Articles | Volume 20, issue 11
https://doi.org/10.5194/nhess-20-3099-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-20-3099-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extension of the WRF-Chem volcanic emission preprocessor to integrate complex source terms and evaluation for different emission scenarios of the Grimsvötn 2011 eruption
Marcus Hirtl
CORRESPONDING AUTHOR
Zentralanstalt für Meteorologie und Geodynamik, Department for Numerical Weather Prediction, Section Chemical Weather Forecasts, Vienna, 1190,
Austria
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK
99775, USA
Barbara Scherllin-Pirscher
Zentralanstalt für Meteorologie und Geodynamik, Department for Numerical Weather Prediction, Section Chemical Weather Forecasts, Vienna, 1190,
Austria
Martin Stuefer
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK
99775, USA
Delia Arnold
Zentralanstalt für Meteorologie und Geodynamik, Department for Numerical Weather Prediction, Section Chemical Weather Forecasts, Vienna, 1190,
Austria
Arnold Scientific Consulting, Manresa, 08242, Spain
Rocio Baro
Zentralanstalt für Meteorologie und Geodynamik, Department for Numerical Weather Prediction, Section Chemical Weather Forecasts, Vienna, 1190,
Austria
Christian Maurer
Zentralanstalt für Meteorologie und Geodynamik, Department for Numerical Weather Prediction, Section Chemical Weather Forecasts, Vienna, 1190,
Austria
Marie D. Mulder
Zentralanstalt für Meteorologie und Geodynamik, Department for Numerical Weather Prediction, Section Chemical Weather Forecasts, Vienna, 1190,
Austria
Related authors
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Matthieu Plu, Barbara Scherllin-Pirscher, Delia Arnold Arias, Rocio Baro, Guillaume Bigeard, Luca Bugliaro, Ana Carvalho, Laaziz El Amraoui, Kurt Eschbacher, Marcus Hirtl, Christian Maurer, Marie D. Mulder, Dennis Piontek, Lennart Robertson, Carl-Herbert Rokitansky, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 21, 2973–2992, https://doi.org/10.5194/nhess-21-2973-2021, https://doi.org/10.5194/nhess-21-2973-2021, 2021
Short summary
Short summary
Past volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, forced the cancellation of thousands of flights and had huge economic consequences.
In this article, an international team in the H2020 EU-funded EUNADICS-AV project has designed a probabilistic model approach to quantify ash concentrations. This approach is evaluated against measurements, and its potential use to mitigate the impact of future large-scale eruptions is discussed.
África Barreto, Francisco Quirós, Omaira E. García, Jorge Pereda-de-Pablo, Daniel González-Fernández, Andrés Bedoya-Velásquez, Michael Sicard, Carmen Córdoba-Jabonero, Marco Iarlori, Vincenzo Rizi, Nickolay Krotkov, Simon Carn, Reijo Roininen, Antonio J. Molina-Arias, A. Fernando Almansa, Óscar Álvarez-Losada, Carla Aramo, Juan José Bustos, Romain Ceolato, Adolfo Comerón, Alicia Felpeto, Rosa D. García, Pablo González-Sicilia, Yenny González, Pascal Hedelt, Miguel Hernández, María-Ángeles López-Cayuela, Diego Loyola, Stavros Meletlidis, Constantino Muñoz-Porcar, Ermanno Pietropaolo, Ramón Ramos, Alejandro Rodríguez-Gómez, Roberto Román, Pedro M. Romero-Campos, Martin Stuefer, Carlos Toledano, and Elsworth Welton
EGUsphere, https://doi.org/10.5194/egusphere-2025-3164, https://doi.org/10.5194/egusphere-2025-3164, 2025
Short summary
Short summary
This manuscript describes the instrumental coverage deployed during the Tajogaite eruption (19 September–25 December 2021) by the Instituto Geográfico Nacional (IGN), the Spanish State Meteorological Agency (AEMET), and other Spanish members of ACTRIS (Aerosol, Clouds and Trace Gases Research Infrastructure) to monitor its atmospheric impact. Two complementary methods provide consistent plume height data for future operational surveillance.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Matthieu Plu, Barbara Scherllin-Pirscher, Delia Arnold Arias, Rocio Baro, Guillaume Bigeard, Luca Bugliaro, Ana Carvalho, Laaziz El Amraoui, Kurt Eschbacher, Marcus Hirtl, Christian Maurer, Marie D. Mulder, Dennis Piontek, Lennart Robertson, Carl-Herbert Rokitansky, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 21, 2973–2992, https://doi.org/10.5194/nhess-21-2973-2021, https://doi.org/10.5194/nhess-21-2973-2021, 2021
Short summary
Short summary
Past volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, forced the cancellation of thousands of flights and had huge economic consequences.
