Articles | Volume 20, issue 6
https://doi.org/10.5194/nhess-20-1573-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-1573-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Department of Civil Engineering and Industrial Design,
University of Liverpool, Liverpool, UK
Arnaud Mignan
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Institute of Geophysics, ETH Zürich, Zurich, Switzerland
Francesco Grigoli
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Dimitrios Karvounis
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Antonio Pio Rinaldi
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Institute of Geophysics, ETH Zürich, Zurich, Switzerland
Laurentiu Danciu
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Hannes Hofmann
Helmholtz Centre Potsdam – GFZ German Research Centre for
Geosciences, Potsdam, Germany
Claus Milkereit
Helmholtz Centre Potsdam – GFZ German Research Centre for
Geosciences, Potsdam, Germany
Torsten Dahm
Helmholtz Centre Potsdam – GFZ German Research Centre for
Geosciences, Potsdam, Germany
Günter Zimmermann
Helmholtz Centre Potsdam – GFZ German Research Centre for
Geosciences, Potsdam, Germany
Vala Hjörleifsdóttir
Orkuveita Reykjavíkur (Reykjavík Energy), Reykjavik, Iceland
Stefan Wiemer
Swiss Seismological Service, ETH Zürich, Zurich, Switzerland
Related authors
No articles found.
Sandro Truttmann, Tobias Diehl, Marco Herwegh, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2975, https://doi.org/10.5194/egusphere-2024-2975, 2024
Short summary
Short summary
Our study investigates the statistical relationship between geological faults and earthquakes in the Southwestern Swiss Alps. We analyze how the fault size and earthquake rupture are related and find differences in how faults at different depths rupture seismically. While shallow faults tend to rupture only partially, deeper faults are more likely to rupture along their entire length, potentially resulting in larger earthquakes.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Konstantinos Trevlopoulos, Pierre Gehl, Caterina Negulescu, Helen Crowley, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 24, 2383–2401, https://doi.org/10.5194/nhess-24-2383-2024, https://doi.org/10.5194/nhess-24-2383-2024, 2024
Short summary
Short summary
The models used to estimate the probability of exceeding a level of earthquake damage are essential to the reduction of disasters. These models consist of components that may be tested individually; however testing these types of models as a whole is challenging. Here, we use observations of damage caused by the 2019 Le Teil earthquake and estimations from other models to test components of seismic risk models.
Bénédicte Donniol Jouve, Anne Socquet, Céline Beauval, Jesús Piña Valdès, and Laurentiu Danciu
EGUsphere, https://doi.org/10.5194/egusphere-2024-787, https://doi.org/10.5194/egusphere-2024-787, 2024
Short summary
Short summary
This research investigates how geodetic monitoring enhances accuracy in seismic hazard assessment. By utilizing geodetic strain rate maps for Europe and the ESHM20 source model, we compare geodetic and seismic moment rates across the continent while addressing associated uncertainties. Our analysis reveals primary compatibility in high-activity zones. In well-constrained regions of lower activity, we also observed an overlap in the distribution of seismic and geodetic moments.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20) and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled-backbone logic tree for application to Europe's subduction zones and the Vrancea deep seismic source.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John F. Schneider, Céline Beauval, António A. Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 291–307, https://doi.org/10.5194/nhess-24-291-2024, https://doi.org/10.5194/nhess-24-291-2024, 2024
Short summary
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
Elena F. Manea, Laurentiu Danciu, Carmen O. Cioflan, Dragos Toma-Danila, and Matt Gerstenberger
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-232, https://doi.org/10.5194/nhess-2023-232, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
We test and evaluate the results of the 2020 European Seismic Hazard Model (ESHM20; Danciu et al., 2021) against observations spamming over a few centuries at twelve cities in Romania. The full distribution of the hazard curves at the given location was considered, and the testing was done for two relevant peak ground acceleration (PGA) values. Our analysis suggests that the observed exceedance rates for the selected PGA levels are consistent with ESHM20 estimates.
