Articles | Volume 20, issue 6
https://doi.org/10.5194/nhess-20-1595-2020
https://doi.org/10.5194/nhess-20-1595-2020
Research article
 | 
04 Jun 2020
Research article |  | 04 Jun 2020

Skill of large-scale seasonal drought impact forecasts

Samuel J. Sutanto, Melati van der Weert, Veit Blauhut, and Henny A. J. Van Lanen

Related authors

The 2022 Drought Shows the Importance of Preparedness in European Drought Risk Management
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073,https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
The 2022 Drought Needs to be a Turning Point for European Drought Risk Management
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069,https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Airborne in-situ quantification of methane emissions from oil and gas production in Romania
Hossein Maazallahi, Foteini Stavropoulou, Samuel Jonson Sutanto, Michael Steiner, Dominik Brunner, Mariano Mertens, Patrick Jöckel, Antoon Visschedijk, Hugo Denier van der Gon, Stijn Dellaert, Nataly Velandia Salinas, Stefan Schwietzke, Daniel Zavala-Araiza, Sorin Ghemulet, Alexandru Pana, Magdalena Ardelean, Marius Corbu, Andreea Calcan, Stephen A. Conley, Mackenzie L. Smith, and Thomas Röckmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2135,https://doi.org/10.5194/egusphere-2024-2135, 2024
Short summary
A high-resolution perspective of extreme rainfall and river flow under extreme climate change in Southeast Asia
Mugni Hadi Hariadi, Gerard van der Schrier, Gert-Jan Steeneveld, Samuel J. Sutanto, Edwin Sutanudjaja, Dian Nur Ratri, Ardhasena Sopaheluwakan, and Albert Klein Tank
Hydrol. Earth Syst. Sci., 28, 1935–1956, https://doi.org/10.5194/hess-28-1935-2024,https://doi.org/10.5194/hess-28-1935-2024, 2024
Short summary
The cascading effect of wildfires on flood risk: a study case in Ebro River basin Spain
Samuel Jonson Sutanto, Matthijs Janssen, Mariana Madruga de Brito, and Maria del Pozo Garcia
EGUsphere, https://doi.org/10.5194/egusphere-2024-153,https://doi.org/10.5194/egusphere-2024-153, 2024
Short summary

Related subject area

Hydrological Hazards
Spatiotemporal variability of flash floods and their human impacts in the Czech Republic during the 2001–2023 period
Rudolf Brázdil, Dominika Faturová, Monika Šulc Michalková, Jan Řehoř, Martin Caletka, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 3663–3682, https://doi.org/10.5194/nhess-24-3663-2024,https://doi.org/10.5194/nhess-24-3663-2024, 2024
Short summary
Risk of compound flooding substantially increases in the future Mekong River delta
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024,https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Transferability of machine-learning-based modeling frameworks across flood events for hindcasting maximum river water depths in coastal watersheds
Maryam Pakdehi, Ebrahim Ahmadisharaf, Behzad Nazari, and Eunsaem Cho
Nat. Hazards Earth Syst. Sci., 24, 3537–3559, https://doi.org/10.5194/nhess-24-3537-2024,https://doi.org/10.5194/nhess-24-3537-2024, 2024
Short summary
Floods in the Pyrenees: a global view through a regional database
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024,https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Algorithmically detected rain-on-snow flood events in different climate datasets: a case study of the Susquehanna River basin
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
Nat. Hazards Earth Syst. Sci., 24, 3315–3335, https://doi.org/10.5194/nhess-24-3315-2024,https://doi.org/10.5194/nhess-24-3315-2024, 2024
Short summary

Cited articles

Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., Krzeminski, B., and Pappenberger, F.: Skilful seasonal forecasts of streamflow over europe?, Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018, 2018. a, b
Bachmair, S., Svensson, C., Hannaford, J., Barker, L. J., and Stahl, K.: A quantitative analysis to objectively appraise drought indicators and model drought impacts, Hydrol. Earth Syst. Sci., 20, 2589–2609, https://doi.org/10.5194/hess-20-2589-2016, 2016. a, b, c, d
Bachmair, S., Svensson, C., Prosdocimi, I., Hannaford, J., and Stahl, K.: Developing drought impact functions for drought risk management, Nat. Hazards Earth Syst. Sci., 17, 1947–1960, https://doi.org/10.5194/nhess-17-1947-2017, 2017. a, b, c, d, e, f
Bartholmes, J., Thielen, J., and Kalas, M.: Forecasting medium-range flood hazard on European scale, Georisk, 2, 181–186, https://doi.org/10.1080/17499510802369132, 2008. a
Bett, P., Thornton, H., and Troccoli, A.: Skill assessment of energy-relevant climate variables in a selection of seasonal forecast models, Report using final data sets, ECEM Deliverable D2.2.1 v2, ECMWF Copernicus Report, ECMWF, Reading, UK, 2018. a
Download
Short summary
Present-day drought early warning systems only provide information on drought hazard forecasts. Here, we have developed drought impact functions to forecast drought impacts up to 7 months ahead using machine learning techniques, logistic regression, and random forest. Our results show that random forest produces a higher-impact forecasting skill than logistic regression. For German county levels, drought impacts can be forecasted up to 4 months ahead using random forest.
Altmetrics
Final-revised paper
Preprint