Articles | Volume 20, issue 12
Nat. Hazards Earth Syst. Sci., 20, 3293–3314, 2020
Nat. Hazards Earth Syst. Sci., 20, 3293–3314, 2020

Research article 04 Dec 2020

Research article | 04 Dec 2020

Open check dams and large wood: head losses and release conditions

Guillaume Piton et al.

Related authors

Real-scale investigation of the kinematic response of a rockfall protection embankment
S. Lambert, A. Heymann, P. Gotteland, and F. Nicot
Nat. Hazards Earth Syst. Sci., 14, 1269–1281,,, 2014

Related subject area

Hydrological Hazards
Drought propagation and its impact on groundwater hydrology of wetlands: a case study on the Doode Bemde nature reserve (Belgium)
Buruk Kitachew Wossenyeleh, Kaleb Asnake Worku, Boud Verbeiren, and Marijke Huysmans
Nat. Hazards Earth Syst. Sci., 21, 39–51,,, 2021
Short summary
Modelling the Brumadinho tailings dam failure, the subsequent loss of life and how it could have been reduced
Darren Lumbroso, Mark Davison, Richard Body, and Gregor Petkovšek
Nat. Hazards Earth Syst. Sci., 21, 21–37,,, 2021
Short summary
Assessment of probability distributions and analysis of the minimum storage draft rate in the equatorial region
Hasrul Hazman Hasan, Siti Fatin Mohd Razali, Nur Shazwani Muhammad, and Firdaus Mohamad Hamzah
Nat. Hazards Earth Syst. Sci., 21, 1–19,,, 2021
Short summary
Downsizing parameter ensembles for simulations of rare floods
Anna E. Sikorska-Senoner, Bettina Schaefli, and Jan Seibert
Nat. Hazards Earth Syst. Sci., 20, 3521–3549,,, 2020
Short summary
Dynamic maps of human exposure to floods based on mobile phone data
Matteo Balistrocchi, Rodolfo Metulini, Maurizio Carpita, and Roberto Ranzi
Nat. Hazards Earth Syst. Sci., 20, 3485–3500,,, 2020
Short summary

Cited articles

Addy, S. and Wilkinson, M. E.: Representing natural and artificial in-channel large wood in numerical hydraulic and hydrological models, Wiley Interdisciplin. Rev.: Water, 6, 6,, 2019. 
Armanini, A., Dellagiacoma, F., and Ferrari, L.: From the check dam to the development of functional check dams, Fluv. Hydraul. Mount. Reg., 37, 331–344,, 1991. 
Bezzola, G. R., Sigg, H., and Lange, D.: Driftwood retention works in Switzerland [Schwemmholzrückhalt in der Schweiz], in: INTERPRAEVENT Conference Proceedings, vol. VII, 29–40, available at: (last access: 3 December 2020), 2004. 
Braudrick, C. A., Grant, G. E., Ishikawa, Y., and Ikeda, H.: Dynamics of wood transport in streams: A flume experiment, Earth Surf. Proc. Land., 22, 669–683, 1997. 
Chen, J., Wang, D., Zhao, W., Chen, H., Wang, T., Nepal, N., and Chen, X.: Laboratory study on the characteristics of large wood and debris flow processes at slit-check dams, Landslides, 17, 1703–1711,, 2020. 
Short summary
Open check dams are flood protection structures trapping sediment and large wood. Large wood obstructs openings of dams, thus increasing flow levels. If flow levels become higher than the dam crest, the trapped large wood may overtop the structure and be suddenly released downstream, which may also eventually obstruct downstream bridges. This paper is based on experiments on small-scale models. It shows how to compute the increase in flow level and conditions leading to sudden overtopping.
Final-revised paper