Arno Zang, Peter Niemz, Sebastian von Specht, Günter Zimmermann, Claus Milkereit, Katrin Plenkers, and Gerd Klee
Earth Syst. Sci. Data, 16, 295–310, https://doi.org/10.5194/essd-16-295-2024, https://doi.org/10.5194/essd-16-295-2024, 2024
Short summary
Short summary
We present experimental data collected in 2015 at Äspö Hard Rock Laboratory. We created six cracks in a rock mass by injecting water into a borehole. The cracks were monitored using special sensors to study how the water affected the rock. The goal of the experiment was to figure out how to create a system for generating heat from the rock that is better than what has been done before. The data collected from this experiment are important for future research into generating energy from rocks.
Matthias S. Brennwald, Antonio P. Rinaldi, Jocelyn Gisiger, Alba Zappone, and Rolf Kipfer
Geosci. Instrum. Method. Data Syst., 13, 1–8, https://doi.org/10.5194/gi-13-1-2024, https://doi.org/10.5194/gi-13-1-2024, 2024
Short summary
Short summary
The gas equilibrium membrane inlet mass spectrometry (GE-MIMS) method for dissolved-gas quantification was expanded to work in water at high pressures.
Marta Han, Leila Mizrahi, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2023-3153, https://doi.org/10.5194/egusphere-2023-3153, 2024
Short summary
Short summary
Relying on recent accomplishments in collecting and harmonizing data by the 2020 European Seismic Hazard Model (ESHM20) and leveraging advancements in state-of-the-art earthquake forecasting methods, we develop a harmonized earthquake forecasting model for Europe. We propose several model variants and test them on training data for consistency and on a seven-year testing period against each other, as well as against both a time-independent benchmark and a global time-dependent benchmark.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stephane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-118, https://doi.org/10.5194/nhess-2023-118, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1,248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2023-1504, https://doi.org/10.5194/egusphere-2023-1504, 2023
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents, to human losses, such as deaths, injuries and displaced population.
John Douglas, Helen Crowley, Vitor Silva, Warner Marzocchi, Laurentiu Danciu, and Rui Pinho
EGUsphere, https://doi.org/10.5194/egusphere-2023-991, https://doi.org/10.5194/egusphere-2023-991, 2023
Preprint withdrawn
Short summary
Short summary
Estimates of the earthquake ground motions expected during the lifetime of a building or the length of an insurance policy are frequently calculated for locations around the world. Estimates for the same location from different studies can show large differences. These differences affect engineering, financial and risk management decisions. We apply various approaches to understand when such differences have an impact on such decisions and when they are expected because data are limited.
Tomáš Fischer, Pavla Hrubcová, Torsten Dahm, Heiko Woith, Tomáš Vylita, Matthias Ohrnberger, Josef Vlček, Josef Horálek, Petr Dědeček, Martin Zimmer, Martin P. Lipus, Simona Pierdominici, Jens Kallmeyer, Frank Krüger, Katrin Hannemann, Michael Korn, Horst Kämpf, Thomas Reinsch, Jakub Klicpera, Daniel Vollmer, and Kyriaki Daskalopoulou
Sci. Dril., 31, 31–49, https://doi.org/10.5194/sd-31-31-2022, https://doi.org/10.5194/sd-31-31-2022, 2022
Short summary
Short summary
The newly established geodynamic laboratory aims to develop modern, comprehensive, multiparameter observations at depth for studying earthquake swarms, crustal fluid flow, mantle-derived fluid degassing and processes of the deep biosphere. It is located in the West Bohemia–Vogtland (western Eger Rift) geodynamic region and comprises a set of five shallow boreholes with high-frequency 3-D seismic arrays as well as continuous real-time fluid monitoring at depth and the study of the deep biosphere.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Viktor J. Bruckman, Gregor Giebel, Christopher Juhlin, Sonja Martens, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 56, 13–18, https://doi.org/10.5194/adgeo-56-13-2021, https://doi.org/10.5194/adgeo-56-13-2021, 2021
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Gesa Maria Petersen, Simone Cesca, Sebastian Heimann, Peter Niemz, Torsten Dahm, Daniela Kühn, Jörn Kummerow, Thomas Plenefisch, and the AlpArray and AlpArray-Swath-D working groups
Solid Earth, 12, 1233–1257, https://doi.org/10.5194/se-12-1233-2021, https://doi.org/10.5194/se-12-1233-2021, 2021
Short summary
Short summary
