Articles | Volume 20, issue 12
https://doi.org/10.5194/nhess-20-3293-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-3293-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Open check dams and large wood: head losses and release conditions
Univ. Grenoble Alpes, INRAE, ETNA, 3800 Grenoble, France
Toshiyuki Horiguchi
National Defense Academy, Yokosuka, 239-8686, Kanagawa, Japan
Lise Marchal
Univ. Grenoble Alpes, INRAE, ETNA, 3800 Grenoble, France
AgroParisTech, Paris Institute of Technology for Life, Food and
Environmental Sciences, 75231 Paris, France
Stéphane Lambert
Univ. Grenoble Alpes, INRAE, ETNA, 3800 Grenoble, France
Related authors
Miao Huo, Stéphane Lambert, Firmin Fontaine, and Guillaume Piton
EGUsphere, https://doi.org/10.5194/egusphere-2024-3575, https://doi.org/10.5194/egusphere-2024-3575, 2024
Short summary
Short summary
The presented study mainly describes the loading on a flexible barrier at rest in order that the static component of the force exerted by the dead zone received limited attention up to now. Four interaction modes are identified from a gentle flow stopping to high granular jump and/or overtopping. Interestingly, overflow resulted in a significant increase in the residual load and were almost twice that observed in the absence of overflow.
Suzanne Lapillonne, Georgios Fourtakas, Vincent Richefeu, Guillaume Piton, and Guillaume Chambon
EGUsphere, https://doi.org/10.22541/au.170628457.73131740/v2, https://doi.org/10.22541/au.170628457.73131740/v2, 2024
Short summary
Short summary
Debris flows are fast flowing flows saturated with granular material. They naturally occur in steep creeks and are a threat to local communities. Scientists turn to numerical models to better understand how they behave. We investigate the accuracy of a numerical model which relies on modelling the debris flow as a mixture of a granular phase and a fluid phase. We focus on a demonstration of the capacity of the model to reliably represent the behaviour of the flow at different scales.
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
Nat. Hazards Earth Syst. Sci., 23, 1769–1787, https://doi.org/10.5194/nhess-23-1769-2023, https://doi.org/10.5194/nhess-23-1769-2023, 2023
Short summary
Short summary
In mountain catchments, damage during floods is generally primarily driven by the supply of a massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper uses data gathered during the maintenance operation of about 100 debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Suzanne Lapillonne, Firmin Fontaine, Frédéric Liebault, Vincent Richefeu, and Guillaume Piton
Nat. Hazards Earth Syst. Sci., 23, 1241–1256, https://doi.org/10.5194/nhess-23-1241-2023, https://doi.org/10.5194/nhess-23-1241-2023, 2023
Short summary
Short summary
Debris flows are fast flows most often found in torrential watersheds. They are composed of two phases: a liquid phase which can be mud-like and a granular phase, including large boulders, transported along with the flow. Due to their destructive nature, accessing features of the flow, such as velocity and flow height, is difficult. We present a protocol to analyse debris flow data and results of the Réal torrent in France. These results will help experts in designing models.
Miao Huo, Stéphane Lambert, Firmin Fontaine, and Guillaume Piton
EGUsphere, https://doi.org/10.5194/egusphere-2024-3575, https://doi.org/10.5194/egusphere-2024-3575, 2024
Short summary
Short summary
The presented study mainly describes the loading on a flexible barrier at rest in order that the static component of the force exerted by the dead zone received limited attention up to now. Four interaction modes are identified from a gentle flow stopping to high granular jump and/or overtopping. Interestingly, overflow resulted in a significant increase in the residual load and were almost twice that observed in the absence of overflow.
Suzanne Lapillonne, Georgios Fourtakas, Vincent Richefeu, Guillaume Piton, and Guillaume Chambon
EGUsphere, https://doi.org/10.22541/au.170628457.73131740/v2, https://doi.org/10.22541/au.170628457.73131740/v2, 2024
Short summary
Short summary
Debris flows are fast flowing flows saturated with granular material. They naturally occur in steep creeks and are a threat to local communities. Scientists turn to numerical models to better understand how they behave. We investigate the accuracy of a numerical model which relies on modelling the debris flow as a mixture of a granular phase and a fluid phase. We focus on a demonstration of the capacity of the model to reliably represent the behaviour of the flow at different scales.
