
comparable results to the widely accepted FEMA flood esti-
mates. While the FEMA AEP flood maps do not necessarily
represent complete ground truth, such a comparison is the
best option given the data challenge. A similar approach has
been utilized by several previous studies in the evaluation of
large-scale flood inundation (Alfieri et al., 2014; Wing et al.,
2017; Zheng et al., 2018; Gangrade et al., 2019).

To derive the 1% AEP flood map using TRITON, the
ensemble-based approach used by Gangrade et al. (2019)
was followed. The assessment started by preparing the
streamflow hydrographs used to construct the 1 % AEP flood
map. The 1981-2012 annual maximum peak events and their
corresponding 10d streamflow hydrographs were extracted
from the control simulation. These streamflow hydrographs
were then proportionally rescaled to match the 1% AEP
peak discharge estimated at the watershed outlet (Fig. 1),
following the frequency analysis procedures outlined in Bul-
letin 17C (England et al., 2019). The streamflow hydrographs
from control simulations were used for the peak discharge
frequency analysis.
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Table 2. Summary of hydraulic and geometric parameters used in the sensitivity analysis.

Sensitivity parameter Scenario  Initial water depth ~ Surface roughness Bathymetry correction
values (m) (Manning’s n values) factor (m)
Initial water depth 1 0.00  ncp =0.050/nggp; = 0.350 —0.15
2 0.15
3 0.35
4 0.45
5 0.55
6 0.65
Surface roughness 1 0.35  N_I: nep = 0.035/nggp; = 0.06 —0.15
2 N_2: nep = 0.040/nggp; = 0.25
3 N_3: ncp = 0.045/ng4p; = 0.30
4 N_4: ncp = 0.050/ngqgp = 0.35
5 N_5: ncp = 0.055/nggp) = 0.45
6 N_6: nch = 0.060/nqqp) = 0.50
7 N_ 7: Manning’s n map prepared
based on the NLCD 2011
Bathymetry correction factor 1 0.35  ncp =0.050/nggp; = 0.350 0.00
2 —0.15
3 —0.45
4 —0.75
5 —1.00
6 —1.25

Note: ncp represents the Manning’s n value in the main channel and ngqp) represents the Manning’s n value in the floodplain areas.

The results reported in the sensitivity analysis were also
used to help identify suitable TRITON parameters. In ad-
dition to streamflow hydrographs, TRITON requires DEM,
initial water depth, and Manning’s n value. To minimize the
effect of bathymetric error in the base DEM (Bhuyian et
al., 2014, 2019), we reduced the elevation along the main
channel by 0.15m (i.e., a bathymetry correction factor). Al-
though this simple approach is unlikely to adjust the chan-
nel bathymetry to its true values, it can improve the chan-
nel conveyance volume that is lost in the base DEM. To fur-
ther improve the quality of the base DEM, we removed ele-
vated roads and bridges that could obstruct the flow of water
in some of the streams and rivers. An initial water depth of
0.35 m was also selected in this study. For the surface rough-
ness, a couple of flood simulations were performed by adjust-
ing the Manning’s n values for the main channel and flood-
plain to achieve satisfactory agreement between the simu-
lated and the reference FEMA flood map. We eventually se-
lected a single channel Manning’s n value of 0.05 and a sin-
gle floodplain Manning’s n value of 0.35.

Three evaluation metrics, including fit, omission, and
commission (Kalyanapu et al., 2011) were used to quan-
tify the differences between the modeled and reference flood
map. The measure of fit determines the degree of rela-
tionship, while the omission and commission statistically
compare the simulated and reference FEMA flood maps
(Kalyanapu et al., 2011). The comparison between the simu-
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lated maximum inundation and the corresponding 1 % AEP
FEMA flood map showed 80.65 % fit, 5.52 % commission,
and 15.36 % omission (Fig. 5), demonstrating that the TRI-
TON could reasonably estimate flood inundation extent and
depths in the CRW. The computational efficiency of TRITON
can further support ensemble inundation modeling to provide
additional variability information that cannot be provided by
the conventional deterministic flood map.

Although we have obtained satisfactory model perfor-
mance for the purpose of our study, the flood model imple-
mentation has some limitations that may be enhanced in fu-
ture studies. They include the following.

— Spatially varying Manning’s n values may be de-
rived based on high-resolution land-use and land-cover
(LULC) conditions to better represent the spatial het-
erogeneity in the modeling domain.

