Articles | Volume 21, issue 4
https://doi.org/10.5194/nhess-21-1195-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1195-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An analysis of temporal scaling behaviour of extreme rainfall in Germany based on radar precipitation QPE data
Judith Marie Pöschmann
CORRESPONDING AUTHOR
Department of Hydrosciences, Institute of Hydrology and Meteorology, Technische Universität Dresden, 01069 Dresden, Germany
Dongkyun Kim
Department of Civil and Environmental Engineering, Hongik University, Wausan-ro 94, Mapo-gu, 04066 Seoul, Korea
Rico Kronenberg
Department of Hydrosciences, Institute of Hydrology and Meteorology, Technische Universität Dresden, 01069 Dresden, Germany
Christian Bernhofer
Department of Hydrosciences, Institute of Hydrology and Meteorology, Technische Universität Dresden, 01069 Dresden, Germany
Related authors
No articles found.
Rico Kronenberg, Ivan Vorobevskii, Thi Thanh Luong, Uwe Spank, Dongkyun Kim, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2025-2084, https://doi.org/10.5194/egusphere-2025-2084, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed an improved model to better understand how water and energy move through natural landscapes (forest, grasslands, croplands, etc) throughout the day. By using detailed data from study-site in Germany, we tested the model and found its good agreement with micro-meteorological measurements. Unlike many other tools, this model works without needing new adjustments and offers a powerful way to study fast-changing water processes in different environments.
Stefanie Fischer, Ronald Queck, Christian Bernhofer, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2025-2118, https://doi.org/10.5194/egusphere-2025-2118, 2025
Short summary
Short summary
Accurate estimates of interception are important to assess the water availability in ecosystems. We analyzed rainfall interception for a forest site from plot to stand scale. During interception, eddy-covariance measurements of evaporation were systematically underestimated accounting for 24% of precipitation, while modelled interception evaporation accounted for 45%. As a consequence, we developed a hybrid correction approach to fit the evaporation data to both the energy and the water balance.
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024, https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Short summary
High-resolution precipitation data are often a “must” as input for hydrological and hydraulic models (i.e. urban drainage modelling). However, station or climate projection data usually do not provide the required (e.g. sub-hourly) resolution. In the work, we present two new statistical models of different types to disaggregate precipitation from a daily to a 10 min scale. Both models were validated using radar data and then applied to climate models for 10 stations in Germany and South Korea.
Dánnell Quesada-Chacón, Klemens Barfus, and Christian Bernhofer
Geosci. Model Dev., 15, 7353–7370, https://doi.org/10.5194/gmd-15-7353-2022, https://doi.org/10.5194/gmd-15-7353-2022, 2022
Short summary
Short summary
We improved the performance of past perfect prognosis statistical downscaling methods while achieving full model repeatability with GPU-calculated deep learning models using the TensorFlow, climate4R, and VALUE frameworks. We employed the ERA5 reanalysis as predictors and ReKIS (eastern Ore Mountains, Germany, 1 km resolution) as precipitation predictand, while incorporating modern deep learning architectures. The achieved repeatability is key to accomplish further milestones with deep learning.
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022, https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Short summary
In the study we analysed the uncertainties of the meteorological data and model parameterization for evaporation modelling. We have taken a physically based lumped BROOK90 model and applied it in three different frameworks using global, regional and local datasets. Validating the simulations with eddy-covariance data from five stations in Germany, we found that the accuracy model parameterization plays a bigger role than the quality of the meteorological forcing.