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
Nat. Hazards Earth Syst. Sci., 23, 1769–1787, https://doi.org/10.5194/nhess-23-1769-2023, https://doi.org/10.5194/nhess-23-1769-2023, 2023
Short summary
Short summary
In mountain catchments, damage during floods is generally primarily driven by the supply of a massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper uses data gathered during the maintenance operation of about 100 debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Suzanne Lapillonne, Firmin Fontaine, Frédéric Liebault, Vincent Richefeu, and Guillaume Piton
Nat. Hazards Earth Syst. Sci., 23, 1241–1256, https://doi.org/10.5194/nhess-23-1241-2023, https://doi.org/10.5194/nhess-23-1241-2023, 2023
Short summary
Short summary
Debris flows are fast flows most often found in torrential watersheds. They are composed of two phases: a liquid phase which can be mud-like and a granular phase, including large boulders, transported along with the flow. Due to their destructive nature, accessing features of the flow, such as velocity and flow height, is difficult. We present a protocol to analyse debris flow data and results of the Réal torrent in France. These results will help experts in designing models.
Cited articles
Addy, S. and Wilkinson, M. E.: Representing natural and artificial in-channel large wood in numerical hydraulic and hydrological models, Wiley Interdisciplin. Rev.: Water, 6, 6, https://doi.org/10.1002/wat2.1389, 2019.
Armanini, A., Dellagiacoma, F., and Ferrari, L.: From the check dam to the
development of functional check dams, Fluv. Hydraul. Mount. Reg., 37, 331–344, https://doi.org/10.1007/BFb0011200, 1991.
Bezzola, G. R., Sigg, H., and Lange, D.: Driftwood retention works in
Switzerland [Schwemmholzrückhalt in der Schweiz], in: INTERPRAEVENT
Conference Proceedings, vol. VII, 29–40, available at:
http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2004_3_VII-29.pdf
(last access: 3 December 2020), 2004.
Braudrick, C. A., Grant, G. E., Ishikawa, Y., and Ikeda, H.: Dynamics of wood
transport in streams: A flume experiment, Earth Surf. Proc. Land., 22, 669–683, 1997.
Chen, J., Wang, D., Zhao, W., Chen, H., Wang, T., Nepal, N., and Chen, X.:
Laboratory study on the characteristics of large wood and debris flow processes at slit-check dams, Landslides, 17, 1703–1711,
https://doi.org/10.1007/s10346-020-01409-3, 2020.
Comiti, F., Lucía, A., and Rickenmann, D.: Large wood recruitment and
transport during large floods: A review, Geomorphology, 269, 23–39,
https://doi.org/10.1016/j.geomorph.2016.06.016, 2016.
D'Agostino, V., Degetto, M., and Righetti, M.: Experimental investigation on
open check dam for coarse woody debris control, in: Dynamics of water and
sediments in mountain basins, vol. 20, 201–212, Bios, available at:
http://intra.tesaf.unipd.it/people/dagostino/Pubblicazioni/P43_2000.pdf
(last access: 3 December 2020), 2000.
Deymier, C., Tacnet, J. M., and Mathys, N.: Conception et calcul de barrages
de correction torrentielle, Cemagref Grenoble Pegr., Grenoble, France, 1995.
Di Risio, M. and Sammarco, P.: Effects of floaters on the free surface profiles of river flows, Environ. Fluid Mech., 20, 527–537,
https://doi.org/10.1007/s10652-019-09710-z, 2020.
Di Stefano, C. and Ferro, V.: Experimental study of the stage–discharge
relationship for an upstream inclined grid with longitudinal bars, J. Irrig. Drain. Eng., 139, 691–695, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000598, 2013.
Dodge, B. H.: Design and Operation of Debris Basins, in: Proceedings, Federal
Inter-Agency Sedimentation Conference, US Department of the Interior, Bureau of Reclamation, Denver, CO, 274–301, 1948.
Follett, E., Schalko, I., and Nepf, H.: Momentum and Energy Predict the
Backwater Rise Generated by a Large Wood Jam, Geophys. Res. Lett., 47, https://doi.org/10.1029/2020GL089346, in press, 2020.
Furlan, P.: Blocking probability of large wood and resulting head increase
at ogee crest spillways, PhD thesis, EPFL, Lausanne and IST, Lisboa, 2019.
