Articles | Volume 20, issue 6
https://doi.org/10.5194/nhess-20-1573-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-1573-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Department of Civil Engineering and Industrial Design,
University of Liverpool, Liverpool, UK
Arnaud Mignan
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Institute of Geophysics, ETH Zürich, Zurich, Switzerland
Francesco Grigoli
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Dimitrios Karvounis
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Antonio Pio Rinaldi
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Institute of Geophysics, ETH Zürich, Zurich, Switzerland
Laurentiu Danciu
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Hannes Hofmann
Helmholtz Centre Potsdam – GFZ German Research Centre for
Geosciences, Potsdam, Germany
Claus Milkereit
Helmholtz Centre Potsdam – GFZ German Research Centre for
Geosciences, Potsdam, Germany
Torsten Dahm
Helmholtz Centre Potsdam – GFZ German Research Centre for
Geosciences, Potsdam, Germany
Günter Zimmermann
Helmholtz Centre Potsdam – GFZ German Research Centre for
Geosciences, Potsdam, Germany
Vala Hjörleifsdóttir
Orkuveita Reykjavíkur (Reykjavík Energy), Reykjavik, Iceland
Stefan Wiemer
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Related authors
No articles found.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stephane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-118, https://doi.org/10.5194/nhess-2023-118, 2023
Preprint under review for NHESS
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1,248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-124, https://doi.org/10.5194/nhess-2023-124, 2023
Preprint under review for NHESS
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20), and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled backbone logic tree for application to Europe’s subduction zones and the Vrancea deep seismic source.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frederick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinovic, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinovic, Domenico Giardini, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2023-1863, https://doi.org/10.5194/egusphere-2023-1863, 2023
Short summary
Short summary
We are developing an interdisciplinary dynamic earthquake risk framework for Switzerland for advancing earthquake risk mitigation. It includes various earthquake risk products and services, such as Operational Earthquake Forecasting and Earthquake Early Warning, and adopts a user-centred approach. Standardisation is crucial for widespread adoption and recognition, and the harmonisation of products into seamless solutions that access the same databases, workflows, and software.
Matthias S. Brennwald, Antonio P. Rinaldi, Jocelyn Gisiger, Alba Zappone, and Rolf Kipfer
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2023-12, https://doi.org/10.5194/gi-2023-12, 2023
Revised manuscript accepted for GI
Short summary
Short summary
The GE-MIMS method for dissolved-gas quantification was expanded to work in water at high pressures.
Konstantinos Trevlopoulos, Pierre Gehl, Caterina Negulescu, Helen Crowley, and Laurentiu Danciu
EGUsphere, https://doi.org/10.5194/egusphere-2023-1740, https://doi.org/10.5194/egusphere-2023-1740, 2023
Short summary
Short summary
The models used to estimate the probability of exceeding a level of earthquake damages are essential to the reduction of disasters. These models consist of components, which may be tested individually, however testing these types of models as a whole is challenging. Here, we are using observations of damages caused by the Le Teil 2019 earthquake, and estimations with other models to test components of the 2020 Euro-Mediterranean Seismic Hazard Model and the European Seismic Risk Model.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2023-1504, https://doi.org/10.5194/egusphere-2023-1504, 2023
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents, to human losses, such as deaths, injuries and displaced population.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John Frederick Schneider, Céline Beauval, António Araújo Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-107, https://doi.org/10.5194/nhess-2023-107, 2023
Preprint under review for NHESS
Short summary
Short summary
For the release of (cross-country harmonised) hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, a user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard and Risk Models and provide practical recommendations for similar efforts.
Arno Zang, Peter Niemz, Sebastian von Specht, Günter Zimmermann, Claus Milkereit, Katrin Plenkers, and Gerd Klee
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-170, https://doi.org/10.5194/essd-2023-170, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
We present experimental data collected in 2015 at Äspö Hard Rock Laboratory. We created six cracks in a rock mass by injecting water into a borehole. The cracks were monitored using special sensors to study how the water affected the rock. The goal of the experiment was to figure out how to create a system for generating heat from the rock that is better than what has been done before. The data collected from this experiment is important for future research into generating energy from rocks.
John Douglas, Helen Crowley, Vitor Silva, Warner Marzocchi, Laurentiu Danciu, and Rui Pinho
EGUsphere, https://doi.org/10.5194/egusphere-2023-991, https://doi.org/10.5194/egusphere-2023-991, 2023
Short summary
Short summary
Estimates of the earthquake ground motions expected during the lifetime of a building or the length of an insurance policy are frequently calculated for locations around the world. Estimates for the same location from different studies can show large differences. These differences affect engineering, financial and risk management decisions. We apply various approaches to understand when such differences have an impact on such decisions and when they are expected because data are limited.
Tomáš Fischer, Pavla Hrubcová, Torsten Dahm, Heiko Woith, Tomáš Vylita, Matthias Ohrnberger, Josef Vlček, Josef Horálek, Petr Dědeček, Martin Zimmer, Martin P. Lipus, Simona Pierdominici, Jens Kallmeyer, Frank Krüger, Katrin Hannemann, Michael Korn, Horst Kämpf, Thomas Reinsch, Jakub Klicpera, Daniel Vollmer, and Kyriaki Daskalopoulou
Sci. Dril., 31, 31–49, https://doi.org/10.5194/sd-31-31-2022, https://doi.org/10.5194/sd-31-31-2022, 2022
Short summary
Short summary
The newly established geodynamic laboratory aims to develop modern, comprehensive, multiparameter observations at depth for studying earthquake swarms, crustal fluid flow, mantle-derived fluid degassing and processes of the deep biosphere. It is located in the West Bohemia–Vogtland (western Eger Rift) geodynamic region and comprises a set of five shallow boreholes with high-frequency 3-D seismic arrays as well as continuous real-time fluid monitoring at depth and the study of the deep biosphere.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Viktor J. Bruckman, Gregor Giebel, Christopher Juhlin, Sonja Martens, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 56, 13–18, https://doi.org/10.5194/adgeo-56-13-2021, https://doi.org/10.5194/adgeo-56-13-2021, 2021
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Gesa Maria Petersen, Simone Cesca, Sebastian Heimann, Peter Niemz, Torsten Dahm, Daniela Kühn, Jörn Kummerow, Thomas Plenefisch, and the AlpArray and AlpArray-Swath-D working groups
Solid Earth, 12, 1233–1257, https://doi.org/10.5194/se-12-1233-2021, https://doi.org/10.5194/se-12-1233-2021, 2021
Short summary
Short summary
The Alpine mountains are known for a complex tectonic history. We shed light onto ongoing tectonic processes by studying rupture mechanisms of small to moderate earthquakes between 2016 and 2019 observed by the temporary AlpArray seismic network. The rupture processes of 75 earthquakes were analyzed, along with past earthquakes and deformation data. Our observations point at variations in the underlying tectonic processes and stress regimes across the Alps.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Teresa Jordan, Patrick Fulton, Jefferson Tester, David Bruhn, Hiroshi Asanuma, Ulrich Harms, Chaoyi Wang, Doug Schmitt, Philip J. Vardon, Hannes Hofmann, Tom Pasquini, Jared Smith, and the workshop participants
Sci. Dril., 28, 75–91, https://doi.org/10.5194/sd-28-75-2020, https://doi.org/10.5194/sd-28-75-2020, 2020
Short summary
Short summary
A scientific borehole planning workshop sponsored by the International Continental Scientific Drilling Program convened in early 2020 at Cornell University in the NE United States. Cornell plans drilling to test the potential to use geothermal heat from depths of 2700–4500 m and rock temperatures of 60 to 120 °C to heat its campus. The workshop focused on designing companion scientific projects to investigate the coupled thermal–chemical–hydrological–mechanical workings of continental crust.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Sonja Martens, Maren Brehme, Viktor J. Bruckman, Christopher Juhlin, Johannes Miocic, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 54, 1–5, https://doi.org/10.5194/adgeo-54-1-2020, https://doi.org/10.5194/adgeo-54-1-2020, 2020
Dominik Zbinden, Antonio Pio Rinaldi, Tobias Diehl, and Stefan Wiemer
Solid Earth, 11, 909–933, https://doi.org/10.5194/se-11-909-2020, https://doi.org/10.5194/se-11-909-2020, 2020
Short summary
Short summary
The deep geothermal project in St. Gallen, Switzerland, aimed at generating electricity and heat. The fluid pumped into the underground caused hundreds of small earthquakes and one larger one felt by the local population. Here we use computer simulations to study the physical processes that led to the earthquakes. We find that gas present in the subsurface could have intensified the seismicity, which may have implications for future geothermal projects conducted in similar geological conditions.
Mohammadreza Jamalreyhani, Pınar Büyükakpınar, Simone Cesca, Torsten Dahm, Henriette Sudhaus, Mehdi Rezapour, Marius Paul Isken, Behnam Maleki Asayesh, and Sebastian Heimann
Solid Earth Discuss., https://doi.org/10.5194/se-2020-55, https://doi.org/10.5194/se-2020-55, 2020
Revised manuscript not accepted
Short summary
Short summary
We model the source of the 24 January 2020 Mw 6.77 Elazığ-Sivrice (Turkey) earthquake using a combination of different data and we analyzed its seismic sequences. This earthquake occurred in the east Anatolian fault and it has filled the large part of the former seismic gap zone. An unbroken part has left after this earthquake and has the potential to host a future earthquake. This work provides information about the fault system and helps to the mitigation of seismic hazard in Southern Turkey.