Cited articles
American Meteorological Society: Glossary of Meteorology, American
Meteorology Society, available at: http://glossary.ametsoc.org/wiki/
(last access: 6 April 2021), 2020. a
Barbero, R., Fowler, H. J., Lenderink, G., and Blenkinsop, S.: Is the
intensification of precipitation extremes with global warming better detected
at hourly than daily resolutions?, Geophys. Res. Lett., 44, 974–983, https://doi.org/10.1002/2016gl071917, 2017. a
Blanchet, J., Ceresetti, D., Molinié, G., and Creutin, J.-D.: A regional
GEV scale-invariant framework for Intensity–Duration–Frequency analysis, J. Hydrol., 540, 82–95, https://doi.org/10.1016/j.jhydrol.2016.06.007, 2016. a
Borga, M., Gaume, E., Creutin, J. D., and Marchi, L.: Surveying flash floods:
gauging the ungauged extremes, Hydrol. Process., 22, 3883–3885,
https://doi.org/10.1002/hyp.7111, 2008. a
Breña-Naranjo, J. A., Pedrozo-Acuña, A., and Rico-Ramirez, M. A.:
World's greatest rainfall intensities observed by satellites, Atmos. Sci. Lett., 16, 420–424, https://doi.org/10.1002/asl2.546, 2015. a
Commonwealth of Australia: Australia's Record Rainfall, available at:
http://www.bom.gov.au/water/designRainfalls/rainfallEvents/ausRecordRainfall.shtml
(last access: 14 May 2020), 2019. a
Cristiano, E., ten Veldhuis, M.-C., and van de Giesen, N.: Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review, Hydrol. Earth Syst. Sci., 21, 3859–3878,
https://doi.org/10.5194/hess-21-3859-2017, 2017. a
Cristiano, E., ten Veldhuis, M.-C., Gaitan, S., Ochoa Rodriguez, S., and van de Giesen, N.: Critical scales to explain urban hydrological response: an application in Cranbrook, London, Hydrol. Earth Syst. Sci., 22, 2425–2447, https://doi.org/10.5194/hess-22-2425-2018, 2018. a
Dao, D. A., Kim, D., Kim, S., and Park, J.: Determination of flood-inducing
rainfall and runoff for highly urbanized area based on high-resolution
radar-gauge composite rainfall data and flooded area GIS data, J. Hydrol.,
584, 124704, https://doi.org/10.1016/j.jhydrol.2020.124704, 2020. a
DWA – Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.: Klimawandel erfordert wassersensible Stadtentwicklung, Korrespondenz Wasserwirtschaft, DWA, Hennef, Germany, 468–472, 2015. a
DWD: Nationaler Klimareport, 4. korrigierte Auflage, available at:
https://www.dwd.de/DE/leistungen/nationalerklimareport/report.html (last access: 10 February 2021), 2020. a
Fabry, F.: On the determination of scale ranges for precipitation fields, J.
Geophys. Res.-Atmos., 101, 12819–12826, https://doi.org/10.1029/96JD00718, 1996. a
Fadhel, S., Rico-Ramirez, M. A., and Han, D.: Uncertainty of
Intensity–Duration–Frequency (IDF) curves due to varied climate baseline
periods, J. Hydrol., 547, 600–612, https://doi.org/10.1016/j.jhydrol.2017.02.013,
2017. a
Gado, T. A., Hsu, K., and Sorooshian, S.: Rainfall frequency analysis for
ungauged sites using satellite precipitation products, J. Hydrol., 554,
646–655, https://doi.org/10.1016/j.jhydrol.2017.09.043, 2017. a
Galmarini, S., Steyn, D. G., and Ainslie, B.: The scaling law relating world
point-precipitation records to duration, Int. J. Climatol., 24, 533–546,
https://doi.org/10.1002/joc.1022, 2004. a, b, c
García-Marín, A. P., Ayuso-Muñoz, J. L., Jiménez-Hornero, F. J., and Estévez, J.: Selecting the best IDF model by using the multifractal approach, Hydrol. Process., 27, 433–443, https://doi.org/10.1002/hyp.9272, 2012. a
Ghanmi, H., Bargaoui, Z., and Mallet, C.: Estimation of
intensity-duration-frequency relationships according to the property of scale
invariance and regionalization analysis in a Mediterranean coastal area, J.