Furlan, P., Pfister, M., Matos, J., and Schleiss, A.: Influence of Density of Large Stems on the Blocking Probability at Spillways, in: 7th IAHR
International Symposium on Hydraulic Structures, edited by:
Bung, D. and Tullis, B., USULibraries, Aachen, Germany, 2018.
Furlan, P., Pfister, M., Matos, J., Amado, C., and Schleiss, A. J.: Experimental repetitions and blockage of large stems at ogee crested
spillways with piers, J. Hydraul. Res., 57, 250–262,
https://doi.org/10.1080/00221686.2018.1478897, 2019.
Furlan, P., Pfister, M., Matos, J., Amado, C., and Schleiss, A. J.: Statistical accuracy for estimations of large wood blockage in a reservoir
environment, Environ. Fluid Mech., 20, 579–592,
https://doi.org/10.1007/s10652-019-09708-7, 2020.
Hartlieb, A.: Large scale hydraulic model tests for floating debris jams at
spillways, in: vol. C18, Water infinitely deformable but still limited, Proc. of the 2nd IAHR European Congress, 27–29 June 2012, Munich, Germany, 1–6, 2012.
Hartlieb, A.: Decisive Parameters for Backwater Effects Caused by Floating
Debris Jams, Open J. Fluid Dynam., 07, 475–484,
https://doi.org/10.4236/ojfd.2017.74032, 2017.
Horiguchi, T., Shibuya, H., Katsuki, S., Ishikawa, N., and Mizuyama, T.: A
Basic Study on Protective Steel Structures against Woody Debris Hazards, Int. J. Protect. Struct., 6, 191–215, https://doi.org/10.1260/2041-4196.6.2.191, 2015.
Hübl, J. and Fiebiger, G.: Debris-flow mitigation measures, in:
Debris-flow hazards and related phenomena, edited by: Jakob, M. and Hungr, O., Springer, Berlin, Heidelberg, 445–487, 2005.
Ikeya, H.: Study on sediment control effect of open dams, in: International
symposium on Erosion, Débris Flow and Disaster Prevention, Japan Erosion Control Engineering Society, Tsukuba, Japan, 401–406, 1985.
Ikeya, H.: Debris flow and its countermeasures in Japan, Bulletin – International Association of Engineering Geology, 40, 15–33, 1989.
Ishikawa, Y.: Production and Flow Down of Floating Logs at Sreams and
Disasters, Water Sci., 38, 51–77, https://doi.org/10.20820/suirikagaku.38.1_51, 1994.
Ishikawa, Y. and Mizuyama, T.: An Experimental study of permeable sediment
control dams as a countermeasure against floating logs, in: 6th Congress
Asian and Pacific Regional Division – IAHR, Dept. of Civil Engineering, Kyoto University, Kyoto, Japan, 723–730, 1988.
Kasai, S., Ohgi, Y., Mizoguchi, I., Matsuda, A., Aramaki, H., and Tanami, M.:
Structural characteristics of wood-debris entrapment facilites, in:
INTERPRAEVENT Conference Proceedings, Garmisch-Partenkirchen, Germany, 1996.
Kimura, I. and Kitazono, K.: Effects of the driftwood Richardson number and
applicability of a 3D–2D model to heavy wood jamming around obstacles,
Environ. Fluid Mech., 20, 503–525, https://doi.org/10.1007/s10652-019-09709-6, 2019.
Lange, D. and Bezzola, G.: Schwemmholz – Probleme und Lösungsansätze
[Driftwood – Problems and solutions], Versuchsanstalt für Wasserbau
Hydrologie und Glaziologie der Eidgenössischen Technischen Hochschule (VAW, Zürich, available at:
https://ethz.ch/content/dam/ethz/special-interest/baug/vaw/vaw-dam/documents/das-institut/mitteilungen/2000-2009/188.pdf
(last access: 3 December 2020), 2006.
Mazzorana, B. and Fuchs, S.: Fuzzy Formative Scenario Analysis for woody
material transport related risks in mountain torrents, Environ. Model. Softw., 25, 1208–1224, https://doi.org/10.1016/j.envsoft.2010.03.030, 2010.
Mazzorana, B., Zischg, A., Largiader, A., and Hübl, J.: Hazard index maps
for woody material recruitment and transport in alpine catchments, Nat.