— Apart from changes in future runoff and streamflow,
projections of future LULC and its corresponding sur-
face roughness can be considered to understand the
broader impacts due to environment change.

— In this study, we corrected DEM bias along the river
channel cells by simplified bathymetry correction fac-
tors. More sophisticated bathymetric configuration (i.e.,
channel shape and sinuosity) can be considered to better
represent channel conveyance.
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Figure 3. Simulated flood inundation depths extracted at location 1 (a, b, ¢) and at location 2 (d, e, f). Note: locations 1 and 2 are shown in
Fig. 1. A description of the Manning’s n values (N_1 to N_6) can be found in Table 2.

Table 3. Change in peak water depth and time to peak.

Sensitivity parameter

% change in peak

% change in time

Scenarios used to

water depth to peak calculate the %
change values
Initial water depth (m) 0.00 —-0.77 0.59  0.35m water depth
0.15 —0.41 0.25
0.35 0.00 0.00
0.45 0.16 —0.17
0.55 0.29 —0.33
0.65 0.42 —0.43
Manning’s nvalue N_I: nep = 0.035/n=gqp = 0.06 —24.80 —24.53 N_4
N_2: n¢p = 0.040/ngqp = 0.25 —4.79 —7.44
N_3: ncp = 0.045/ng4p) = 0.30 —2.11 —3.03
N_4: nep = 0.050/ngqp) = 0.35 0.00 0.00
N_5: nch = 0.055/ng4p) = 0.45 2.54 5.74
N_6: n¢p = 0.060/nqqp) = 0.50 3.83 8.88
N_7: Manning’s n map prepared 8.50 1.31
based on the NLCD 2011
Bathymetry correction factor (m)  0.00 —2.44 —0.10  Bathymetry correction factor of —0.15m
—0.15 0.00 0.00
—0.45 4.78 0.19
—0.75 9.41 0.50
—1.00 13.11 0.86
—-1.25 16.58 1.17
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Figure 4. Change in simulated maximum flood inundation extents for

correction factor.

— The current TRITON model does not provide capabil-
ity to route local runoff and external inflows through
stormwater drainage systems. Coupling with additional
stormwater drainage models can be a potential future
direction.

— Hydraulic and civil structures such as bridges, culverts,
and weirs have not been included since TRITON does
not provide for the modeling of such components. This
can affect the accuracy of the flood depths, velocities,
and flood extents around these structures.

3.4 Change in flood regime

In this section, the projected changes in flood regime were
calculated using the flooded area from the baseline and fu-
ture simulations for each ensemble member. Figure 6 illus-
trates the box-and-whisker plots for each of the 11 dynami-
cally downscaled GCMs. Given the small sample size in each
distribution (40 compared to 440 in Fig. 2), the whiskers ex-
tend the largest and smallest data points with no outlier de-
tection. For 9 out of the 11 downscaled climate models, the
mean of 40 flood inundation showed an increase in the flood-
plain area in the future period. In terms of the 75th percentile
and maximum, 10 out of 11 models showed an increase in the
floodplain area. The distributions of maximum future inunda-
tion of four models are found to be statistically different than
their baseline distributions at a 5 % significance level. Note
that the spread in the future period is generally larger than the
spread in the baseline period, suggesting an increase in the
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hydrologic variability in the future period. Also, while the re-
sults from different models were generally consistent, some
inter-model differences were noted, which highlight the need
of a multi-model framework to capture the uncertainty in the
future climate projections. The multi-model approach pro-
vides a range of possible flood inundation extents, which is
critical for floodplain management decision making. The po-
tential increase in the floodplain area also demonstrates the
importance of incorporating climate change projections in
the floodplain management regulations.

3.5 Flood inundation frequency curve and map

Figure 7 shows the relationship between the 440 flooded area
values (across 11 downscaled GCMs) and their correspond-
ing peak streamflow at the watershed outlet, for both the
baseline and future periods. Overall, both results (Fig. 7a and
b) exhibit strong nonlinear relationships with high R? val-
ues. The results suggest that peak streamflow is a significant
variable controlling the total flooded area, but the variability
of flooded area could not be explained by peak streamflow
alone. For instance, in the baseline period, the peak stream-
flow values of 423.63 and 424.25 m>/s correspond to 106.85
and 94.89 km? floodplain areas, respectively (Fig. 7a). Sim-
ilarly, in the future period, the peak streamflow values of
433.27 and 434.21 m>/s correspond to 110.76 and 99.26 km?
floodplain areas (Fig. 7b).