Linus Villiger, Valentin Samuel Gischig, Joseph Doetsch, Hannes Krietsch, Nathan Oliver Dutler, Mohammadreza Jalali, Benoît Valley, Paul Antony Selvadurai, Arnaud Mignan, Katrin Plenkers, Domenico Giardini, Florian Amann, and Stefan Wiemer
Solid Earth, 11, 627–655, https://doi.org/10.5194/se-11-627-2020, https://doi.org/10.5194/se-11-627-2020, 2020
Short summary
Short summary
Hydraulic stimulation summarizes fracture initiation and reactivation due to high-pressure fluid injection. Several borehole intervals covering intact rock and pre-existing fractures were targets for high-pressure fluid injections within a decameter-scale, crystalline rock volume. The observed induced seismicity strongly depends on the target geology. In addition, the severity of the induced seismicity per experiment counter correlates with the observed transmissivity enhancement.
Michèle Marti, Michael Stauffacher, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 19, 2677–2700, https://doi.org/10.5194/nhess-19-2677-2019, https://doi.org/10.5194/nhess-19-2677-2019, 2019
Short summary
Short summary
Maps are an established way to illustrate natural hazards and regularly used to communicate with non-experts. However, there is evidence that they are frequently misconceived. Using a real case, our study shows that applying or disregarding best practices in visualization, editing, and presentation significantly impacts the comprehensibility of seismic hazard information. We suggest scrutinizing current natural-hazard communication strategies and empirically testing new products.
Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm
Solid Earth, 10, 1921–1935, https://doi.org/10.5194/se-10-1921-2019, https://doi.org/10.5194/se-10-1921-2019, 2019
Short summary
Short summary
We present an open-source software framework for fast and flexible forward modelling of seismic and acoustic wave phenomena and elastic deformation. It supports a wide range of applications across volcanology, seismology, and geodesy to study earthquakes, volcanic processes, landslides, explosions, mine collapses, ground shaking, and aseismic faulting. The framework stimulates reproducible research and open science through the exchange of pre-calculated Green's functions on an open platform.
Robert A. Watson, Eoghan P. Holohan, Djamil Al-Halbouni, Leila Saberi, Ali Sawarieh, Damien Closson, Hussam Alrshdan, Najib Abou Karaki, Christian Siebert, Thomas R. Walter, and Torsten Dahm
Solid Earth, 10, 1451–1468, https://doi.org/10.5194/se-10-1451-2019, https://doi.org/10.5194/se-10-1451-2019, 2019
Short summary
Short summary
The fall of the Dead Sea level since the 1960s has provoked the formation of over 6000 sinkholes, a major hazard to local economy and infrastructure. In this context, we study the evolution of subsidence phenomena at three area scales at the Dead Sea’s eastern shore from 1967–2017. Our results yield the most detailed insights to date into the spatio-temporal development of sinkholes and larger depressions (uvalas) in an evaporite karst setting and emphasize a link to the falling Dead Sea level.
Sonja Martens, Christopher Juhlin, Viktor J. Bruckman, Gregor Giebel, Thomas Nagel, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 49, 31–35, https://doi.org/10.5194/adgeo-49-31-2019, https://doi.org/10.5194/adgeo-49-31-2019, 2019
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Robert A. Watson, Ulrich Polom, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 10, 1219–1241, https://doi.org/10.5194/se-10-1219-2019, https://doi.org/10.5194/se-10-1219-2019, 2019
Short summary
Short summary
A 2-D numerical modelling approach to simulate the mechanical formation of sinkhole cluster inside large-scale karstic depressions is presented. Different multiple cavity growth scenarios at depth are compared regarding the mechanical process and collapse style. The outcomes of the models are compared to results from remote sensing and geophysics for an active sinkhole area in the Dead Sea region.
Marius Kriegerowski, Simone Cesca, Matthias Ohrnberger, Torsten Dahm, and Frank Krüger
Solid Earth, 10, 317–328, https://doi.org/10.5194/se-10-317-2019, https://doi.org/10.5194/se-10-317-2019, 2019
Short summary
Short summary
We developed a method that allows to estimate the acoustic attenuation of seismic waves within regions with high earthquake source densities. Attenuation is of high interest as it allows to draw conclusions on the origin of seismic activity. We apply our method to north-west Bohemia, which is regularly affected by earthquake swarms during which thousands of earthquakes are registered within a few days. We find reduced attenuation within the active volume, which may indicate high fluid content.
Peter Gaebler, Lars Ceranna, Nima Nooshiri, Andreas Barth, Simone Cesca, Michaela Frei, Ilona Grünberg, Gernot Hartmann, Karl Koch, Christoph Pilger, J. Ole Ross, and Torsten Dahm
Solid Earth, 10, 59–78, https://doi.org/10.5194/se-10-59-2019, https://doi.org/10.5194/se-10-59-2019, 2019
Short summary
Short summary
On 3 September 2017 official channels of the Democratic People’s Republic of
Korea announced the successful test of a nuclear device. This study provides a
multi-technology analysis of the 2017 North Korean event and its aftermath using a wide array of geophysical methods (seismology, infrasound, remote sensing, radionuclide monitoring, and atmospheric transport modeling). Our results clearly indicate that the September 2017 North Korean event was in fact a nuclear test.
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 9, 1341–1373, https://doi.org/10.5194/se-9-1341-2018, https://doi.org/10.5194/se-9-1341-2018, 2018
Short summary
Short summary
Sinkholes are round depression features in the ground that can cause high economic and life loss. On the Dead Sea shoreline, hundreds of sinkholes form each year driven by the fall of the water level and subsequent out-washing and dissolution of loose sediments. This study investigates the mechanical formation of sinkholes by numerical modelling. It highlights the role of material strength in the formation of dangerous collapse sinkholes and compares it to findings from a field site in Jordan.
Ulrich Polom, Hussam Alrshdan, Djamil Al-Halbouni, Eoghan P. Holohan, Torsten Dahm, Ali Sawarieh, Mohamad Y. Atallah, and Charlotte M. Krawczyk
Solid Earth, 9, 1079–1098, https://doi.org/10.5194/se-9-1079-2018, https://doi.org/10.5194/se-9-1079-2018, 2018
Short summary
Short summary
The alluvial fan of Ghor Al-Haditha (Dead Sea) is affected by subsidence and sinkholes. Different models and hypothetical processes have been suggested in the past; high-resolution shear wave reflection surveys carried out in 2013 and 2014 showed the absence of evidence for a massive shallow salt layer as formerly suggested. Thus, a new process interpretation is proposed based on both the dissolution and physical erosion of Dead Sea mud layers.
Ahoura Jafarimanesh, Arnaud Mignan, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-167, https://doi.org/10.5194/nhess-2018-167, 2018
Revised manuscript not accepted
Arnaud Mignan
Nonlin. Processes Geophys., 25, 241–250, https://doi.org/10.5194/npg-25-241-2018, https://doi.org/10.5194/npg-25-241-2018, 2018
Short summary
Short summary
The Utsu productivity law, one of the main relationships in seismicity statistics, gives the average number of aftershocks produced by a mainshock of a given magnitude. I demonstrate that the law can be formulated in the solid seismicity theory, where it is parameterized in terms of aftershock density within a geometrical solid, constrained by the mainshock size. This suggests that aftershocks can be studied by applying simple rules of analytic geometry on a static stress field.
Florian Amann, Valentin Gischig, Keith Evans, Joseph Doetsch, Reza Jalali, Benoît Valley, Hannes Krietsch, Nathan Dutler, Linus Villiger, Bernard Brixel, Maria Klepikova, Anniina Kittilä, Claudio Madonna, Stefan Wiemer, Martin O. Saar, Simon Loew, Thomas Driesner, Hansruedi Maurer, and Domenico Giardini
Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, https://doi.org/10.5194/se-9-115-2018, 2018
Valentin Samuel Gischig, Joseph Doetsch, Hansruedi Maurer, Hannes Krietsch, Florian Amann, Keith Frederick Evans, Morteza Nejati, Mohammadreza Jalali, Benoît Valley, Anne Christine Obermann, Stefan Wiemer, and Domenico Giardini
Solid Earth, 9, 39–61, https://doi.org/10.5194/se-9-39-2018, https://doi.org/10.5194/se-9-39-2018, 2018
Arnaud Mignan
Nonlin. Processes Geophys., 23, 107–113, https://doi.org/10.5194/npg-23-107-2016, https://doi.org/10.5194/npg-23-107-2016, 2016
Short summary
Short summary
Induced seismicity is a concern for the industries relying on fluid injection in the deep parts of the Earth’s crust. At the same time, fluid injection sites provide natural laboratories to study the impact of increased fluid pressure on earthquake generation. In this study, I show that simple geometric operations on a static stress field produced by volume change at depth explains two empirical laws of induced seismicity without having recourse to complex models derived from rock mechanics.