Hazards Earth Syst. Sci., 9, 197–209, https://doi.org/10.5194/nhess-9-197-2009, 2009.
Meninno, S., Canelas, R. B., and Cardoso, A. H.: Coupling check dams with
large wood retention structures in clean water, Environ. Fluid Mech., 20, 619–634, https://doi.org/10.1007/s10652-019-09711-y, 2019.
Merten, E., Finlay, J., Johnson, L., Newman, R., Stefan, H., and Vondracek,
B.: Factors influencing wood mobilization in streams, Water Resour. Res., 46, W10514, https://doi.org/10.1029/2009wr008772, 2010.
Mizuyama, T.: Structural Countermeasures for Debris Flow Disasters, Int. J. Eros. Contr. Eng., 1, 38–43, 2008.
Moldenhauer-Roth, A., Piton, G., Schwindt, S., Jafarnejad, M., and Schleiss, A. J.: Design of sediment detention basins: Scaled model experiments and application, Int. J. Sediment Res., 36, 136–150, https://doi.org/10.1016/j.ijsrc.2020.07.007, 2021.
Pfister, M., Capobianco, D., Tullis, B., and Schleiss, A. J.: Debris-Blocking
Sensitivity of Piano Key Weirs under Reservoir-Type Approach Flow, J. Hydraul. Eng., 139, 1134–1141, https://doi.org/10.1061/(asce)hy.1943-7900.0000780, 2013a.
Pfister, M., Schleiss, A. J., and Tullis, B.: Effect of driftwood on hydraulic head of Piano Key weirs, in Labyrinth and Piano Key weirs II,
CRC Press/Balkema, Leiden, the Netherlands, 255–264, 2013b.
Pfister, M., Bénet, L., and De Cesare, G.: Effet des bois flottants
obstruant un évacuateur de crue dans des conditions extrêmes, Wasser, Energie, Luft – Eau, Energie, Air, 112, 77–83, 2020.
Piton, G.: Sediment transport control by check dams and open check dams in
Alpine torrents, PhD Thesis, Univ. Grenoble Alpes, Grenoble, available at:
https://tel.archives-ouvertes.fr/tel-01420209 (last access: 3 December 2020), 2016.
Piton, G. and Recking, A.: Design of sediment traps with open check dams. I: hydraulic and deposition processes, J. Hydraul. Eng., 142, 1–23, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001048, 2016a.
Piton, G. and Recking, A.: Design of sediment traps with open check dams.
II: woody debris, J. Hydraul. Eng., 142, 1–17,
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001049, 2016b.
Piton, G., Recking, A., Patrocco, D., Ropele, P., Colle, F., Le Guern, J.,
Rifaï, I., Patrocco, D., Bodrato, G., Del Vesco, R., Peyras, L., Boutry, M., Ropele, P., and Collé, F.: Rapport final: Action 2.5 – Vulnérabilité des barrages vis-à-vis des aléas torrentiels,
Regione Piemonte, available at: https://hal.archives-ouvertes.fr/hal-02369775 (last access: 3 December 2020), 2015.
Piton, G., Mejean, S., Bellot, H., Le Guern, J., Carbonari, C., and Recking,
A.: Bed-load trapping in open check dam basins measurments of flow velocities and depositions patterns, in: INTERPRAEVENT Conference proceedings, edited by: Koboltschnig, G., International Research Society INTERPRAEVENT, Klagenfurt, Austria, 808–817, available at:
https://hal.archives-ouvertes.fr/hal-01390582 (last access: 3 December 2020), 2016.
Piton, G., Mano, V., Richard, D., Evin, G., Laigle, D., Tacnet, J. M., and
Rielland, P. A.: Design of a debris retention basin enabling sediment continuity for small events: the Combe de Lancey case study (France), in: Proc. 7th Int. Conf. on Debris-Flow Hazards Mitigation, June 10–13 2019, Golden, Colorado, USA, 1019–1026, 2019a.
Piton, G., Marchal, L., and Lambert, S.: Etude Des Interactions Barrages Filtrants/Transport De Flottants Et Risque De Relargage – Etude Experimentale Des Ouvrages Rigides, resreport, IRSTEA (Convention DGPR SNRH 2019 – Action FILTOR), available at:
https://hal.archives-ouvertes.fr/hal-02515247/ (last access: 3 December 2020), 2019b.