The Alpine mountains are known for a complex tectonic history. We shed light onto ongoing tectonic processes by studying rupture mechanisms of small to moderate earthquakes between 2016 and 2019 observed by the temporary AlpArray seismic network. The rupture processes of 75 earthquakes were analyzed, along with past earthquakes and deformation data. Our observations point at variations in the underlying tectonic processes and stress regimes across the Alps.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Teresa Jordan, Patrick Fulton, Jefferson Tester, David Bruhn, Hiroshi Asanuma, Ulrich Harms, Chaoyi Wang, Doug Schmitt, Philip J. Vardon, Hannes Hofmann, Tom Pasquini, Jared Smith, and the workshop participants
Sci. Dril., 28, 75–91, https://doi.org/10.5194/sd-28-75-2020, https://doi.org/10.5194/sd-28-75-2020, 2020
Short summary
Short summary
A scientific borehole planning workshop sponsored by the International Continental Scientific Drilling Program convened in early 2020 at Cornell University in the NE United States. Cornell plans drilling to test the potential to use geothermal heat from depths of 2700–4500 m and rock temperatures of 60 to 120 °C to heat its campus. The workshop focused on designing companion scientific projects to investigate the coupled thermal–chemical–hydrological–mechanical workings of continental crust.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Sonja Martens, Maren Brehme, Viktor J. Bruckman, Christopher Juhlin, Johannes Miocic, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 54, 1–5, https://doi.org/10.5194/adgeo-54-1-2020, https://doi.org/10.5194/adgeo-54-1-2020, 2020
Dominik Zbinden, Antonio Pio Rinaldi, Tobias Diehl, and Stefan Wiemer
Solid Earth, 11, 909–933, https://doi.org/10.5194/se-11-909-2020, https://doi.org/10.5194/se-11-909-2020, 2020
Short summary
Short summary
The deep geothermal project in St. Gallen, Switzerland, aimed at generating electricity and heat. The fluid pumped into the underground caused hundreds of small earthquakes and one larger one felt by the local population. Here we use computer simulations to study the physical processes that led to the earthquakes. We find that gas present in the subsurface could have intensified the seismicity, which may have implications for future geothermal projects conducted in similar geological conditions.
Mohammadreza Jamalreyhani, Pınar Büyükakpınar, Simone Cesca, Torsten Dahm, Henriette Sudhaus, Mehdi Rezapour, Marius Paul Isken, Behnam Maleki Asayesh, and Sebastian Heimann
Solid Earth Discuss., https://doi.org/10.5194/se-2020-55, https://doi.org/10.5194/se-2020-55, 2020
Revised manuscript not accepted
Short summary
Short summary
We model the source of the 24 January 2020 Mw 6.77 Elazığ-Sivrice (Turkey) earthquake using a combination of different data and we analyzed its seismic sequences. This earthquake occurred in the east Anatolian fault and it has filled the large part of the former seismic gap zone. An unbroken part has left after this earthquake and has the potential to host a future earthquake. This work provides information about the fault system and helps to the mitigation of seismic hazard in Southern Turkey.
Linus Villiger, Valentin Samuel Gischig, Joseph Doetsch, Hannes Krietsch, Nathan Oliver Dutler, Mohammadreza Jalali, Benoît Valley, Paul Antony Selvadurai, Arnaud Mignan, Katrin Plenkers, Domenico Giardini, Florian Amann, and Stefan Wiemer
Solid Earth, 11, 627–655, https://doi.org/10.5194/se-11-627-2020, https://doi.org/10.5194/se-11-627-2020, 2020
Short summary
Short summary
Hydraulic stimulation summarizes fracture initiation and reactivation due to high-pressure fluid injection. Several borehole intervals covering intact rock and pre-existing fractures were targets for high-pressure fluid injections within a decameter-scale, crystalline rock volume. The observed induced seismicity strongly depends on the target geology. In addition, the severity of the induced seismicity per experiment counter correlates with the observed transmissivity enhancement.
Michèle Marti, Michael Stauffacher, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 19, 2677–2700, https://doi.org/10.5194/nhess-19-2677-2019, https://doi.org/10.5194/nhess-19-2677-2019, 2019
Short summary
Short summary
Maps are an established way to illustrate natural hazards and regularly used to communicate with non-experts. However, there is evidence that they are frequently misconceived. Using a real case, our study shows that applying or disregarding best practices in visualization, editing, and presentation significantly impacts the comprehensibility of seismic hazard information. We suggest scrutinizing current natural-hazard communication strategies and empirically testing new products.
Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm
Solid Earth, 10, 1921–1935, https://doi.org/10.5194/se-10-1921-2019, https://doi.org/10.5194/se-10-1921-2019, 2019
Short summary
Short summary
We present an open-source software framework for fast and flexible forward modelling of seismic and acoustic wave phenomena and elastic deformation. It supports a wide range of applications across volcanology, seismology, and geodesy to study earthquakes, volcanic processes, landslides, explosions, mine collapses, ground shaking, and aseismic faulting. The framework stimulates reproducible research and open science through the exchange of pre-calculated Green's functions on an open platform.
Robert A. Watson, Eoghan P. Holohan, Djamil Al-Halbouni, Leila Saberi, Ali Sawarieh, Damien Closson, Hussam Alrshdan, Najib Abou Karaki, Christian Siebert, Thomas R. Walter, and Torsten Dahm
Solid Earth, 10, 1451–1468, https://doi.org/10.5194/se-10-1451-2019, https://doi.org/10.5194/se-10-1451-2019, 2019
Short summary
Short summary
The fall of the Dead Sea level since the 1960s has provoked the formation of over 6000 sinkholes, a major hazard to local economy and infrastructure. In this context, we study the evolution of subsidence phenomena at three area scales at the Dead Sea’s eastern shore from 1967–2017. Our results yield the most detailed insights to date into the spatio-temporal development of sinkholes and larger depressions (uvalas) in an evaporite karst setting and emphasize a link to the falling Dead Sea level.
Sonja Martens, Christopher Juhlin, Viktor J. Bruckman, Gregor Giebel, Thomas Nagel, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 49, 31–35, https://doi.org/10.5194/adgeo-49-31-2019, https://doi.org/10.5194/adgeo-49-31-2019, 2019
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Robert A. Watson, Ulrich Polom, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 10, 1219–1241, https://doi.org/10.5194/se-10-1219-2019, https://doi.org/10.5194/se-10-1219-2019, 2019
Short summary
Short summary
A 2-D numerical modelling approach to simulate the mechanical formation of sinkhole cluster inside large-scale karstic depressions is presented. Different multiple cavity growth scenarios at depth are compared regarding the mechanical process and collapse style. The outcomes of the models are compared to results from remote sensing and geophysics for an active sinkhole area in the Dead Sea region.
Marius Kriegerowski, Simone Cesca, Matthias Ohrnberger, Torsten Dahm, and Frank Krüger
Solid Earth, 10, 317–328, https://doi.org/10.5194/se-10-317-2019, https://doi.org/10.5194/se-10-317-2019, 2019
Short summary
Short summary
We developed a method that allows to estimate the acoustic attenuation of seismic waves within regions with high earthquake source densities. Attenuation is of high interest as it allows to draw conclusions on the origin of seismic activity. We apply our method to north-west Bohemia, which is regularly affected by earthquake swarms during which thousands of earthquakes are registered within a few days. We find reduced attenuation within the active volume, which may indicate high fluid content.
Peter Gaebler, Lars Ceranna, Nima Nooshiri, Andreas Barth, Simone Cesca, Michaela Frei, Ilona Grünberg, Gernot Hartmann, Karl Koch, Christoph Pilger, J. Ole Ross, and Torsten Dahm
Solid Earth, 10, 59–78, https://doi.org/10.5194/se-10-59-2019, https://doi.org/10.5194/se-10-59-2019, 2019
Short summary
Short summary
On 3 September 2017 official channels of the Democratic People’s Republic of
Korea announced the successful test of a nuclear device. This study provides a
multi-technology analysis of the 2017 North Korean event and its aftermath using a wide array of geophysical methods (seismology, infrasound, remote sensing, radionuclide monitoring, and atmospheric transport modeling). Our results clearly indicate that the September 2017 North Korean event was in fact a nuclear test.
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 9, 1341–1373, https://doi.org/10.5194/se-9-1341-2018, https://doi.org/10.5194/se-9-1341-2018, 2018
Short summary
Short summary
Sinkholes are round depression features in the ground that can cause high economic and life loss. On the Dead Sea shoreline, hundreds of sinkholes form each year driven by the fall of the water level and subsequent out-washing and dissolution of loose sediments. This study investigates the mechanical formation of sinkholes by numerical modelling. It highlights the role of material strength in the formation of dangerous collapse sinkholes and compares it to findings from a field site in Jordan.