In this article, an international team in the H2020 EU-funded EUNADICS-AV project has designed a probabilistic model approach to quantify ash concentrations. This approach is evaluated against measurements, and its potential use to mitigate the impact of future large-scale eruptions is discussed.
Sean D. Egan, Martin Stuefer, Peter W. Webley, Taryn Lopez, Catherine F. Cahill, and Marcus Hirtl
Nat. Hazards Earth Syst. Sci., 20, 2721–2737, https://doi.org/10.5194/nhess-20-2721-2020, https://doi.org/10.5194/nhess-20-2721-2020, 2020
Short summary
Short summary
The Weather Research Forecasting with Chemistry (WRF-Chem) model was modified to include volcanic ash aggregation. The modified WRF-Chem model was run with and without aggregation, and changes in the model output were measured. Changes in the lifetime of volcanic ash a function of the chosen fractal dimension were quantified. A case study using the 2010 eruptions of Eyjafjallajökull revealed that the aggregation modifications result in tephra fallout and ash concentrations near observed values.
Cited articles
Albersheim, S. and Guffanti M.: The United States national volcanic ash
operations plan for aviation, Nat. Hazards, 51, 275–285, https://doi.org/10.1007/s11069-008-9247-1, 2009.
Alexander, D.: Volcanic ash in the atmosphere and risks for civil aviation:
a study in European crisis management, Int. J. Disast. Risk Sc., 4, 9–19,
2013.
Althausen, D., Engelmann, R., Baars, H., Heese, B., Ansmann, A., Müller,
D., and Komppula, M.: Portable Raman lidar PollyXT for automated profiling
of aerosol backscatter, extinction, and depolarization, J. Atmos. Ocean.
Tech., 26, 2366–2378, https://doi.org/10.1175/2009JTECHA1304.1, 2009.
Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects, Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, 2014.
Bolić, T. and Sivčev, Ž.: Eruption of Eyjafjallajökull in
Iceland: Experience of European air traffic management, Transp. Res. Rec.,
2214, 136–143, https://doi.org/10.3141/2214-17, 2011.
Bolić, T. and Sivčev, Ž.: Air Traffic Management in Volcanic
Ash Events in Europe: a Year After Eyjafjallajökull Eruption, Transportation Research Board 91st Annual Meeting, Washington, D.C., USA, 22–26 January 2012, No.12-3009, 2012.
Carboni, E., Grainger, R. G., Mather, T. A., Pyle, D. M., Thomas, G. E., Siddans, R., Smith, A. J. A., Dudhia, A., Koukouli, M. E., and Balis, D.: The vertical distribution of volcanic SO2 plumes measured by IASI, Atmos. Chem. Phys., 16, 4343–4367, https://doi.org/10.5194/acp-16-4343-2016, 2016.
Carn, S. A., Strow, L. L., de Souza-Machado, S., Edmonds, Y., and Hannon,
S.: Quantifying tropospheric volcanic emissions with AIRS: The 2002 eruption
of Mt. Etna (Italy), Geophys. Res. Lett., 32, L02301,
https://doi.org/10.1029/2004GL021034, 2005.
Chahine, M. T., Pagano, T. S., Aumann, H. H., Atlas, R., Barnet, C.,
Blaisdell, J., Chen L., Divakarla, M., Fetzer, E. J., Goldberg, M., Gautier,
C., Granger S., Hannon, S., Irion, F. W., Kakar, R., Kalnay, E.,
Lambrigtsen, B. H., Lee. S.-Y., Le Marshall, J., McMillan, W. W., McMillin,
L., Olsen, E. T., Revercomb, H., Rosenkranz, R., Smith, W. L., Staelin, D.,
Strow, L. L., Susskind, J., Tobin, D., Wolf, W., and Zhou, L.: AIRS:
Improving weather forecasting and providing new data on greenhouse gases,
B. Am. Meteorol. Soc., 87, 911–926,
https://doi.org/10.1175/BAMS-87-7-911, 2006.
