Articles | Volume 21, issue 4
https://doi.org/10.5194/nhess-21-1195-2021
https://doi.org/10.5194/nhess-21-1195-2021
Research article
 | 
09 Apr 2021
Research article |  | 09 Apr 2021

An analysis of temporal scaling behaviour of extreme rainfall in Germany based on radar precipitation QPE data

Judith Marie Pöschmann, Dongkyun Kim, Rico Kronenberg, and Christian Bernhofer

Related authors

Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024,https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Repeatable high-resolution statistical downscaling through deep learning
Dánnell Quesada-Chacón, Klemens Barfus, and Christian Bernhofer
Geosci. Model Dev., 15, 7353–7370, https://doi.org/10.5194/gmd-15-7353-2022,https://doi.org/10.5194/gmd-15-7353-2022, 2022
Short summary
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022,https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Evapotranspiration at four sites representing land-use and height gradient in the Eastern Ore Mountains (Germany)
Uta Moderow, Stefanie Fischer, Thomas Grünwald, Ronald Queck, and Christian Bernhofer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-202,https://doi.org/10.5194/hess-2020-202, 2020
Preprint withdrawn
Short summary
Estimation of joint return periods of compound precipitation-discharge extremes for small catchments
Ivan Vorobevskii, Rico Kronenberg, and Christian Bernhofer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-27,https://doi.org/10.5194/hess-2020-27, 2020
Preprint withdrawn
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024,https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023,https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Wind as a natural hazard in Poland
Tadeusz Chmielewski and Piotr A. Bońkowski
Nat. Hazards Earth Syst. Sci., 23, 3839–3844, https://doi.org/10.5194/nhess-23-3839-2023,https://doi.org/10.5194/nhess-23-3839-2023, 2023
Short summary
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023,https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
Characteristics of cloud-to-ground lightning (CG) and differences between +CG and −CG strokes in China regarding the China National Lightning Detection Network
Ruijiao Jiang, Guoping Zhang, Shudong Wang, Bing Xue, Zhengshuai Xie, Tingzhao Yu, Kuoyin Wang, Jin Ding, and Xiaoxiang Zhu
Nat. Hazards Earth Syst. Sci., 23, 3747–3759, https://doi.org/10.5194/nhess-23-3747-2023,https://doi.org/10.5194/nhess-23-3747-2023, 2023
Short summary

Cited articles

American Meteorological Society: Glossary of Meteorology, American Meteorology Society, available at: http://glossary.ametsoc.org/wiki/ (last access: 6 April 2021), 2020. a
Barbero, R., Fowler, H. J., Lenderink, G., and Blenkinsop, S.: Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions?, Geophys. Res. Lett., 44, 974–983, https://doi.org/10.1002/2016gl071917, 2017. a
Blanchet, J., Ceresetti, D., Molinié, G., and Creutin, J.-D.: A regional GEV scale-invariant framework for Intensity–Duration–Frequency analysis, J. Hydrol., 540, 82–95, https://doi.org/10.1016/j.jhydrol.2016.06.007, 2016. a
Borga, M., Gaume, E., Creutin, J. D., and Marchi, L.: Surveying flash floods: gauging the ungauged extremes, Hydrol. Process., 22, 3883–3885, https://doi.org/10.1002/hyp.7111, 2008. a
Breña-Naranjo, J. A., Pedrozo-Acuña, A., and Rico-Ramirez, M. A.: World's greatest rainfall intensities observed by satellites, Atmos. Sci. Lett., 16, 420–424, https://doi.org/10.1002/asl2.546, 2015. a
Download
Short summary
We examined maximum rainfall values for different durations from 16 years of radar-based rainfall records for whole Germany. Unlike existing observations based on rain gauge data no clear linear relationship could be identified. However, by classifying all time series, we could identify three similar groups determined by the temporal structure of rainfall extremes observed in the study period. The study highlights the importance of using long data records and a dense measurement network.
Altmetrics
Final-revised paper
Preprint