Piton, G., Carladous, S., Marco, O., Richard, D., Liebault, F., Recking, A.,
Quefféléan, Y., and Tacnet, J. M.: Usage des ouvrages de correction
torrentielle et plages de dépôt: origine, état des lieux,
perspectives, La Houille Blanche, 1, 57–67, https://doi.org/10.1051/lhb/2019008, 2019c.
Reneuve, P.: L'évolution de la technique de correction torrentielle, Revue Forestière Française, 9–10, 689–693, https://doi.org/10.4267/2042/27132, 1955.
Rossi, G. and Armanini, A.: Experimental analysis of open check dams and
protection bars against debris flows and driftwood, Environ. Fluid Mech., 20, 559–578, https://doi.org/10.1007/s10652-019-09714-9, 2019.
Rudolf-Miklau, F. and Suda, J.: Design Criteria for Torrential Barriers, in:
Dating Torrential Processes on Fans and Cones, vol. 47, edited by:
Schneuwly-Bollschweiler, M., Stoffel, M., and Rudolf-Miklau, F., Springer Netherlands, 375–389, 2013.
Ruiz-Villanueva, V., Bodoque, J. M., Díez-Herrero, A., and Bladé, E.: Large wood transport as significant influence on flood risk in a mountain village, Nat. Hazards, 74, 967–987, https://doi.org/10.1007/s11069-014-1222-4, 2014a.
Ruiz-Villanueva, V., Bladé, E., Sánchez-Juny, M., Marti-Cardona, B.,
Díez-Herrero, A., and Bodoque, J. M.: Two-dimensional numerical modeling
of wood transport, J. Hydroinform., 16, 1077, https://doi.org/10.2166/hydro.2014.026, 2014b.
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D.,
Sanz-Ramos, M., Stoffel, M., and Wohl, E.: Characterization of wood-laden
flows in rivers, Earth Surf. Proc. Land., 44, 1694–1709, https://doi.org/10.1002/esp.4603, 2019.
SABO Division: Guideline for driftwood countermeasures (proposal and design), edited by Sediment Control (Sabo) Department, Ministry of Construction, Japan, available at:
http://www.sabo-int.org/guideline/pdf/driftwoodCountermeasureGuideline.pdf
(last access: 3 December 2020), 2000.
Schalko, I.: Wood retention at inclined racks: Effects on flow and local
bedload processes, Earth Surf. Process. Land., 45, 2036–2047,
https://doi.org/10.1002/esp.4864, 2020.
Schalko, I., Schmocker, L., Weitbrecht, V., and Boes, R. M.: Backwater Rise
due to Large Wood Accumulations, J. Hydraul. Eng., 144, 04018056, https://doi.org/10.1061/(asce)hy.1943-7900.0001501, 2018.
Schalko, I., Lageder, C., Schmocker, L., Weitbrecht, V., and Boes, R. M.:
Laboratory flume experiments on the formation of spanwise large wood
accumulations Part I: Effect on backwater rise, Water Resour. Res., 55, 4854–4870, https://doi.org/10.1029/2018wr024649, 2019a.
Schalko, I., Lageder, C., Schmocker, L., Weitbrecht, V., and Boes, R. M.:
Laboratory flume experiments on the formation of spanwise large wood
accumulations Part II: Effect on local scour, Water Resour. Res., 55, 4871–4885, https://doi.org/10.1029/2019WR024789, 2019b.
Schmocker, L.: Floating Debris Retention Racks at Dam Spillways, in: Proc. 37th IAHR World Congress, Kuala Lumpur, 2116–2123, available at:
https://www.iahr.org/library/info?pid=2700 (last access: 2 September 2020), 2017.
Schmocker, L. and Hager, W. H.: Scale modeling of wooden debris accumulation
at a debris rack, J. Hydraul. Eng., 139, 827–836,
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000714, 2013.
Schmocker, L. and Weitbrecht, V.: Driftwood: Risk analysis and engineering
measures, J. Hydraul. Eng., 139, 683–695, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000728, 2013.
Schmocker, L., Hunziker, R., Müller, U., and Weitbrecht, V.: Driftwood
retention in pre-alpine rivers, in Proceedings of the International
Conference on Fluvial Hydraulics, RIVER FLOW 2014, CRC Press/Balkema, Lausanne, Switzerland, 117–127, 2014.