Clarkson, R. J., Majewicz, E. J., and Mack, P.: A re-evaluation of the 2010
quantitative understanding of the effects volcanic ash has on gas turbine
engines, P. I. Mech. Eng. G.-j. Aer., 230, 2274–2291, 2016.
Cooke, M. C., Francis, P. N., Millington, S., Saunders, R., and Witham, C.:
Detection of the Grímsvötn 2011 volcanic eruption plumes using
infrared satellite measurements, Atmos. Sci. Lett., 15, 321–327,
https://doi.org/10.1002/asl2.506, 2014.
Flemming, J. and Inness, A.: Volcanic sulfur dioxide plume forecasts based
on UV satellite retrievals for the 2011 Grímsvötn and the 2010
Eyjafjallajökull eruption, J. Geophys. Res.-Atmos., 118, 10172–10189,
https://doi.org/10.1002/jgrd.50753, 2013.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry with in
the WRF model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Gudmundsson, M. T. and Björnsson, H.: Eruptions in Grímsvötn,
Vatnajökull, Iceland, 1934–1991, Jökull, 41, 21–45, 1991.
Guffanti, M., Schneider, D. J., Wallace, K. L., Hall, T., Bensimon, D. R.,
and Salinas, L. J.: Aviation response to a widely dispersed volcanic ash and
gas cloud from the August 2008 eruption of Kasatochi, Alaska, USA, J.
Geophys. Res., 115, D00L19, https://doi.org/10.1029/2010JD013868, 2010.
Hirtl, M., Stuefer, M., Arnold, D., Grell, G., Maurer, C., Natali, S.,
Scherllin-Pirscher, B., and Webley, P.: The effects of simulating volcanic
aerosol radiative feedbacks with WRF-Chem during the Eyjafjallajökull
eruption, April and May 2010, Atmos. Environ., 198, 194–206,
https://doi.org/10.1016/j.atmosenv.2018.10.058, 2019.
Hirtl, M., Arnold, D., Baro, R., Brenot, H., Coltelli, M., Eschbacher, K., Hard-Stremayer, H., Lipok, F., Maurer, C., Meinhard, D., Mona, L., Mulder, M. D., Papagiannopoulos, N., Pernsteiner, M., Plu, M., Robertson, L., Rokitansky, C.-H., Scherllin-Pirscher, B., Sievers, K., Sofiev, M., Som de Cerff, W., Steinheimer, M., Stuefer, M., Theys, N., Uppstu, A., Wagenaar, S., Winkler, R., Wotawa, G., Zobl, F., and Zopp, R.: A volcanic-hazard demonstration exercise to assess and mitigate the impacts of volcanic ash clouds on civil and military aviation, Nat. Hazards Earth Syst. Sci., 20, 1719–1739, https://doi.org/10.5194/nhess-20-1719-2020, 2020.
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Wea. Rev., 134,
2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos.,
113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
International Civil Aviation Organization: Volcanic Ash Contingency
Plan – Eur and Nat Regions, Edition 2.0.0, availabe at:
https://www.icao.int/EURNAT/EUR and NAT Documents/EUR+NAT VACP.pdf
(last access: 20 November 2020), 2016.
Kylling, A., Kristiansen, N., Stohl, A., Buras-Schnell, R., Emde, C., and Gasteiger, J.: A model sensitivity study of the impact of clouds on satellite detection and retrieval of volcanic ash, Atmos. Meas. Tech., 8, 1935–1949, https://doi.org/10.5194/amt-8-1935-2015, 2015.
Mastin, L. G., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean,
K., Durant, A., Ewert, J. W., Neri, A., Rose, W. I., Schneider, D., Siebert,
L., Stunder, B., Swanson, G., Tupper, A., Volentik, A., and Waythomas, C.
F.: A multidisciplinary effort to assign realistic source parameters to
models of volcanic ash-cloud transport and dispersion during eruptions, J.
Volcanol. Geoth. Res., 186, 10–21, https://doi.org/10.1016/j.jvolgeores.2009.01.008,
2009.
Moxnes, E. D., Kristiansen, N. I., Stohl, A., Clarisse, L., Durant, A.,
Weber, K., and Vogel, A.: Separation of ash and sulfur dioxide during the
2011 Grímsvötn eruption, J. Geophys. Res.-Atmos., 119, 7477–7501,
https://doi.org/10.1002/2013JD021129, 2014.