Ulrich Polom, Hussam Alrshdan, Djamil Al-Halbouni, Eoghan P. Holohan, Torsten Dahm, Ali Sawarieh, Mohamad Y. Atallah, and Charlotte M. Krawczyk
Solid Earth, 9, 1079–1098, https://doi.org/10.5194/se-9-1079-2018, https://doi.org/10.5194/se-9-1079-2018, 2018
Short summary
Short summary
The alluvial fan of Ghor Al-Haditha (Dead Sea) is affected by subsidence and sinkholes. Different models and hypothetical processes have been suggested in the past; high-resolution shear wave reflection surveys carried out in 2013 and 2014 showed the absence of evidence for a massive shallow salt layer as formerly suggested. Thus, a new process interpretation is proposed based on both the dissolution and physical erosion of Dead Sea mud layers.
Ahoura Jafarimanesh, Arnaud Mignan, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-167, https://doi.org/10.5194/nhess-2018-167, 2018
Revised manuscript not accepted
Arnaud Mignan
Nonlin. Processes Geophys., 25, 241–250, https://doi.org/10.5194/npg-25-241-2018, https://doi.org/10.5194/npg-25-241-2018, 2018
Short summary
Short summary
The Utsu productivity law, one of the main relationships in seismicity statistics, gives the average number of aftershocks produced by a mainshock of a given magnitude. I demonstrate that the law can be formulated in the solid seismicity theory, where it is parameterized in terms of aftershock density within a geometrical solid, constrained by the mainshock size. This suggests that aftershocks can be studied by applying simple rules of analytic geometry on a static stress field.
Florian Amann, Valentin Gischig, Keith Evans, Joseph Doetsch, Reza Jalali, Benoît Valley, Hannes Krietsch, Nathan Dutler, Linus Villiger, Bernard Brixel, Maria Klepikova, Anniina Kittilä, Claudio Madonna, Stefan Wiemer, Martin O. Saar, Simon Loew, Thomas Driesner, Hansruedi Maurer, and Domenico Giardini
Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, https://doi.org/10.5194/se-9-115-2018, 2018
Valentin Samuel Gischig, Joseph Doetsch, Hansruedi Maurer, Hannes Krietsch, Florian Amann, Keith Frederick Evans, Morteza Nejati, Mohammadreza Jalali, Benoît Valley, Anne Christine Obermann, Stefan Wiemer, and Domenico Giardini
Solid Earth, 9, 39–61, https://doi.org/10.5194/se-9-39-2018, https://doi.org/10.5194/se-9-39-2018, 2018
Arnaud Mignan
Nonlin. Processes Geophys., 23, 107–113, https://doi.org/10.5194/npg-23-107-2016, https://doi.org/10.5194/npg-23-107-2016, 2016
Short summary
Short summary
Induced seismicity is a concern for the industries relying on fluid injection in the deep parts of the Earth’s crust. At the same time, fluid injection sites provide natural laboratories to study the impact of increased fluid pressure on earthquake generation. In this study, I show that simple geometric operations on a static stress field produced by volume change at depth explains two empirical laws of induced seismicity without having recourse to complex models derived from rock mechanics.