T. Dahm, P. Hrubcová, T. Fischer, J. Horálek, M. Korn, S. Buske, and D. Wagner
Sci. Dril., 16, 93–99, https://doi.org/10.5194/sd-16-93-2013, https://doi.org/10.5194/sd-16-93-2013, 2013
S. J. Nanda, K. F. Tiampo, G. Panda, L. Mansinha, N. Cho, and A. Mignan
Nonlin. Processes Geophys., 20, 143–162, https://doi.org/10.5194/npg-20-143-2013, https://doi.org/10.5194/npg-20-143-2013, 2013
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Back analysis of a building collapse under snow and rain loads in a Mediterranean area
Assessment of building damage and risk under extreme flood scenarios in Shanghai
Mangrove ecosystem properties regulate high water levels in a river delta
Analysis of flood warning and evacuation efficiency by comparing damage and life-loss estimates with real consequences related to the São Francisco tailings dam failure in Brazil
Impacts from Hurricane Sandy on New York City in alternative climate-driven event storylines
Estimation of emergency costs for earthquakes and floods in Central Asia based on modelled losses
Criteria-based visualization design for hazard maps
Regional-scale landslide risk assessment in Central-Asia
Low-regret climate change adaptation in coastal megacities – evaluating large-scale flood protection and small-scale rainwater detention measures for Ho Chi Minh City, Vietnam
Modeling compound flood risk and risk reduction using a globally applicable framework: a pilot in the Sofala province of Mozambique
Scenario-based multi-risk assessment from existing single-hazard vulnerability models. An application to consecutive earthquakes and tsunamis in Lima, Peru
Using machine learning algorithms to identify predictors of social vulnerability in the event of a hazard: Istanbul case study
Large-scale risk assessment on snow avalanche hazard in alpine regions
Probabilistic and machine learning methods for uncertainty quantification in power outage prediction due to extreme events
Public intention to participate in sustainable geohazard mitigation: an empirical study based on an extended theory of planned behavior
An assessment of short–medium-term interventions using CAESAR-Lisflood in a post-earthquake mountainous area
Review article: Design and evaluation of weather index insurance for multi-hazard resilience and food insecurity
Design and application of a multi-hazard risk rapid assessment questionnaire for hill communities in the Indian Himalayan region
Identifying the drivers of private flood precautionary measures in Ho Chi Minh City, Vietnam
Cost estimation for the monitoring instrumentalization of Landslide Early Warning Systems
Performance of the flood warning system in Germany in July 2021 – insights from affected residents
Differences in volcanic risk perception among Goma's population before the Nyiragongo eruption of May 2021, Virunga volcanic province (DR Congo)
Empirical tsunami fragility modelling for hierarchical damage levels
Scientists as Story-tellers: the explanatory power of stories told about environmental crises
Quantifying the potential benefits of risk-mitigation strategies on future flood losses in Kathmandu Valley, Nepal
The Role of Response Efficacy and Self-efficacy in Disaster Preparedness Actions for Vulnerable Households
Review article: Potential of nature-based solutions to mitigate hydro-meteorological risks in sub-Saharan Africa
Invited perspectives: An insurer's perspective on the knowns and unknowns in natural hazard risk modelling
Classifying marine faults for hazard assessment offshore Israel: a new approach based on fault size and vertical displacement
Assessing agriculture's vulnerability to drought in European pre-Alpine regions
Tsunami risk perception in central and southern Italy
Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event
Multi-scenario urban flood risk assessment by integrating future land use change models and hydrodynamic models
Building-scale flood loss estimation through vulnerability pattern characterization: application to an urban flood in Milan, Italy
Process-based flood damage modelling relying on expert knowledge: a methodological contribution applied to the agricultural sector
Dynamic risk assessment of compound hazards based on VFS–IEM–IDM: a case study of typhoon–rainstorm hazards in Shenzhen, China
Integrated seismic risk assessment in Nepal
Machine learning models to predict myocardial infarctions from past climatic and environmental conditions
Reliability of flood marks and practical relevance for flood hazard assessment in southwestern Germany
Spatial accessibility of emergency medical services under inclement weather: A case study in Beijing, China
Invited perspectives: Managed realignment as a solution to mitigate coastal flood risks – optimizing success through knowledge co-production
Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals
Estimating return intervals for extreme climate conditions related to winter disasters and livestock mortality in Mongolia
Surveying the surveyors to address risk perception and adaptive-behaviour cross-study comparability
Comparison of sustainable flood risk management by four countries – the United Kingdom, the Netherlands, the United States, and Japan – and the implications for Asian coastal megacities
Projected impact of heat on mortality and labour productivity under climate change in Switzerland
Full-scale experiments to examine the role of deadwood in rockfall dynamics in forests
Predicting drought and subsidence risks in France
The determinants affecting the intention of urban residents to prepare for flood risk in China
Strategic framework for natural disaster risk mitigation using deep learning and cost-benefit analysis
Isabelle Ousset, Guillaume Evin, Damien Raynaud, and Thierry Faug
Nat. Hazards Earth Syst. Sci., 23, 3509–3523, https://doi.org/10.5194/nhess-23-3509-2023, https://doi.org/10.5194/nhess-23-3509-2023, 2023
Short summary
Short summary
This paper deals with an exceptional snow and rain event in a Mediterranean region of France which is usually not prone to heavy snowfall and its consequences on a particular building that collapsed completely. Independent analyses of the meteorological episode are carried out, and the response of the building to different snow and rain loads is confronted to identify the main critical factors that led to the collapse.
Jiachang Tu, Jiahong Wen, Liang Emlyn Yang, Andrea Reimuth, Stephen S. Young, Min Zhang, Luyang Wang, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 23, 3247–3260, https://doi.org/10.5194/nhess-23-3247-2023, https://doi.org/10.5194/nhess-23-3247-2023, 2023
Short summary
Short summary
This paper evaluates the flood risk and the resulting patterns in buildings following low-probability, high-impact flood scenarios by a risk analysis chain in Shanghai. The results provide a benchmark and also a clear future for buildings with respect to flood risks in Shanghai. This study links directly to disaster risk management, e.g., the Shanghai Master Plan. We also discussed different potential adaptation options for flood risk management.
Ignace Pelckmans, Jean-Philippe Belliard, Luis E. Dominguez-Granda, Cornelis Slobbe, Stijn Temmerman, and Olivier Gourgue
Nat. Hazards Earth Syst. Sci., 23, 3169–3183, https://doi.org/10.5194/nhess-23-3169-2023, https://doi.org/10.5194/nhess-23-3169-2023, 2023
Short summary
Short summary
Mangroves are increasingly recognized as a coastal protection against extreme sea levels. Their effectiveness in doing so, however, is still poorly understood, as mangroves are typically located in tropical countries where data on mangrove vegetation and topography properties are often scarce. Through a modelling study, we identified the degree of channelization and the mangrove forest floor topography as the key properties for regulating high water levels in a tropical delta.
André Felipe Rocha Silva and Julian Cardoso Eleutério
Nat. Hazards Earth Syst. Sci., 23, 3095–3110, https://doi.org/10.5194/nhess-23-3095-2023, https://doi.org/10.5194/nhess-23-3095-2023, 2023
Short summary
Short summary
This work evaluates the application of flood consequence models through their application in a real case related to a tailings dam failure. Furthermore, we simulated the implementation of less efficient alert systems on life-loss alleviation. The results revealed that the models represented the event well and were able to estimate the relevance of implementing efficient alert systems. They highlight that their use may be an important tool for new regulations for dam safety legislation.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
EGUsphere, https://doi.org/10.5194/egusphere-2023-2032, https://doi.org/10.5194/egusphere-2023-2032, 2023
Short summary
Short summary
We explore how Hurricane Sandy (2012) could affect New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into modelling framework, offering insights for high-impact event assessments.
Emilio Berny, Carlos Avelar, Mario A. Salgado-Gálvez, and Mario Ordaz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-135, https://doi.org/10.5194/nhess-2023-135, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
This paper presents a methodology to estimate the total emergency costs based on modelled damages for earthquakes and floods, together with the demographic and building characteristics of the study area. The methodology has been applied in five countries in Central Asia, being the first time that these estimates are made available for the study area, and are intended to be useful for regional and local stakeholders and decision makers.
Max Schneider, Fabrice Cotton, and Pia-Johanna Schweizer
Nat. Hazards Earth Syst. Sci., 23, 2505–2521, https://doi.org/10.5194/nhess-23-2505-2023, https://doi.org/10.5194/nhess-23-2505-2023, 2023
Short summary
Short summary
Hazard maps are fundamental to earthquake risk reduction, but research is missing on how to design them. We review the visualization literature to identify evidence-based criteria for color and classification schemes for hazard maps. We implement these for the German seismic hazard map, focusing on communicating four properties of seismic hazard. Our evaluation finds that the redesigned map successfully communicates seismic hazard in Germany, improving on the baseline map for two key properties.
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-106, https://doi.org/10.5194/nhess-2023-106, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows to identify where high losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for Central-Asia and it surely represents an advance step in the field of risk analysis for very large areas. Our findings show a total risk of about 3.9 billion USD and a mean risk of 0.6 million USD per square kilometer.
Leon Scheiber, Christoph Gabriel David, Mazen Hoballah Jalloul, Jan Visscher, Hong Quan Nguyen, Roxana Leitold, Javier Revilla Diez, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2333–2347, https://doi.org/10.5194/nhess-23-2333-2023, https://doi.org/10.5194/nhess-23-2333-2023, 2023
Short summary
Short summary
Like many other megacities in low-elevation coastal zones, Ho Chi Minh City in southern Vietnam suffers from the convoluting impact of changing environmental stressors and rapid urbanization. This study assesses quantitative hydro-numerical results against the background of the low-regret paradigm for (1) a large-scale flood protection scheme as currently constructed and (2) the widespread implementation of small-scale rainwater detention as envisioned in the Chinese Sponge City Program.