Hydrol., 541, 38–49, https://doi.org/10.1016/j.jhydrol.2016.07.002, 2016. a
Gires, A., Tchiguirinskaia, I., Schertzer, D., Schellart, A., Berne, A., and
Lovejoy, S.: Influence of small scale rainfall variability on standard
comparison tools between radar and rain gauge data, Atmos. Res., 138, 125–138, https://doi.org/10.1016/j.atmosres.2013.11.008, 2014. a
Gonzalez, S. and Bech, J.: Extreme point rainfall temporal scaling: a long
term (1805–2014) regional and seasonal analysis in Spain, Int. J. Climatol., 37, 5068–5079, https://doi.org/10.1002/joc.5144, 2017. a, b, c, d
Guerreiro, S. B., Fowler, H. J., Barbero, R., Westra, S., Lenderink, G.,
Blenkinsop, S., Lewis, E., and Li, X.-F.: Detection of continental-scale
intensification of hourly rainfall extremes, Nat. Clim. Change, 8, 803–807, https://doi.org/10.1038/s41558-018-0245-3, 2018. a
Hijmans, R., Garcia, N., and Wieczorek, J.: GADM: database of global
administrative areas, available at: https://gadm.org/download_country_v3.html (last access: 6 April 2021), 2018. a
Jennings, A. H.: World's Greatest Observed Point Rainfalls, Mon. Weather
Rev., 78, 4–5, https://doi.org/10.1175/1520-0493(1950)078<0004:WGOPR>2.0.CO;2, 1950. a, b, c
Kim, J., Lee, J., Kim, D., and Kang, B.: The role of rainfall spatial
variability in estimating areal reduction factors, J. Hydrol., 568, 416–426,
https://doi.org/10.1016/j.jhydrol.2018.11.014, 2019. a
Klik, M.: fst: Lightning Fast Serialization of Data Frames for R,
r package version 0.9.0 – For new features, see the `Changelog' file (package source), available at: https://CRAN.R-project.org/package=fst
(last access: 6 April 2021), 2019. a
Kreklow, J., Tetzlaff, B., Kuhnt, G., and Burkhard, B.: A Rainfall Data
Intercomparison Dataset of RADKLIM, RADOLAN, and Rain Gauge Data for Germany, Data, 4, 118, https://doi.org/10.3390/data4030118, 2019. a, b
Lee, J., Ahn, J., Choi, E., and Kim, D.: Mesoscale Spatial Variability of
Linear Trend of Precipitation Statistics in Korean Peninsula, Adv. Meteorol.,
2016, 1–15, https://doi.org/10.1155/2016/3809719, 2016. a
Lengfeld, K., Winterrath, T., Junghänel, T., Hafer, M., and Becker, A.:
Characteristic spatial extent of hourly and daily precipitation events in
Germany derived from 16 years of radar data, Meteorol. Z., 28, 363–378, https://doi.org/10.1127/metz/2019/0964, 2019. a
Lengfeld, K., Kirstetter, P.-E., Fowler, H. J., Yu, J., Becker, A., Flamig, Z., and Gourley, J.: Use of radar data for characterizing extreme precipitation at fine scales and short durations, Environ. Res. Lett., 15,
085003, https://doi.org/10.1088/1748-9326/ab98b4, 2020. a, b
Madsen, H., Arnbjerg-Nielsen, K., and Mikkelsen, P. S.: Update of regional
intensity–duration–frequency curves in Denmark: Tendency towards increased storm intensities, Atmos. Res., 92, 343–349, https://doi.org/10.1016/j.atmosres.2009.01.013, 2009. a
Marra, F. and Morin, E.: Use of radar QPE for the derivation of
Intensity–Duration–Frequency curves in a range of climatic regimes, J. Hydrol., 531, 427–440, https://doi.org/10.1016/j.jhydrol.2015.08.064, 2015. a
Marra, F., Morin, E., Peleg, N., Mei, Y., and Anagnostou, E. N.:
Intensity-duration-frequency curves from remote sensing rainfall estimates:
comparing satellite and weather radar over the eastern Mediterranean, Hydrol.
Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, 2017. a
Overeem, A., Buishand, T. A., and Holleman, I.: Extreme rainfall analysis and
estimation of depth-duration-frequency curves using weather radar, Water
Resour. Res., 45, W10424, https://doi.org/10.1029/2009wr007869, 2009. a
Papalexiou, S. M., Dialynas, Y. G., and Grimaldi, S.: Hershfield factor
revisited: Correcting annual maximum precipitation, J. Hydrol., 542, 884–895, https://doi.org/10.1016/j.jhydrol.2016.09.058, 2016. a, b
Peleg, N., Ben-Asher, M., and Morin, E.: Radar subpixel-scale rainfall
variability and uncertainty: lessons learned from observations of a dense
rain-gauge network, Hydrol. Earth Syst. Sci., 17, 2195–2208,
https://doi.org/10.5194/hess-17-2195-2013, 2013. a
Peleg, N., Marra, F., Fatichi, S., Paschalis, A., Molnar, P., and Burlando, P.: Spatial variability of extreme rainfall at radar subpixel scale, J.