Schwindt, S., Franca, M. J., Reffo, A., and Schleiss, A. J.: Sediment traps
with guiding channel and hybrid check dams improve controlled sediment
retention, Nat. Hazards Earth Syst. Sci., 18, 647–668,
https://doi.org/10.5194/nhess-18-647-2018, 2018.
Shima, J., Yoshida, K., Kawakami, Y., and Mizuyama, T.: Consideration on
boulders & members' interval of open type steel sabo dam for capturing debris flow, J. Jpn. Soc. Eros. Contr. Eng., 67, 3–11, https://doi.org/10.11475/sabo.67.5_3, 2015.
Shima, J., Moriyama, H., Kokuryo, H., Ishikawa, N., and Mizuyama, T.: Prevention and mitigation of debris flow hazards by using steel open-type
sabo dams, Int. J. Eros. Contr. Eng., 9, 135–144, https://doi.org/10.13101/ijece.9.135, 2016.
Shrestha, B. B., Nakagawa, H., Kawaike, K., Baba, Y., and Zhang, H.: Driftwood deposition from debris flows at slit-check dams and fans, Nat.
Hazards, 61, 577–602, https://doi.org/10.1007/s11069-011-9939-9, 2012.
Stockstill, R. L., Daly, S. F., and Hopkins, M. A.: Modeling Floating Objects
at River Structures, J. Hydraul. Eng., 135, 403–414,
https://doi.org/10.1061/(ASCE)0733-9429(2009)135:5(403), 2009.
Tamagni, S., Weitbrecht, V., Müller, U., Hunziker, R., Wyss, H., Kolb, R., and Baumann, W.: Schwemmholzrückhalt Ettisbühl/Malters, Wasser Energie Luft, 102.4, 269–274, 2010.
Tateishi, R., Horiguchi, T., Sonoda, Y., and Ishikawa, N.: Experimental study
of the woody debris trapping efficiency of a steel pipe, open sabo dam, Int. J. Sediment Res., 35, 431–443, https://doi.org/10.1016/j.ijsrc.2020.03.011, 2020.
Uchiogi, T., Shima, J., Tajima, H., and Ishikawa, Y.: Design methodes for
woody-debris entrapment, in: INTERPRAEVENT Conference Proceedings, Garmisch-Partenkirchen, Germany, 279–288, 1996.
USBR: Chapter 2: Hydrologic Considerations, in: Design Standards No. 14 –
Appurtenant Structures for Dams (Spillways and Outlet Works), 1–126,
available at:
https://www.usbr.gov/tsc/techreferences/designstandards-datacollectionguides/finalds-pdfs/DS14-2.pdf
(last access: 2 September 2020), 2013.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag,
New York, available at: https://ggplot2.tidyverse.org (last access: 3 December 2020), 2016.
Wohl, E., Bledsoe, B. P., Fausch, K. D., Kramer, N., Bestgen, K. R., and Gooseff, M. N.: Management of Large Wood in Streams: An Overview and Proposed Framework for Hazard Evaluation, J. Am. Water Resour. Assoc., 52, 1–21, https://doi.org/10.1111/1752-1688.12388, 2016.
Wohl, E., Kramer, N., Ruiz-Villanueva, V., Scott, D. N., Comiti, F., Gurnell, A. M., Piegay, H., Lininger, K. B., Jaeger, K. L., Walters, D. M., and Fausch, K. D.: The Natural Wood Regime in Rivers, BioScience, 69, 259–273, https://doi.org/10.1093/biosci/biz013, 2019.
Zollinger, F.: Debris detention basins in the European Alps, in: International symposium on Erosion, Debris Flow and Disaster Prevention,
vol. 1, Japan Erosion Control Engineering Society, Tsukuba, Japan, 433–438, 1985.
Short summary
Open check dams are flood protection structures trapping sediment and large wood. Large wood obstructs openings of dams, thus increasing flow levels. If flow levels become higher than the dam crest, the trapped large wood may overtop the structure and be suddenly released downstream, which may also eventually obstruct downstream bridges. This paper is based on experiments on small-scale models. It shows how to compute the increase in flow level and conditions leading to sudden overtopping.
Open check dams are flood protection structures trapping sediment and large wood. Large wood...
Altmetrics
Final-revised paper
Preprint