Dirk Eilander, Anaïs Couasnon, Frederiek C. Sperna Weiland, Willem Ligtvoet, Arno Bouwman, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 2251–2272, https://doi.org/10.5194/nhess-23-2251-2023, https://doi.org/10.5194/nhess-23-2251-2023, 2023
Short summary
Short summary
This study presents a framework for assessing compound flood risk using hydrodynamic, impact, and statistical modeling. A pilot in Mozambique shows the importance of accounting for compound events in risk assessments. We also show how the framework can be used to assess the effectiveness of different risk reduction measures. As the framework is based on global datasets and is largely automated, it can easily be applied in other areas for first-order assessments of compound flood risk.
Juan Camilo Gómez Zapata, Massimiliano Pittore, Nils Brinckmann, Juan Lizarazo-Marriaga, Sergio Medina, Nicola Tarque, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 23, 2203–2228, https://doi.org/10.5194/nhess-23-2203-2023, https://doi.org/10.5194/nhess-23-2203-2023, 2023
Short summary
Short summary
To investigate cumulative damage on extended building portfolios, we propose an alternative and modular method to probabilistically integrate sets of single-hazard vulnerability models that are being constantly developed by experts from various research fields to be used within a multi-risk context. We demonstrate its application by assessing the economic losses expected for the residential building stock of Lima, Peru, a megacity commonly exposed to consecutive earthquake and tsunami scenarios.
Oya Kalaycıoğlu, Serhat Emre Akhanlı, Emin Yahya Menteşe, Mehmet Kalaycıoğlu, and Sibel Kalaycıoğlu
Nat. Hazards Earth Syst. Sci., 23, 2133–2156, https://doi.org/10.5194/nhess-23-2133-2023, https://doi.org/10.5194/nhess-23-2133-2023, 2023
Short summary
Short summary
The associations between household characteristics and hazard-related social vulnerability in Istanbul, Türkiye, were assessed using machine learning techniques. The results indicated that less educated households with no social security and job insecurity that live in squatter houses are at a higher risk of social vulnerability. We present the findings in an open-access R Shiny web application, which can serve as a guidance for identifying the target groups in the interest of risk mitigation.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Prateek Arora and Luis Ceferino
Nat. Hazards Earth Syst. Sci., 23, 1665–1683, https://doi.org/10.5194/nhess-23-1665-2023, https://doi.org/10.5194/nhess-23-1665-2023, 2023
Short summary
Short summary
Power outage models can help utilities manage risks for outages from hurricanes. Our article reviews the existing outage models during hurricanes and highlights their strengths and limitations. Existing models can give erroneous estimates with outage predictions larger than the number of customers, can struggle with predictions for catastrophic hurricanes, and do not adequately represent infrastructure failure's uncertainties. We suggest models for the future that can overcome these challenges.
Huige Xing, Ting Que, Yuxin Wu, Shiyu Hu, Haibo Li, Hongyang Li, Martin Skitmore, and Nima Talebian
Nat. Hazards Earth Syst. Sci., 23, 1529–1547, https://doi.org/10.5194/nhess-23-1529-2023, https://doi.org/10.5194/nhess-23-1529-2023, 2023
Short summary
Short summary
Disaster risk reduction requires public power. The aim of this study is to investigate the factors influencing the public's intention to participate in disaster risk reduction. An empirical study was conducted using structural equation modeling data analysis methods. The findings show that public attitudes, perceptions of those around them, ability to participate, and sense of participation are important factors.
Di Wang, Ming Wang, Kai Liu, and Jun Xie
Nat. Hazards Earth Syst. Sci., 23, 1409–1423, https://doi.org/10.5194/nhess-23-1409-2023, https://doi.org/10.5194/nhess-23-1409-2023, 2023
Short summary
Short summary
The short–medium-term intervention effect on the post-earthquake area was analysed by simulations in different scenarios. The sediment transport patterns varied in different sub-regions, and the relative effectiveness in different scenarios changed over time with a general downward trend, where the steady stage implicated the scenario with more facilities performing better in controlling sediment output. Therefore, the simulation methods could support optimal rehabilitation strategies.
Marcos Roberto Benso, Gabriela Chiquito Gesualdo, Roberto Fray Silva, Greicelene Jesus Silva, Luis Miguel Castillo Rápalo, Fabricio Alonso Richmond Navarro, Patricia Angélica Alves Marques, José Antônio Marengo, and Eduardo Mario Mendiondo
Nat. Hazards Earth Syst. Sci., 23, 1335–1354, https://doi.org/10.5194/nhess-23-1335-2023, https://doi.org/10.5194/nhess-23-1335-2023, 2023
Short summary
Short summary
This article is about how farmers can better protect themselves from disasters like droughts, extreme temperatures, and floods. The authors suggest that one way to do this is by offering insurance contracts that cover these different types of disasters. By having this insurance, farmers can receive financial support and recover more quickly. The article elicits different ideas about how to design this type of insurance and suggests ways to make it better.
Shivani Chouhan and Mahua Mukherjee
Nat. Hazards Earth Syst. Sci., 23, 1267–1286, https://doi.org/10.5194/nhess-23-1267-2023, https://doi.org/10.5194/nhess-23-1267-2023, 2023
Short summary
Short summary
The Himalayas are prone to multi-hazards. To minimise loss, proper planning and execution are necessary. Data collection is the basis of any risk assessment process. This enhanced survey form is easy to understand and pictorial and identifies high-risk components of any building (structural and non-structural) surrounded by multi-hazards. Its results can help to utilise the budget in a prioritised way. A SWOT (strengths, weaknesses, threats and opportunities) analysis has been performed.
Thulasi Vishwanath Harish, Nivedita Sairam, Liang Emlyn Yang, Matthias Garschagen, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 23, 1125–1138, https://doi.org/10.5194/nhess-23-1125-2023, https://doi.org/10.5194/nhess-23-1125-2023, 2023
Short summary
Short summary
Coastal Asian cities are becoming more vulnerable to flooding. In this study we analyse the data collected from flood-prone houses in Ho Chi Minh City to identify what motivates the households to adopt flood precautionary measures. The results revealed that educating the households about the available flood precautionary measures and communicating the flood protection measures taken by the government encourage the households to adopt measures without having to experience multiple flood events.
Marta Sapena, Mortiz Gamperl, Marlene Kühnl, Carolina Garcia-Londoño, John Singer, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-41, https://doi.org/10.5194/nhess-2023-41, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
A new approach for the deployment of Early Warning Systems (EWSs) in landslide-prone areas is proposed. We combine data-driven landslide susceptibility mapping and population maps to identify high-risk locations. We estimate the cost of monitoring sensors and demonstrate that EWSs could be installed with a budget ranging from €5 to €41 per person in Medellín, Colombia. We provide recommendations for stakeholders and outlines the challenges and opportunities for successful EWS implementation.
Annegret H. Thieken, Philip Bubeck, Anna Heidenreich, Jennifer von Keyserlingk, Lisa Dillenardt, and Antje Otto
Nat. Hazards Earth Syst. Sci., 23, 973–990, https://doi.org/10.5194/nhess-23-973-2023, https://doi.org/10.5194/nhess-23-973-2023, 2023
Short summary
Short summary
In July 2021 intense rainfall caused devastating floods in western Europe with 184 fatalities in the German federal states of North Rhine-Westphalia (NW) and Rhineland-Palatinate (RP), calling their warning system into question. An online survey revealed that 35 % of respondents from NW and 29 % from RP did not receive any warning. Many of those who were warned did not expect severe flooding, nor did they know how to react. The study provides entry points for improving Germany's warning system.
Blaise Mafuko Nyandwi, Matthieu Kervyn, François Muhashy Habiyaremye, François Kervyn, and Caroline Michellier
Nat. Hazards Earth Syst. Sci., 23, 933–953, https://doi.org/10.5194/nhess-23-933-2023, https://doi.org/10.5194/nhess-23-933-2023, 2023
Short summary
Short summary
Risk perception involves the processes of collecting, selecting and interpreting signals about the uncertain impacts of hazards. It may contribute to improving risk communication and motivating the protective behaviour of the population living near volcanoes. Our work describes the spatial variation and factors influencing volcanic risk perception of 2204 adults of Goma exposed to Nyiragongo. It contributes to providing a case study for risk perception understanding in the Global South.
Fatemeh Jalayer, Hossein Ebrahimian, Konstantinos Trevlopoulos, and Brendon Bradley
Nat. Hazards Earth Syst. Sci., 23, 909–931, https://doi.org/10.5194/nhess-23-909-2023, https://doi.org/10.5194/nhess-23-909-2023, 2023
Short summary
Short summary
Assessing tsunami fragility and the related uncertainties is crucial in the evaluation of incurred losses. Empirical fragility modelling is based on observed tsunami intensity and damage data. Fragility curves for hierarchical damage levels are distinguished by their laminar shape; that is, the curves should not intersect. However, this condition is not satisfied automatically. We present a workflow for hierarchical fragility modelling, uncertainty propagation and fragility model selection.
Jenni Barclay, Richie Robertson, and M. Teresa Armijos
EGUsphere, https://doi.org/10.5194/egusphere-2023-71, https://doi.org/10.5194/egusphere-2023-71, 2023
Short summary
Short summary
We explore the value of stories told between scientists to understand environmental crises, during a volcanic eruption. These help scientists make sense of how natural and social orders combine to generate risk, identifying cause and effect, exploring how risk is negotiated. Story-telling rationalizes the emotional intensity of these situations and have value not only when shared between scientists but for improving decision-making processes with uncertain information during crises.