T. Dahm, P. Hrubcová, T. Fischer, J. Horálek, M. Korn, S. Buske, and D. Wagner
Sci. Dril., 16, 93–99, https://doi.org/10.5194/sd-16-93-2013, https://doi.org/10.5194/sd-16-93-2013, 2013
S. J. Nanda, K. F. Tiampo, G. Panda, L. Mansinha, N. Cho, and A. Mignan
Nonlin. Processes Geophys., 20, 143–162, https://doi.org/10.5194/npg-20-143-2013, https://doi.org/10.5194/npg-20-143-2013, 2013
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Brief communication: Storm Daniel flood impact in Greece in 2023: mapping crop and livestock exposure from synthetic-aperture radar (SAR)
Risk reduction through managed retreat? Investigating enabling conditions and assessing resettlement effects on community resilience in Metro Manila
Brief communication: Lessons learned and experiences gained from building up a global survey on societal resilience to changing droughts
Regional seismic risk assessment based on ground conditions in Uzbekistan
Unveiling transboundary challenges in river flood risk management: learning from the Ciliwung River basin
Quantitative study of storm surge risk assessment in an undeveloped coastal area of China based on deep learning and geographic information system techniques: a case study of Double Moon Bay
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Multisectoral analysis of drought impacts and management responses to the 2008–2015 record drought in the Colorado Basin, Texas
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Simulating multi-hazard event sets for life cycle consequence analysis
Analysis of the effects of urban micro-scale vulnerabilities on tsunami evacuation using an agent-based model – case study in the city of Iquique, Chile
Factors of influence on flood risk perceptions related to Hurricane Dorian: an assessment of heuristics, time dynamics, and accuracy of risk perceptions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Current status of water-related planning for climate change adaptation in the Spree River basin, Germany
Anticipating a risky future: long short-term memory (LSTM) models for spatiotemporal extrapolation of population data in areas prone to earthquakes and tsunamis in Lima, Peru
A new regionally consistent exposure database for Central Asia: population and residential buildings
Study on seismic risk assessment model of water supply systems in mainland China
Mapping current and future flood exposure using a 5 m flood model and climate change projections
Brief communication: On the environmental impacts of the 2023 floods in Emilia-Romagna (Italy)
A regional-scale approach to assessing non-residential building, transportation and cropland exposure in Central Asia
Towards a global impact-based forecasting model for tropical cyclones
A Guide of Indicators Creation for Critical Infrastructures Resilience. Based on a Multi-criteria Framework Focusing on Optimisation Actions for Road Transport System
Identifying vulnerable populations in urban society: a case study in a flood-prone district of Wuhan, China
An assessment of potential improvements in social capital, risk awareness, and preparedness from digital technologies
Spatial accessibility of emergency medical services under inclement weather: a case study in Beijing, China
Review article: Current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Estimating emergency costs for earthquakes and floods in Central Asia based on modelled losses
Compound flood impacts from Hurricane Sandy on New York City in climate-driven storylines
Regional-scale landslide risk assessment in Central Asia
Cost estimation for the monitoring instrumentation of landslide early warning systems
The role of response efficacy and self-efficacy in disaster preparedness actions for vulnerable households
Scientists as storytellers: the explanatory power of stories told about environmental crises
Dynamic Response of Pile-Slab Retaining Wall Structure under Rockfall Impact
Back analysis of a building collapse under snow and rain loads in a Mediterranean area
Between global risk reduction goals, scientific-technical capabilities and local realities: a novel modular approach for multi-risk assessment
Assessment of building damage and risk under extreme flood scenarios in Shanghai
Mangrove ecosystem properties regulate high water levels in a river delta
Analysis of flood warning and evacuation efficiency by comparing damage and life-loss estimates with real consequences related to the São Francisco tailings dam failure in Brazil
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Criteria-based visualization design for hazard maps
Low-regret climate change adaptation in coastal megacities – evaluating large-scale flood protection and small-scale rainwater detention measures for Ho Chi Minh City, Vietnam
Modeling compound flood risk and risk reduction using a globally applicable framework: a pilot in the Sofala province of Mozambique
Scenario-based multi-risk assessment from existing single-hazard vulnerability models. An application to consecutive earthquakes and tsunamis in Lima, Peru
Using machine learning algorithms to identify predictors of social vulnerability in the event of a hazard: Istanbul case study
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024, https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Short summary
Iranian insurers have been offering earthquake coverage since the 1990s. However, despite international best practices, they still do not use modern methods for risk pricing and management. As such, they seem to be accumulating seismic risk over time. This paper examines the viability of this market in Iran by comparing the local market practices with international best practices in earthquake risk pricing (catastrophe modeling) and insurance risk management (European Solvency II regime).
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024, https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Short summary
Micro-businesses, often overlooked in adaptation research, show surprising willingness to contribute to collective adaptation despite limited finances and local support. Based on a study in Ho Chi Minh City in Vietnam, approximately 70 % are ready for awareness campaigns, and 39 % would provide financial support if costs were shared. These findings underscore the need for increased involvement of micro-businesses in local adaptation plans to enhance collective adaptive capacity.