Hydrol., 556, 922–933, https://doi.org/10.1016/j.jhydrol.2016.05.033, 2018. a
Perpiñán, O. and Hijmans, R.: rasterVis, package version 0.46 – For new features, see the `Changelog' file (in the package source), available at: http://oscarperpinan.github.io/rastervis/ (last access: 6 April 2021), 2019. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org/ (last access: 6 April 2021), 2019. a
Rudolf, B. and Rapp, J.: Das Jahrhunderthochwasser der Elbe: Synoptische
Wetterentwicklung und klimatologische Aspekte, Abdruck aus klimastatusbericht 2002, DWD, availablea t: https://www.dwd.de/DE/leistungen/wzn/publikationen/Elbehochwasser.pdf?__blob=publicationFile&v=2 (last access: 6 April 2021), 2003. a
Scott, A. J. and Knott, M.: A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics, 30, 507–512, https://doi.org/10.2307/2529204, 1974. a
Westra, S., Alexander, L. V., and Zwiers, F. W.: Global increasing trends in
annual maximum daily precipitation, J. Climate, 26, 3904–3918,
https://doi.org/10.1175/JCLI-D-12-00502.1, 2013. a
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson,
F., Kendon, E. J., Lenderink, G., and Roberts, N. M.: Future changes to the
intensity and frequency of short-duration extreme rainfall, Rev. Geophys., 52, 522–555, https://doi.org/10.1002/2014rg000464, 2014. a
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag, New York, available at: https://ggplot2.tidyverse.org (last access: 6 April 2021), 2016. a
Winterrath, T., Rosenow, W., and Weigl, E.: On the DWD Quantitative
Precipitation Analysis and Nowcasting System for Real-Time Application in
German Flood Risk Management, in: Weather Radar and Hydrology, Proceedings of
a symposium held in Exeter, UK, April 2011, IAHS Publ., 351, 323–329, 2012. a
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A.,
Walawender, E., Weigl, E., and Becker, A.: Erstellung einer radargestützten Niederschlagsklimatologie, available at: https://www.dwd.de/DE/leistungen/pbfb_verlag_berichte/pdf_einzelbaende/251_pdf.pdf?__blob=publicationFile&v=2
(last access: 6 April 2021), 2017. a
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A., Lengfeld, K., Walawender, E., Weigl, E., and Becker, A.: Radar climatology (RADKLIM) version 2017.002: Reprocessed gauge-adjusted radar data, one-hour precipitation sums (RW), DWD – Deutscher Wetterdienst, https://doi.org/10.5676/dwd/radklim_rw_v2017.002, 2018a. a
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A., Lengfeld, K., Walawender, E., Weigl, E., and Becker, A.: Radar climatology (RADKLIM) version 2017.002: Reprocessed quasi gauge-adjusted radar data, 5-minute precipitation sums (YW), DWD – Deutscher Wetterdienst, https://doi.org/10.5676/dwd/radklim_yw_v2017.002, 2018b. a, b
Yang, Z.-Y., Pourghasemi, H. R., and Lee, Y.-H.: Fractal analysis of
rainfall-induced landslide and debris flow spread distribution in the
Chenyulan Creek Basin, Taiwan, J. Earth Sci., 27, 151–159,
https://doi.org/10.1007/s12583-016-0633-4, 2016. a
Zhang, H., Fraedrich, K., Zhu, X., Blender, R., and Zhang, L.: World's
Greatest Observed Point Rainfalls: Jennings (1950) Scaling Law, J. Hydrometeorol., 14, 1952–1957, https://doi.org/10.1175/JHM-D-13-074.1, 2013. a, b
Short summary
We examined maximum rainfall values for different durations from 16 years of radar-based rainfall records for whole Germany. Unlike existing observations based on rain gauge data no clear linear relationship could be identified. However, by classifying all time series, we could identify three similar groups determined by the temporal structure of rainfall extremes observed in the study period. The study highlights the importance of using long data records and a dense measurement network.
We examined maximum rainfall values for different durations from 16 years of radar-based...
Altmetrics
Final-revised paper
Preprint