Carlos Mesta, Gemma Cremen, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 23, 711–731, https://doi.org/10.5194/nhess-23-711-2023, https://doi.org/10.5194/nhess-23-711-2023, 2023
Short summary
Short summary
Flood risk is expected to increase in many regions worldwide due to rapid urbanization and climate change. The benefits of risk-mitigation measures remain inadequately quantified for potential future events in some multi-hazard-prone areas such as Kathmandu Valley (KV), Nepal, which this paper addresses. The analysis involves modeling two flood occurrence scenarios and using four residential exposure inventories representing current urban system or near-future development trajectories for KV.
Dong Qiu, Binglin Lv, Yuepeng Cui, and Zexiong Zhan
EGUsphere, https://doi.org/10.5194/egusphere-2022-1349, https://doi.org/10.5194/egusphere-2022-1349, 2023
Short summary
Short summary
This paper divides preparedness behavior into minimal and adequate preparedness. In addition to studying the main factors that promote families' disaster preparedness, we also study the moderating effects of response and self-efficacy on preparedness actions by vulnerable families. Based on the findings of this study policymakers can target interventions and programs that can be designed to remedy the current lack of disaster preparedness education for vulnerable families.
Kirk B. Enu, Aude Zingraff-Hamed, Mohammad A. Rahman, Lindsay C. Stringer, and Stephan Pauleit
Nat. Hazards Earth Syst. Sci., 23, 481–505, https://doi.org/10.5194/nhess-23-481-2023, https://doi.org/10.5194/nhess-23-481-2023, 2023
Short summary
Short summary
In sub-Saharan Africa, there is reported uptake of at least one nature-based solution (NBS) in 71 % of urban areas in the region for mitigating hydro-meteorological risks. These NBSs are implemented where risks exist but not where they are most severe. With these NBSs providing multiple ecosystem services and four out of every five NBSs creating livelihood opportunities, NBSs can help address major development challenges in the region, such as water and food insecurity and unemployment.
Madeleine-Sophie Déroche
Nat. Hazards Earth Syst. Sci., 23, 251–259, https://doi.org/10.5194/nhess-23-251-2023, https://doi.org/10.5194/nhess-23-251-2023, 2023
Short summary
Short summary
This paper proves the need to conduct an in-depth review of the existing loss modelling framework and makes it clear that only a transdisciplinary effort will be up to the challenge of building global loss models. These two factors are essential to capture the interactions and increasing complexity of the three risk drivers (exposure, hazard, and vulnerability), thus enabling insurers to anticipate and be equipped to face the far-ranging impacts of climate change and other natural events.
May Laor and Zohar Gvirtzman
Nat. Hazards Earth Syst. Sci., 23, 139–158, https://doi.org/10.5194/nhess-23-139-2023, https://doi.org/10.5194/nhess-23-139-2023, 2023
Short summary
Short summary
This study aims to provide a practical and relatively fast solution for early-stage planning of marine infrastructure that must cross a faulted zone. Instead of investing huge efforts in finding whether each specific fault meets a pre-defined criterion of activeness, we map the subsurface and determine the levels of fault hazard based on the amount of displacement and the fault's plane size. This allows for choosing the least problematic infrastructure routes at an early planning stage.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Lorenzo Cugliari, Massimo Crescimbene, Federica La Longa, Andrea Cerase, Alessandro Amato, and Loredana Cerbara
Nat. Hazards Earth Syst. Sci., 22, 4119–4138, https://doi.org/10.5194/nhess-22-4119-2022, https://doi.org/10.5194/nhess-22-4119-2022, 2022
Short summary
Short summary
The Tsunami Alert Centre of the National Institute of Geophysics and Volcanology (CAT-INGV) has been promoting the study of tsunami risk perception in Italy since 2018. A total of 7342 questionnaires were collected in three survey phases (2018, 2020, 2021). In this work we present the main results of the three survey phases, with a comparison among the eight surveyed regions and between the coastal regions and some coastal metropolitan cities involved in the survey.
Elco E. Koks, Kees C. H. van Ginkel, Margreet J. E. van Marle, and Anne Lemnitzer
Nat. Hazards Earth Syst. Sci., 22, 3831–3838, https://doi.org/10.5194/nhess-22-3831-2022, https://doi.org/10.5194/nhess-22-3831-2022, 2022
Short summary
Short summary
This study provides an overview of the impacts to critical infrastructure and how recovery has progressed after the July 2021 flood event in Germany, Belgium and the Netherlands. The results show that Germany and Belgium were particularly affected, with many infrastructure assets severely damaged or completely destroyed. This study helps to better understand how infrastructure can be affected by flooding and can be used for validation purposes for future studies.
Qinke Sun, Jiayi Fang, Xuewei Dang, Kepeng Xu, Yongqiang Fang, Xia Li, and Min Liu
Nat. Hazards Earth Syst. Sci., 22, 3815–3829, https://doi.org/10.5194/nhess-22-3815-2022, https://doi.org/10.5194/nhess-22-3815-2022, 2022
Short summary
Short summary
Flooding by extreme weather events and human activities can lead to catastrophic impacts in coastal areas. The research illustrates the importance of assessing the performance of different future urban development scenarios in response to climate change, and the simulation study of urban risks will prove to decision makers that incorporating disaster prevention measures into urban development plans will help reduce disaster losses and improve the ability of urban systems to respond to floods.
Andrea Taramelli, Margherita Righini, Emiliana Valentini, Lorenzo Alfieri, Ignacio Gatti, and Simone Gabellani
Nat. Hazards Earth Syst. Sci., 22, 3543–3569, https://doi.org/10.5194/nhess-22-3543-2022, https://doi.org/10.5194/nhess-22-3543-2022, 2022
Short summary
Short summary
This work aims to support decision-making processes to prioritize effective interventions for flood risk reduction and mitigation for the implementation of flood risk management concepts in urban areas. Our findings provide new insights into vulnerability spatialization of urban flood events for the residential sector, demonstrating that the nature of flood pathways varies spatially and is influenced by landscape characteristics, as well as building features.
Pauline Brémond, Anne-Laurence Agenais, Frédéric Grelot, and Claire Richert
Nat. Hazards Earth Syst. Sci., 22, 3385–3412, https://doi.org/10.5194/nhess-22-3385-2022, https://doi.org/10.5194/nhess-22-3385-2022, 2022
Short summary
Short summary
It is impossible to protect all issues against flood risk. To prioritise protection, economic analyses are conducted. The French Ministry of the Environment wanted to make available damage functions that we have developed for several sectors. For this, we propose a methodological framework and apply it to the model we have developed to assess damage to agriculture. This improves the description, validation, transferability and updatability of models based on expert knowledge.
Wenwu Gong, Jie Jiang, and Lili Yang
Nat. Hazards Earth Syst. Sci., 22, 3271–3283, https://doi.org/10.5194/nhess-22-3271-2022, https://doi.org/10.5194/nhess-22-3271-2022, 2022
Short summary
Short summary
We propose a model named variable fuzzy set and information diffusion (VFS–IEM–IDM) to assess the dynamic risk of compound hazards, which takes into account the interrelations between the hazard drivers, deals with the problem of data sparsity, and considers the temporal dynamics of the occurrences of the compound hazards. To examine the efficacy of the proposed VFS–IEM–IDM model, a case study of typhoon–rainstorm risks in Shenzhen, China, is presented.
Sanish Bhochhibhoya and Roisha Maharjan
Nat. Hazards Earth Syst. Sci., 22, 3211–3230, https://doi.org/10.5194/nhess-22-3211-2022, https://doi.org/10.5194/nhess-22-3211-2022, 2022
Short summary
Short summary
This is a comprehensive approach to risk assessment that considers the dynamic relationship between loss and damage. The study combines physical risk with social science to mitigate the disaster caused by earthquakes in Nepal, taking socioeconomical parameters into account such that the risk estimates can be monitored over time. The main objective is to recognize the cause of and solutions to seismic hazard, building the interrelationship between individual, natural, and built-in environments.
Lennart Marien, Mahyar Valizadeh, Wolfgang zu Castell, Christine Nam, Diana Rechid, Alexandra Schneider, Christine Meisinger, Jakob Linseisen, Kathrin Wolf, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci., 22, 3015–3039, https://doi.org/10.5194/nhess-22-3015-2022, https://doi.org/10.5194/nhess-22-3015-2022, 2022
Short summary
Short summary
Myocardial infarctions (MIs; heart attacks) are influenced by temperature extremes, air pollution, lack of green spaces and ageing population. Here, we apply machine learning (ML) models in order to estimate the influence of various environmental and demographic risk factors. The resulting ML models can accurately reproduce observed annual variability in MI and inter-annual trends. The models allow quantification of the importance of individual factors and can be used to project future risk.
Annette Sophie Bösmeier, Iso Himmelsbach, and Stefan Seeger
Nat. Hazards Earth Syst. Sci., 22, 2963–2979, https://doi.org/10.5194/nhess-22-2963-2022, https://doi.org/10.5194/nhess-22-2963-2022, 2022
Short summary
Short summary
Encouraging a systematic use of flood marks for more comprehensive flood risk management, we collected a large number of marks along the Kinzig, southwestern Germany, and tested them for plausibility and temporal continuance. Despite uncertainty, the marks appeared to be an overall consistent and practical source that may also increase flood risk awareness. A wide agreement between the current flood hazard maps and the collected flood marks moreover indicated a robust local hazard assessment.