Petersen, G. N., Bjornsson, H., Arason, P., and von Löwis, S.: Two weather radar time series of the altitude of the volcanic plume during the May 2011 eruption of Grímsvötn, Iceland, Earth Syst. Sci. Data, 4, 121–127, https://doi.org/10.5194/essd-4-121-2012, 2012.
Prata, A. J. and Prata, A. T.: Eyjafjallajökull volcanic ash
concentrations determined from Spin Enhanced Visible and Infrared Imager
measurements, J. Geophys. Res., 117, D00U23, https://doi.org/10.1029/2011JD016800, 2012.
Prata, F., Woodhouse, M., Huppert, H. E., Prata, A., Thordarson, T., and Carn, S.: Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption, Atmos. Chem. Phys., 17, 10709–10732, https://doi.org/10.5194/acp-17-10709-2017, 2017.
Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., and
Ratier, A.: An introduction to Meteosat second generation (MSG), B. Am. Meteorol. Soc., 83, 977–992, 2002.
Sigmarsson, O., Haddadi, B., Carn, S., Moune, S., Gudnason, J., Yang, K.,
and Clarisse, L.: The sulfur budget of the 2011 Grímsvötn eruption,
Iceland, Geophys. Res. Lett., 40, 6095–6100, https://doi.org/10.1002/2013GL057760, 2013.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda,
M. G., Huang, X.-Y., and Wang, W.: A Description of the Advanced Research
WRF Version 3, NCAR Technical Note TN-468+STR, 113 pp., 2008.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Stuefer, M., Freitas, S. R., Grell, G., Webley, P., Peckham, S., McKeen, S. A., and Egan, S. D.: Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: development and some applications, Geosci. Model Dev., 6, 457–468, https://doi.org/10.5194/gmd-6-457-2013, 2013.
Tesche, M., Ansmann, A., Müller, D., Althausen, D., Engelmann, R., Hu,
M., and Zhang, Y.: Particle backscatter, extinction, and lidar ratio
profiling with Raman lidar in South and North China, Appl. Opt., 46,
6302–6308, https://doi.org/10.1364/AO.46.006302, 2007.
Tesche, M., Glantz, P., Johansson, C., Norman, M., Hiebsch, A., Ansmann, A.,
Althausen, D., Engelmann, R., and Seifert, P.: Volcanic ash over Scandinavia
originating from the Grímsvötn eruptions in May 2011, J. Geophys.
Res., 117, D09201, https://doi.org/10.1029/2011JD017090, 2012.
Virtanen, T. H., Kolmonen, P., Rodríguez, E., Sogacheva, L., Sundström, A.-M., and de Leeuw, G.: Ash plume top height estimation using AATSR, Atmos. Meas. Tech., 7, 2437–2456, https://doi.org/10.5194/amt-7-2437-2014, 2014.
Vogfjörd, K. S., Jakobsdóttir, S. S., Gudmundsson, G. B., Roberts,
M. J., Ágústsson, K., Arason, T., Geirsson, H., Karlsdóttir, S.,
Hjaltadóttir, S., Ólafsdóttir, U., Thorbjarnardóttir, B.,
Hafsteinsson, G., Sveinbjörnsson, H., Stefánsson, R., and
Jónsson, T. V.: Forecasting and monitoring a subglacial eruption in
Iceland, Eos Trans. AGU, 86, 245–248, https://doi.org/10.1029/2005EO260001, 2005.
Webley, P. W., Steensen, T., Stuefer, M., Grell, G., Freitas, S., and
Pavolonis, M.: Analyzing the Eyjafjallajökull 2010 eruption using
satellite remote sensing, lidar and WRF-Chem dispersion and tracking model,
J. Geophys. Res., 117, D00U26, https://doi.org/10.1029/2011JD016817, 2012.
Witham, C. S., Hort, M. C., Potts, R., Servranckx, R., Husson, P., and
Bonnardot, F.: Comparison of VAAC atmospheric dispersion models using the 1
November 2004 Grimsvötn eruption, Met. Apps., 14, 27–38, https://doi.org/10.1002/met.3, 2007.
Short summary
The paper shows the application of a new volcanic emission preprocessor for the chemical transport model WRF-Chem. The model is evaluated with different observational data sets for the eruption of the Grimsvötn volcano 2011.
The paper shows the application of a new volcanic emission preprocessor for the chemical...
Altmetrics
Final-revised paper
Preprint