Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
Download
Short summary
Can numerical models simulate intense rainfall events and consequent streamflow in a mountainous area with small watersheds well? We applied state-of-the-art one-way-coupled atmospheric–hydrologic models and we found that, despite rainfall events simulated with low errors, large discrepancies between the observed and simulated streamflow were observed. Shifts in time and space of the modelled rainfall peak are the main reason. Still, the models can be applied for climate change impact studies.
Altmetrics
Final-revised paper
Preprint
NHESS | Articles | Volume 20, issue 10
Nat. Hazards Earth Syst. Sci., 20, 2791–2810, 2020
https://doi.org/10.5194/nhess-20-2791-2020

Special issue: Integrated assessment of climate change impacts at selected...

Nat. Hazards Earth Syst. Sci., 20, 2791–2810, 2020
https://doi.org/10.5194/nhess-20-2791-2020

Research article 23 Oct 2020

Research article | 23 Oct 2020

Simulation of extreme rainfall and streamflow events in small Mediterranean watersheds with a one-way-coupled atmospheric–hydrologic modelling system

Corrado Camera et al.

Related authors

A coupled distributed hydrological-stability analysis on a terraced slope of Valtellina (northern Italy)
C. Camera, T. Apuani, and M. Masetti
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-2287-2013,https://doi.org/10.5194/hessd-10-2287-2013, 2013
Revised manuscript not accepted

Related subject area

Hydrological Hazards
Drought propagation and its impact on groundwater hydrology of wetlands: a case study on the Doode Bemde nature reserve (Belgium)
Buruk Kitachew Wossenyeleh, Kaleb Asnake Worku, Boud Verbeiren, and Marijke Huysmans
Nat. Hazards Earth Syst. Sci., 21, 39–51, https://doi.org/10.5194/nhess-21-39-2021,https://doi.org/10.5194/nhess-21-39-2021, 2021
Short summary
Modelling the Brumadinho tailings dam failure, the subsequent loss of life and how it could have been reduced
Darren Lumbroso, Mark Davison, Richard Body, and Gregor Petkovšek
Nat. Hazards Earth Syst. Sci., 21, 21–37, https://doi.org/10.5194/nhess-21-21-2021,https://doi.org/10.5194/nhess-21-21-2021, 2021
Short summary
Assessment of probability distributions and analysis of the minimum storage draft rate in the equatorial region
Hasrul Hazman Hasan, Siti Fatin Mohd Razali, Nur Shazwani Muhammad, and Firdaus Mohamad Hamzah
Nat. Hazards Earth Syst. Sci., 21, 1–19, https://doi.org/10.5194/nhess-21-1-2021,https://doi.org/10.5194/nhess-21-1-2021, 2021
Short summary
Downsizing parameter ensembles for simulations of rare floods
Anna E. Sikorska-Senoner, Bettina Schaefli, and Jan Seibert
Nat. Hazards Earth Syst. Sci., 20, 3521–3549, https://doi.org/10.5194/nhess-20-3521-2020,https://doi.org/10.5194/nhess-20-3521-2020, 2020
Short summary
Dynamic maps of human exposure to floods based on mobile phone data
Matteo Balistrocchi, Rodolfo Metulini, Maurizio Carpita, and Roberto Ranzi
Nat. Hazards Earth Syst. Sci., 20, 3485–3500, https://doi.org/10.5194/nhess-20-3485-2020,https://doi.org/10.5194/nhess-20-3485-2020, 2020
Short summary

Cited articles

Arnault, J., Wagner, S., Rummler, T., Fersch, B., Bliefernicht, J., Andresen, S., and Kunstmann, H.: Role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks: A case study with the WRF-hydro coupled modeling system for West Africa, J. Hydrometeorol., 17, 1489–1516, https://doi.org/10.1175/JHM-D-15-0089.1, 2016. 
Arnault, J., Wei, J., Rummler, T., Fersch, B., Zhang, Z., Jung, G., Wagner, S., and Kunstmann, H.: A joint soil-vegetation-atmospheric water tagging procedure with WRF-Hydro: Implementation and application to the case of precipitation partitioning in the upper Danube river basin, Water Resour. Res., 55, 6217–6243, https://doi.org/10.1029/2019WR024780, 2019. 
Avolio, E., Cavalcanti, O., Furnari, L., Senatore, A., and Mendicino, G.: Brief communication: Preliminary hydro-meteorological analysis of the flash flood of 20 August 2018 in Raganello Gorge, southern Italy, Nat. Hazards Earth Syst. Sci., 19, 1619–1627, https://doi.org/10.5194/nhess-19-1619-2019, 2019. 
Brunke, M. A., Broxton, P., Pelletier, J., Gochis, D., Hazenberg, P., Lawrence, D. M., Leung, L. R., Niu, G.-Y., Troch, P. A., and Zeng, X.: Implementing and evaluating variable soil thickness in the community land model, Version 4.5 (CLM4.5), J. Climate, 29, 3441–3461, https://doi.org/10.1175/JCLI-D-15-0307.1, 2016. 
Camera, C., Bruggeman, A., Hadjinicolaou, P., Pashiardis, S., and Lange, M. A.: Evaluation of interpolation techniques for thecreation of gridded daily precipitation (1×1 km2); Cyprus, 1980–2010, J. Geophys. Res.-Atmos., 119, 693–712, https://doi.org/10.1002/2013JD020611, 2014. 
Publications Copernicus
Download
Short summary
Can numerical models simulate intense rainfall events and consequent streamflow in a mountainous area with small watersheds well? We applied state-of-the-art one-way-coupled atmospheric–hydrologic models and we found that, despite rainfall events simulated with low errors, large discrepancies between the observed and simulated streamflow were observed. Shifts in time and space of the modelled rainfall peak are the main reason. Still, the models can be applied for climate change impact studies.
Citation
Altmetrics
Final-revised paper
Preprint