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-218, https://doi.org/10.5194/nhess-2022-218, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
This article is aimed at developing a method to quantify the influence of inclement weather on the accessibility of the emergency medical services and identifying the vulnerable areas that could not get timely emergency medical services under inclement weather. And we found that inclement weather could reduce the accessibility of emergency medical services by up to 40 %. Besides, towns with lower baseline EMS accessibility is more vulnerable to inclement weather.
Mark Schuerch, Hannah L. Mossman, Harriet E. Moore, Elizabeth Christie, and Joshua Kiesel
Nat. Hazards Earth Syst. Sci., 22, 2879–2890, https://doi.org/10.5194/nhess-22-2879-2022, https://doi.org/10.5194/nhess-22-2879-2022, 2022
Short summary
Short summary
Coastal nature-based solutions to adapt to sea-level rise, such as managed realignments (MRs), are becoming increasingly popular amongst scientists and coastal managers. However, local communities often oppose these projects, partly because scientific evidence for their efficiency is limited. Here, we propose a framework to work with stakeholders and communities to define success variables of MR projects and co-produce novel knowledge on the projects’ efficiency to mitigate coastal flood risks.
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022, https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
Short summary
Here we present survey responses of 350 natural hazard community members to key challenges in natural hazards research and step changes to achieve the Sustainable Development Goals. Challenges identified range from technical (e.g. model development, early warning) to governance (e.g. co-production with community members). Step changes needed are equally broad; however, the majority of answers showed a need for wider stakeholder engagement, increased risk management and interdisciplinary work.
Masahiko Haraguchi, Nicole Davi, Mukund Palat Rao, Caroline Leland, Masataka Watanabe, and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 22, 2751–2770, https://doi.org/10.5194/nhess-22-2751-2022, https://doi.org/10.5194/nhess-22-2751-2022, 2022
Short summary
Short summary
Mass livestock mortality during severe winters (dzud in Mongolian) is a compound event. Summer droughts are a precondition for dzud. We estimate the return levels of relevant variables: summer drought conditions and minimum winter temperature. The result shows that the return levels of drought conditions vary over time. Winter severity, however, is constant. We link climatic factors to socioeconomic impacts and draw attention to the need for index insurance.
Samuel Rufat, Mariana Madruga de Brito, Alexander Fekete, Emeline Comby, Peter J. Robinson, Iuliana Armaş, W. J. Wouter Botzen, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 22, 2655–2672, https://doi.org/10.5194/nhess-22-2655-2022, https://doi.org/10.5194/nhess-22-2655-2022, 2022
Short summary
Short summary
It remains unclear why people fail to act adaptively to reduce future losses, even when there is ever-richer information available. To improve the ability of researchers to build cumulative knowledge, we conducted an international survey – the Risk Perception and Behaviour Survey of Surveyors (Risk-SoS). We find that most studies are exploratory and often overlook theoretical efforts that would enable the accumulation of evidence. We offer several recommendations for future studies.
Faith Ka Shun Chan, Liang Emlyn Yang, Gordon Mitchell, Nigel Wright, Mingfu Guan, Xiaohui Lu, Zilin Wang, Burrell Montz, and Olalekan Adekola
Nat. Hazards Earth Syst. Sci., 22, 2567–2588, https://doi.org/10.5194/nhess-22-2567-2022, https://doi.org/10.5194/nhess-22-2567-2022, 2022
Short summary
Short summary
Sustainable flood risk management (SFRM) has become popular since the 1980s. This study examines the past and present flood management experiences in four developed countries (UK, the Netherlands, USA, and Japan) that have frequently suffered floods. We analysed ways towards SFRM among Asian coastal cities, which are still reliant on a hard-engineering approach that is insufficient to reduce future flood risk. We recommend stakeholders adopt mixed options to undertake SFRM practices.
Zélie Stalhandske, Valentina Nesa, Marius Zumwald, Martina S. Ragettli, Alina Galimshina, Niels Holthausen, Martin Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 22, 2531–2541, https://doi.org/10.5194/nhess-22-2531-2022, https://doi.org/10.5194/nhess-22-2531-2022, 2022
Short summary
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
Adrian Ringenbach, Elia Stihl, Yves Bühler, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Guang Lu, Andreas Stoffel, Martin Kistler, Sandro Degonda, Kevin Simmler, Daniel Mader, and Andrin Caviezel
Nat. Hazards Earth Syst. Sci., 22, 2433–2443, https://doi.org/10.5194/nhess-22-2433-2022, https://doi.org/10.5194/nhess-22-2433-2022, 2022
Short summary
Short summary
Forests have a recognized braking effect on rockfalls. The impact of lying deadwood, however, is mainly neglected. We conducted 1 : 1-scale rockfall experiments in three different states of a spruce forest to fill this knowledge gap: the original forest, the forest including lying deadwood and the cleared area. The deposition points clearly show that deadwood has a protective effect. We reproduced those experimental results numerically, considering three-dimensional cones to be deadwood.
Arthur Charpentier, Molly James, and Hani Ali
Nat. Hazards Earth Syst. Sci., 22, 2401–2418, https://doi.org/10.5194/nhess-22-2401-2022, https://doi.org/10.5194/nhess-22-2401-2022, 2022
Short summary
Short summary
Predicting consequences of drought episodes is complex, all the more when focusing on subsidence. We use 20 years of insurer data to derive a model to predict both the intensity and the severity of such events, using geophysical and climatic information located in space and time.
Tiantian Wang, Yunmeng Lu, Tiezhong Liu, Yujiang Zhang, Xiaohan Yan, and Yi Liu
Nat. Hazards Earth Syst. Sci., 22, 2185–2199, https://doi.org/10.5194/nhess-22-2185-2022, https://doi.org/10.5194/nhess-22-2185-2022, 2022
Short summary
Short summary
To identify the main determinants influencing urban residents' intention to prepare for flood risk in China, we developed an integrated theoretical framework based on protection motivation theory (PMT) and validated it with structural equation modeling. The results showed that both threat perception and coping appraisal were effective in increasing residents' intention to prepare. In addition, individual heterogeneity and social context also had an impact on preparedness intentions.
Ji-Myong Kim, Sang-Guk Yum, Hyunsoung Park, and Junseo Bae
Nat. Hazards Earth Syst. Sci., 22, 2131–2144, https://doi.org/10.5194/nhess-22-2131-2022, https://doi.org/10.5194/nhess-22-2131-2022, 2022
Short summary
Short summary
Insurance data has been utilized with deep learning techniques to predict natural disaster damage losses in South Korea.
Cited articles
Akkar, S. and Bommer, J. J.: Empirical equations for the prediction of PGA,
PGV, and spectral accelerations in Europe, the Mediterranean region, and the
Middle East, Seismol. Res. Lett., 81, 195–206, https://doi.org/10.1785/gssrl.81.2.195, 2010.
Ambraseys, N. N., Douglas, J., Sarma, S. K., and Smit, P. M.: Equations for
the estimation of strong ground motions from shallow crustal earthquakes
using data from Europe and the Middle East: horizontal peak ground
acceleration and spectral acceleration, Bull. Earthq. Eng., 3, 1–53, https://doi.org/10.1007/s10518-005-0183-0, 2005.
Bachmann, C. E., Wiemer, S., Woessner, S., and Hainzl, S.: Statistical
analysis of the induced Basel 2006 earthquake sequence: introducing a
probability-based monitoring approach for Enhanced Geothermal Systems,
Geophys. J. Int., 186, 793–807, https://doi.org/10.1111/j.1365-246X.2011.05068.x, 2011.
Baisch, S., Koch, C., and Muntendam-Bos, A.: Traffic light systems: to what
extent can induced seismicity be controlled?, Seismol. Res. Lett., 90, 1145–1154, https://doi.org/10.1785/0220180337, 2019.
Baker, J. W. and Gupta, A.: Bayesian Treatment of Induced Seismicity in
Probabilistic Seismic-Hazard Analysis, Bull. Seismol. Soc. Am., 106, 860–870, https://doi.org/10.1785/0120150258, 2016.
Baltay, A. S. and Hanks, T. C.: Understanding the magnitude dependence of
PGA and PGV in NGA-West 2 data, Bull. Seismol. Soc. Am., 104, 2851–2865, https://doi.org/10.1785/0120130283, 2014.
Bessason, B. and Bjarnason, J. Ö.: Seismic vulnerability of low-rise
residential buildings based on damage data from three earthquakes (Mw6.5, 6.5 and 6.3), Eng. Struct., 111, 64–79, https://doi.org/10.1016/j.engstruct.2015.12.008, 2016.
Bommer, J. J., Oates, S., Cepeda, J. M., Lindholm, C., Bird, J., Torres, R.,
Marroquin, G., and Rivas, J.: Control of hazard due to seismicity induced by a hot fractured rock geothermal project, Eng. Geol., 83, 287–306,
https://doi.org/10.1016/j.enggeo.2005.11.002, 2006.
Bommer, J. J., Stafford, P. J., Alarcón, J. E., and Akkar, S.: The
influence of magnitude range on empirical ground-motion prediction, Bull.
Seismol. Soc. Am., 97, 2152–2170, https://doi.org/10.1785/0120070081, 2007.
Bommer, J. J., Crowley, H., and Pinho, R.: A risk-mitigation approach to the
management of induced seismicity, J. Seismol., 19, 623–646, https://doi.org/10.1007/s10950-015-9514-z, 2015.