Figure 8 shows the event-based flood inundation fre-
quency curves and their corresponding 95 % confidence in-
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Sources: Esri, HERE, Garmin, Intermap, increment P
Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase,
. IGN, Kadaster NL, Ordnance Survey, Esri Japan,
METI, Esri China (Hong Kong), swisstopo, ©
OpenStreetMap contributors, and the GIS User
Community
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Figure 5. Comparison of simulated maximum flood extent with the
corresponding FEMA 1 % AEP flood map for the Conasauga River
watershed. Background layer source: © OpenStreetMap contribu-
tors 2021. Distributed under a Creative Commons BY-SA License.
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tents obtained from the baseline and future scenarios. The mean
flooded area values are shown by x symbols. Note: the suffix “_BL”
represents baseline scenarios and the suffix “_F” represents future
scenarios.

tervals in both the baseline and future periods, for which each
frequency curve was derived using an ensemble of 440 years
of data. The use of long-term data helped reduce the uncer-
tainty and add more confidence in the evaluation of the lower
AEP estimates. This type of assessment cannot be achieved
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using only historic streamflow observations, for which the
limited records present a major challenge for lower AEP es-
timates. For most of the exceedance probabilities, the flooded
areas projected an increase in the inundation areas in the fu-
ture period when compared to the baseline period. The 1 %
AEP flood shows an ~ 16 km? increase in the inundation area
(137.75km? in the baseline period versus 153.43 km? in the
future period) (Fig. 8). Similar results can be observed in
inundation frequency curves developed for other AEPs (not
shown).

The grid-based flood depth frequency results at 0.5 %, 1 %,
2%, and 4 % AEP levels are illustrated in Fig. 9. In each
panel, the projected change (i.e., future minus baseline) at
each grid is shown. The corresponding histogram across the
entire study area is presented in Fig. 10. As mentioned in
Sect. 2.4, the LP3 distribution was used for frequency anal-
ysis. In order to understand the suitability of LP3, we also
conducted a comparative analysis to test an alternative log-
normal (LN) distribution. By using the Anderson-Darling
(Anderson and Darling, 1952) goodness-of-fit test (o = 0.05)
along with the Akaike information criterion (Akaike, 1974),
we found no substantial difference between these two distri-
butions (not shown), for the purpose of our application. It is
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Figure 9. Projected change (future minus baseline period) in flood depth frequency maps for (a) 0.5 %, (b) 1%, (¢) 2%, and (d) 4 %
AEPs. ArcGIS background layer sources: ESRI, HERE, Garmin, Intermap, GEBCO, USGS, Food and Agriculture Organization, National
Park Service, Natural Resources Canada, GeoBase, IGN, Kadaster NL, Ordnance Survey, METI, Esri Japan, Esri China, the GIS User
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noted, however, that our goal in this study is not to identify
the most suitable choice of flood depth distribution. There-
fore, other more suitable distributions may exist but that is
beyond the scope of this study.

Based on the comparisons in Fig. 10, it is estimated that
the flood depth values at ~ 80 % of grid cells would increase
by 0.2 to 1.5 m due to projected changes in climate (Fig. 10).
For 0.5 % and 1 % AEP flood depth frequency maps (Fig. 9a
and b), the changes in flood depth were more pronounced in

Nat. Hazards Earth Syst. Sci., 21, 1739-1757, 2021

the lower part of the CRW, near the city of Dalton (where
there are large population settlements), thereby increasing
the likelihood of population exposure to flood risk in the fu-
ture period. Furthermore, for the 1 % flood depth frequency
map (Fig. 9b), the projected increase in flood depths and spa-
tial extent has the potential to extend the flood damage far
beyond the FEMA'’s current base floodplain area. Therefore,
these results highlight the need for climate change consider-
ation in the floodplain mapping. The approach presented in
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this study can provide an alternative floodplain delineation
technique, as it can be applied to develop flood depth fre-
quency maps that are reflective of the future climate.