Broccardo, M., Mignan, A., Wiemer, S., Stojadinovic, B., and Giardini, D.:
Hierarchical Bayesian Modeling of Fluid-Induced Seismicity, Geophys. Res. Lett., 44, 11357–11367, https://doi.org/10.1002/2017GL075251, 2017a.
Broccardo, M., Danciu, L., Stojadinovic, B., and Wiemer, S.: Individual and
societal risk metrics as parts of a risk governance framework for induced
seismicity, in: 16th World Conference on Earthquake Engineering (WCEE16),
9–13 January 2017, Santiago, Chile, 2017b.
Cauzzi, C. and Faccioli, E.: Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records, J. Seismol., 12, 453–475, https://doi.org/10.1007/s10950-008-9098-y, 2008.
Cornell, C. A.: Engineering seismic risk analysis, Bull. Seismol. Soc. Am., 58, 1583–1606, 1968.
Cornell, C. A. and Krawinkler, H.: Progress and challenges in seismic performance assessment, PEER Center News, Spring, available at:
http://peer.berkeley.edu/news/2000spring/index.html (last access: May 2020), 2000.
Danciu, L. and Tselentis, G. A.: Engineering ground-motion parameters attenuation relationships for Greece, Bull. Seismol. Soc. Am., 97, 162–183, https://doi.org/10.1785/0120050087, 2007.
Diehl, T., Kraft, T., Kissling, E., and Wiemer, S.: The induced earthquake
sequence related to the St. Gallen deep geothermal project (Switzerland):
Fault reactivation and fluid interactions imaged by microseismicity, J. Geophys. Res.-Solid, 122, 7272–7290, https://doi.org/10.1002/2017JB014473, 2017.
Dinske, C. and Shapiro, S. A.: Seismotectonic state of reservoirs inferred from magnitude distributions of fluid-induced seismicity, J. Seismol., 17, 13–25, https://doi.org/10.1007/s10950-012-9292-9, 2013.
Ellsworth, W. L.: Injection-induced earthquakes, Science, 341, 1225942,
https://doi.org/10.1126/science.1225942, 2013.
Embrechts, P., Klüppelberg, C., and Mikosch, T.: Modelling extremal
events: for insurance and finance, in: Vol. 33, Springer Science & Business
Media, Springer-Verlag, Berlin, Heidelberg, ISBN 978-3-642-33483-2, 2013.
Faccioli, E. and Cauzzi, C.: Macroseismic intensities for seismic scenarios
estimated from instrumentally based correlations, in: Proc. First European
Conference on Earthquake Engineering and Seismology, 3–8 September 2006, Geneva, Switzerland, 2006.
Faenza, L. and Michelini, A.: Regression analysis of MCS intensity and
ground motion parameters in Italy and its application in ShakeMap, Geophys. J. Int., 180, 1138–1152, https://doi.org/10.1111/j.1365-246X.2009.04467.x, 2010.
Galanis, P., Sycheva, A., Mimra, W., and Stojadinović, B.: A framework to
evaluate the benefit of seismic upgrading, Earthq. Spectra, 34, 527–548, https://doi.org/10.1193/120316EQS221M, 2018.
Giardini, D.: Geothermal quake risks must be faced, Nature, 462, 848–849, https://doi.org/10.1038/462848a, 2009.
Gischig, V. S. and Wiemer, S.: A stochastic model for induced seismicity
based on non-linear pressure diffusion and irreversible permeability
enhancement, Geophys. J. Int., 194, 1229–1249, https://doi.org/10.1093/gji/ggt164, 2013.
Gischig, V., Wiemer, S., and Alcolea, A.: Balancing reservoir creation and
seismic hazard in enhanced geothermal systems, Geophys. J. Int., 198, 1585–1598, https://doi.org/10.1093/gji/ggu221, 2014.
Goertz-Allmann, B. P. and Wiemer, S.: Geomechanical modeling of induced
seismicity source parameters and implications for seismic hazard assessment, Geophysics, 78, KS25–KS39, https://doi.org/10.1190/geo2012-0102.1, 2013.
Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A. P., Clinton, J. F., Stabile, T. A., Dost, B., Fernandez, M. G., Wiemer, S., and Dahm, T.: Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective, Rev. Geophys., 55, 310–340, https://doi.org/10.1002/2016RG000542, 2017.
Grigoli, F., Cesca, S., Rinaldi, A. P., Manconi, A., López-Comino, J. A., Westaway, R., Cauzzi, C., Dahm, T., and Wiemer, S.: The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea, Science, 360, 1003–1006, https://doi.org/10.1126/science.aat2010, 2018.
Grünthal, G.: European macroseismic scale 1998. European Seismological
Commission (ESC), Luxemburg, 1998.
Gülkan, P. and Kalkan, E.: Attenuation modeling of recent earthquakes in
Turkey, J. Seismol., 6, 397–409, https://doi.org/10.1023/A:1020087426440, 2002.
Gunnlaugsson, E., Gislason, G., Ivarsson, G., and Kjaran, S. P.: Low
temperature geothermal fields utilized for district heating in reykjavik,
iceland, in: Vol. 74, Proceedings World Geothermal Congress, 28 May–10 June 2000, Kyushu, Tohoku, Japan, 2000.
Gupta, A. and Baker, J. W.: Sensitivity of induced seismicity risk to source
characterization, ground motion prediction, and exposure, in: Proceedings
16th world conference on earthquake engineering, 9–13 January 2017, Santiago, Chile, 2017.
Haimson, B. C.: The hydrofracturing stress measuring method and recent field
results, in: International Journal of Rock Mechanics and Mining Sciences &Geomechanics Abstracts, Vol. 15, Pergamon, UK, https://doi.org/10.1016/0148-9062(78)91223-8, 1978.
Haimson, B. C. and Voight, B.: Stress measurements in Iceland, EOS Trans. Am. Geophys. Union, 57, 1007, 1976.
HAZUS MH MR3 – Multi-hazard Loss Estimation Methodology: Earthquake Model,
Technical Manual, NIST, Washington, D.C., 2003.
Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., and WSM Team: World Stress Map Database Release 2016, V. 1.1, GFZ Data Services, https://doi.org/10.5880/WSM.2016.001, 2016.
Hirschberg, S., Wiemer, S., and Burgherr, P. (Eds.): Energy from the Earth:
Deep Geothermal as a Resource for the Future?, in: Vol. 62, vdf Hochschulverlag AG, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-a-010277690, 2015.
Hofmann, H., Zimmermann, G., Zang, A., Aldaz, S., Cesca, S., Heimann, S., Mikulla, S., Milkereit, C., Dahm, T., Huenges, E., Hjörleifsdóttir, V., Snæbjörnsdóttir, S. O., Aradóttir, E. S., Ásgeirsdóttir, R. t., Ágústsson, K., Magnússon, R., Stefánsson, S. A., Flovenz, O., Mignan, A., Broccardo, M., Rinaldi, A. P., Scarabello, L., Karvounis, D., Grigoli, F., Wiemer, S., and Hólmgeirsson, S.: Hydraulic Stimulation Design for Well RV-43 on Geldinganes, Iceland, in: Proceedings World Geothermal Congress 2020, 26 April–2 May 2020, Reykjavik, Iceland, 2020.
Holschneider, M., Zöller, G., and Hainzl, S.: Estimation of the maximum
possible magnitude in the framework of a doubly truncated Gutenberg–Richter
model, Bull. Seismol. Soc. Am., 101, 1649–1659, https://doi.org/10.1785/0120100289, 2011.
Jones, D. A.: Nomenclature for hazard and risk assessment in the process
industries, IChemE – Institution of Chemical Engineers, Rugby, Warwickshire, UK, 1992.
Jonkman, S. N., Van Gelder, P. H. A. J. M., and Vrijling, J. K.: An overview
of quantitative risk measures for loss of life and economic damage, J.
Hazard. Mater., 99, 1–30, https://doi.org/10.1016/S0304-3894(02)00283-2, 2003.
Karvounis, D. C., Gischig, V. S., and Wiemer, S.: Towards a real-time forecast of induced seismicity for enhanced geothermal systems, in: Shale Energy Engineering 2014: Technical Challenges, Environmental Issues, and Public Policy, ASCE – American Society of Civil Engineers, 21–23 July 2014, Pittsburgh, Pennsylvania, 246–255, https://doi.org/10.1061/9780784413654.026, 2014.
Karvounis, D. C. and Jenny, P.: Adaptive Hierarchical Fracture Model for Enhanced Geothermal Systems, Multisc. Model. Simul., 14, 207–231, https://doi.org/10.1137/140983987, 2016.
Kim, K. H., Ree, J. H., Kim, Y., Kim, S., Kang, S. Y., and Seo, W.: Assessing
whether the 2017 Mw5.4 Pohang earthquake in South Korea was an induced event, Science, 360, 1007–1009, https://doi.org/10.1126/science.aat6081, 2018.
Kowsari, M., Halldorsson, B., Hrafnkelsson, B., Snæbjörnsson, J. Þ., and Jónsson, S.: Calibration of ground motion models to Icelandic
peak ground acceleration data using Bayesian Markov Chain Monte Carlo simulation, Bull. Earthq. Eng., 17, 2841–2870, https://doi.org/10.1007/s10518-019-00569-5, 2019.
Kwiatek, G., Saarno, T., Ader, T., Bluemle, F., Bohnhoff, M., Chendorain, M., Dresen, G., Heikkinen, P., Kukkonen, I., Leary, P., and Leonhardt, M.: Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland, Sci. Adv., 5, eaav7224, https://doi.org/10.1126/sciadv.aav7224, 2019.
Lagomarsino, S. and Giovinazzi, S.: Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings, Bull. Earthq. Eng., 4, 415–443, https://doi.org/10.1007/s10518-006-9024-z, 2016.
Langenbruch, C., Weingarten, M., and Zoback, M. D.: Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas, Nat. Commun., 9, 3946, https://doi.org/10.1038/s41467-018-06167-4, 2018.
Lee, K. K., Ellsworth, W. L., Giardini, D., Townend, J., Shemin, G., Shimamoto, T., Yeo, I.-W., Kang, T.-S., Rhie, J., Sheen, D.-H., Chang, C.,
Wool, J.-U., and Langenbruch, C.: Managing injection-induced seismic risks,
Science, 364, 730–732, https://doi.org/10.1126/science.aax1878, 2019.
Lin, P. S. and Lee, C. T.: Ground-motion attenuation relationships for
subduction-zone earthquakes in northeastern Taiwan, Bull. Seismol. Soc. Am., 98, 220–240, https://doi.org/10.1785/0120060002, 2008.
Majer, E., Nelson, J., Robertson-Tait, A., Savy, J., and Wong, I.: Protocol for addressing induced seismicity associated with enhanced geothermal systems, US Department of Energy, Energy Efficiency & Renewable Energy, 52 pp., 2012.
Majer, E. L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, B., and
Asanuma, H.: Induced seismicity associated with enhanced geothermal systems,
Geothermics, 36, 185–222, https://doi.org/10.1016/j.geothermics.2007.03.003, 2007.
McGarr, A.: Seismic moments and volume changes, J. Geophys. Res., 81, 1487–1494, https://doi.org/10.1029/JB081i008p01487, 1976.
McGarr, A.: Maximum magnitude earthquakes induced by fluid injection, J.
Geophys. Res.-Solid, 119, 1008–1019, https://doi.org/10.1002/2013JB010597, 2014.
Mena, B., Wiemer, S., and Bachman, C.: Building robust models to forecast the
induced seismicity related to geothermal reservoir enhancement, Bull. Seismol. Soc. Am., 103, 383–393, https://doi.org/10.1785/0120120102, 2013.
Mignan, A.: Static behaviour of induced seismicity, Nonlin. Processes Geophys., 23, 107–113, https://doi.org/10.5194/npg-23-107-2016, 2016.
Mignan, A., Werner, M. J., Wiemer, S., Chen, C.-C., and Wu, Y.-M.: Bayesian
Estimation of the Spatially Varying Completeness Magnitude of Earthquake
Catalogs, Bull. Seismol. Soc. Am., 101, 1371–1385, https://doi.org/10.1785/0120100223, 2011.
Mignan, A., Landtwing, D., Kästli, P., Mena, B., and Wiemer, S.: Induced
seismicity risk analysis of the 2006 Basel, Switzerland, Enhanced Geothermal
System project: Influence of uncertainties on risk mitigation, Geothermics, 53, 133–146, https://doi.org/10.1016/j.geothermics.2014.05.007, 2015.
Mignan, A., Broccardo, M., Wiemer, S., and Giardini, D.: Induced seismicity
closed-form traffic light system for actuarial decision-making during deep
fluid injections, Scient. Rep., 7, 13607, https://doi.org/10.1038/s41598-017-13585-9, 2017.
Mignan, A., Broccardo, M., Wiemer, S., and Giardini, D.: Autonomous Decision-Making Against Induced Seismicity in Deep Fluid Injections, in: Energy Geotechnics, SEG 2018, Lausanne, Switzerland, Springer Series in Geomechanics and Geoengineering, edited by: Ferrari, A. and Laloui, L., Springer, Cham, 369–376, https://doi.org/10.1007/978-3-319-99670-7_46, 2019a.
Mignan, A., Karvounis, D., Broccardo, M., Wiemer, S., and Giardini, D.: Including seismic risk mitigation measures into the Levelized Cost Of
Electricity in enhanced geothermal systems for optimal siting, Appl. Energ., 238, 831–850, https://doi.org/10.1016/j.apenergy.2019.01.109, 2019b.
Morris, M. D.: Factorial sampling plans for preliminary computational
experiments, Technometrics, 33, 161–174, https://doi.org/10.1080/00401706.1991.10484804, 1991.
Panzera, F., Mignan, A., and Vogfjord, K. S.: Spatiotemporal evolution of the
completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013, J. Seismol., 21, 615–630, https://doi.org/10.1007/s10950-016-9623-3, 2017.
Pittore, M., Boxberger, T., Fleming, K., Megalooikonomou, K., Parolai, S., and Pilz, M.: DESTRESS – Demonstration of soft stimulation treatments of
geothermal reservoirs, GFZ Data Services, https://doi.org/10.14470/7Q7563484600, 2018.
Porter, K. A., Beck, J. L., and Shaikhutdinov, R. V.: Sensitivity of building loss estimates to major uncertain variables, Earthq. Spectra, 18, 719–743,
https://doi.org/10.1193/1.1516201, 2002.
Rupakhety, R. and Sigbjörnsson, R.: Ground-motion prediction equations (GMPEs) for inelastic displacement and ductility demands of
constant-strength SDOF systems, Bull. Earthq. Eng., 7, 661–679, https://doi.org/10.1007/s10518-009-9117-6, 2009.
Shapiro, S. A. and Dinske, C.: Scaling of seismicity induced by nonlinear
fluid-rock interaction, J. Geophys. Res., 114, B09307,
https://doi.org/10.1029/2008JB006145, 2009.
Steingrímsson, B., Fridleifsson, G. Ó., Gunnarsson, K., Thordarson, S., Thórhallsson, S., and Hafstad, T. H.: Well RV-43 in Geldinganes,
Prerequisites for location and design, report BS/GOF/KG/GTHOR/SThHH-02/01, Orkustofnun, Reykjavík, 11 pp., 2001.
Trutnevyte, E. and Wiemer, S.: Tailor-made risk governance for induced seismicity of geothermal energy projects: An application to Switzerland, Geothermics, 65, 295–312, https://doi.org/10.1016/j.geothermics.2016.10.006, 2017.
van der Elst, N. J., Page, M. T., Weiser, D. A., Goebel, T. H. W., and
Hosseini, S. M.: Induced earthquake magnitudes are as large as (statistically) expected, J. Geophys. Res.-Solid, 121, 4575–4590, https://doi.org/10.1002/2016JB012818, 2016.
Walters, R. J., Zoback, M. D., Baker, J. W., and Beroza, G. C.: Characterizing and responding to seismic risk associated with earthquakes
potentially triggered by fluid disposal and hydraulic fracturing, Seismol. Res. Lett., 86, 1110–1118, https://doi.org/10.1785/0220150048, 2015.
Wiemer, S., Kraft, T., Trutnevyte, E., and Roth, P.: “Good Practice” Guide for Managing Induced Seismicity in Deep Geothermal Energy Projects in Switzerland, ETH Zurich, Zurich, 2017.
Yeck, W. L., Hayes, G. P., McNamara, D. E., Rubinstein, J. L., Barnhart, W.
D., Earle, P. S., and Benz, H. M.: Oklahoma experiences largest earthquake
during ongoing regional wastewater injection hazard mitigation efforts, Geophys. Res. Lett., 44, 711–717, https://doi.org/10.1002/2016GL071685, 2017.
Zang, A., Yoon, J. S., Stephansson, O., and Heidbach, O.: Fatigue hydraulic
fracturing by cyclic reservoir treatment enhances permeability and reduces
induced seismicity, Geophys. J. Int., 195, 1282–1287, https://doi.org/10.1093/gji/ggt301, 2013.
Zang, A., Stephansson, O., and Zimmermann, G.: Keynote: fatigue hydraulic
fracturing, in: ISRM European Rock Mechanics Symposium-EUROCK 2017, International Society for Rock Mechanics and Rock Engineering, Ostrava, Czech Republic, 2017.
Zang, A., Zimmermann, G., Hofmann, H., Stephansson, O., Min, K. B., and Kim,
K. Y.: How to reduce fluid-injection-induced seismicity, Rock Mech. Rock Eng., 52, 475–493, https://doi.org/10.1007/s00603-018-1467-4, 2019.
Zhao, J.X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H. K., Somerville, P. G., and Fukushima, Y.: Attenuation relations of strong ground motion in Japan using site classification based on predominant period, Bull. Seismol. Soc. Am., 96, 898–913, https://doi.org/10.1785/0120050122, 2006.
Ziegler, M., Rajabi, M., Heidbach, O., Hersir, G. P., Ágústsson, K.,
Árnadóttir, S., and Zang, A.: The stress pattern of Iceland, Tectonophysics, 674, 101–113, https://doi.org/10.1016/0040-1951(69)90097-3, 2016.
Short summary
This study presents a first-of-its-kind pre-drilling probabilistic induced seismic risk analysis for the Geldinganes (Iceland) deep-hydraulic stimulation. The results of the assessment indicate that the individual risk within a radius of 2 km around the injection point is below the safety limits. However, the analysis is affected by a large variability due to the presence of pre-drilling deep uncertainties. This suggests the need for online risk updating during the stimulation.
This study presents a first-of-its-kind pre-drilling probabilistic induced seismic risk analysis...
Altmetrics
Final-revised paper
Preprint