3.6 Vulnerability of electricity infrastructure

Figure 11a shows the box-and-whisker plot for the distribu-
tions of maximum flood depth values extracted at the substa-
tion location across all the baseline and future simulations,
assuming that no flood protection measures were adopted
(mitigation scenario 1). Of the 44 substations, 5 substations
could have been affected during the baseline period, while
7 substations are projected to be affected during the future
period (Fig. 11a). Increases are indicated not only for the
number of affected substations but also for flood inunda-
tion depth values in the projected future climate. Overall, the
mean of the ensemble flood depth values shows an ~ 0.6 m
increase in the future period (Fig. 11a). Such an increase
in the flood depth magnitude has the potential to exacer-
bate flood-related damage to electrical components, which
can inflate the cost of hardening measures such as elevating
substations and constructing flood-protective barriers. As ex-
pected, when the substations were flood-proofed up to BFE
plus ~0.91 m (mitigation scenario 2), the number of affected
substations is reduced to three and four during the baseline
and future periods, respectively (Fig. 11b). The locations
of substations that were impacted in the baseline period, in
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both mitigation scenarios, are consistent with the Whitfield
County Emergency Management Agency report map (EMA,
2016) that shows the locations of critical facilities vulnerable
to the historical flooding.

The maximum inundation durations at the affected substa-
tions are summarized in Fig. 12a (mitigation scenario 1) and
b (mitigation scenario 2). For both mitigation scenarios and
all affected substations, ensemble mean inundation durations
exhibited an increase under future climate conditions. This
increase in inundation duration would probably render sub-
stations out of service for longer periods of time by making it
difficult to repair damaged substation equipment and restore
grid services to customers. The potential hazards and con-
sequences may also extend to critical facilities that are sup-
plied by the affected substations. Similar to results presented
in the previous sections, these results demonstrate the need
for improving existing flood mitigation measures by incor-
porating the trends and uncertainties that originate from cli-
mate change. The vulnerability analysis approach presented
in this study will better equip floodplain managers to identify
the most vulnerable substations and to recommend suitable
adaptation measures, while allocating resources efficiently.
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Figure 11. A summary of maximum flood depths for substations
that were affected in the baseline and/or future periods (a) without
flood protection measures and (b) with flood protection measures.
Note: affected substations with their corresponding IDs are shown
in Fig. 1. There are no negative values in the vertical axis, as the
minimum flood depth value is zero.

4 Summary and conclusion

This paper applies an integrated modeling framework to
evaluate climate change impacts on flood regime, flood-
plain protection standards, and electricity infrastructures
across the Conasauga River watershed in the southeastern
United States. Building on the ensemble concept used by
Gangrade et al. (2019) for PMF-scale inundation model-
ing (AEP < 10™* %), we focused on more frequent extreme
streamflow events (i.e., AEP around 1 %-0.2 %) based on 11
downscaled CMIP5 GCMs in this study. Our evaluation is
based on a climate-hydrologic-hydraulic modeling frame-
work, which makes use of an 11-member ensemble of down-
scaled climate simulations. A total of 9 out of 11 ensemble
members project an increase in the flood inundation area in
the future period. Similarly, at the 1 % AEP level, the flood
inundation frequency curves indicate ~ 16km? increase in
floodplain area under the future climate. The comparison be-
tween the flood depth frequency maps from the baseline and
future simulations indicated that, on average, ~ 80 % of grid
cells exhibit a 0.2 to 1.5 m increase in the flood depth val-
ues. Without the flood protection measures, of the 44 electric
substations inside the watershed, 5 and 7 substations could be
affected during the baseline and future periods, respectively.
Even after flood-proofing, three and four substations could
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Figure 12. A summary of maximum inundation durations for sub-
stations that were affected in the baseline and/or future periods (a)
without flood protection measures and (b) with flood protection
measures. Note: affected substations with their corresponding IDs
are shown in Fig. 1. There are no negative values on the vertical
axis, as the minimum inundation duration is zero.

still be affected in the baseline and future periods. The in-
creases in flood depth magnitude and inundation duration at
the affected substations in the future period will most likely
damage more electrical components, inflate the cost of hard-
ening measures, and render substations out of service for a
longer period of time.

Although future climate conditions are uncertain, our re-
sults demonstrate the needs for (1) consideration of climate
change in the floodplain management regulations, (2) im-
provements in the conventional deterministic flood delin-
eation approach through the inclusion of probabilistic or
ensemble-based methods, and (3) improvements in the exist-
ing flood protection measures for critical electricity infras-
tructures through enhanced hydro-meteorologic modeling
capacities. In particular, rapidly advanced high-performance
computing capabilities have enabled the incorporation of
computationally intensive 2D hydraulics modeling in the
ensemble-based hydroclimate impact assessment. While the
computational cost demonstrated in this study may still seem
steep, in the current speed of technology advancement, we
will soon be able to implement such a computationally in-
tensive assessment for wide applications. The approach pre-
sented in this study can be used by floodplain managers to
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develop flood depth frequency maps and to identify the most
vulnerable electric substations.
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