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Hannes Lauer, Carmeli Marie C. Chaves, Evelyn Lorenzo, Sonia Islam, and Jörn Birkmann
Nat. Hazards Earth Syst. Sci., 24, 2243–2261, https://doi.org/10.5194/nhess-24-2243-2024, https://doi.org/10.5194/nhess-24-2243-2024, 2024
Short summary
Short summary
In many urban areas, people face high exposure to hazards. Resettling them to safer locations becomes a major strategy, not least because of climate change. This paper dives into the success factors of government-led resettlement in Manila and finds surprising results which challenge the usual narrative and fuel the conversation on resettlement as an adaptation strategy. Contrary to expectations, the location – whether urban or rural – of the new home is less important than safety from floods.
Marina Batalini de Macedo, Marcos Roberto Benso, Karina Simone Sass, Eduardo Mario Mendiondo, Greicelene Jesus da Silva, Pedro Gustavo Câmara da Silva, Elisabeth Shrimpton, Tanaya Sarmah, Da Huo, Michael Jacobson, Abdullah Konak, Nazmiye Balta-Ozkan, and Adelaide Cassia Nardocci
Nat. Hazards Earth Syst. Sci., 24, 2165–2173, https://doi.org/10.5194/nhess-24-2165-2024, https://doi.org/10.5194/nhess-24-2165-2024, 2024
Short summary
Short summary
With climate change, societies increasingly need to adapt to deal with more severe droughts and the impacts they can have on food production. To make better adaptation decisions, drought resilience indicators can be used. To build these indicators, surveys with experts can be done. However, designing surveys is a costly process that can influence how experts respond. In this communication, we aim to deal with the challenges encountered in the development of surveys to help further research.
Vakhitkhan Alikhanovich Ismailov, Sharofiddin Ismatullayevich Yodgorov, Akhror Sabriddinovich Khusomiddinov, Eldor Makhmadiyorovich Yadigarov, Bekzod Uktamovich Aktamov, and Shuhrat Bakhtiyorovich Avazov
Nat. Hazards Earth Syst. Sci., 24, 2133–2146, https://doi.org/10.5194/nhess-24-2133-2024, https://doi.org/10.5194/nhess-24-2133-2024, 2024
Short summary
Short summary
For the basis of seismic risk assessment, maps of seismic intensity increment and an improved map of seismic hazard have been developed, taking into account the engineering-geological conditions of the territory of Uzbekistan and the seismic characteristics of soils. For seismic risk map development, databases were created based on geographic information system platforms, allowing us to systematize and evaluate the regional distribution of information.
Harkunti Pertiwi Rahayu, Khonsa Indana Zulfa, Dewi Nurhasanah, Richard Haigh, Dilanthi Amaratunga, and In In Wahdiny
Nat. Hazards Earth Syst. Sci., 24, 2045–2064, https://doi.org/10.5194/nhess-24-2045-2024, https://doi.org/10.5194/nhess-24-2045-2024, 2024
Short summary
Short summary
Transboundary flood risk management in the Ciliwung River basin is placed in a broader context of disaster management, environmental science, and governance. This is particularly relevant for areas of research involving the management of shared water resources, the impact of regional development on flood risk, and strategies to reduce economic losses from flooding.
Lichen Yu, Hao Qin, Shining Huang, Wei Wei, Haoyu Jiang, and Lin Mu
Nat. Hazards Earth Syst. Sci., 24, 2003–2024, https://doi.org/10.5194/nhess-24-2003-2024, https://doi.org/10.5194/nhess-24-2003-2024, 2024
Short summary
Short summary
This paper proposes a quantitative storm surge risk assessment method for data-deficient regions. A coupled model is used to simulate five storm surge scenarios. Deep learning is used to extract building footprints. Economic losses are calculated by combining adjusted depth–damage functions with inundation simulation results. Zoning maps illustrate risk levels based on economic losses, aiding in disaster prevention measures to reduce losses in coastal areas.
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-82, https://doi.org/10.5194/nhess-2024-82, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history, means the data required for vulnerability evaluation by the insurance industry is scarce. A systematic literature review is conducted in this study, to determine the suitability of current, published literature for this purpose. Knowledge gaps are charted, and a representative asset-hazard taxonomy is proposed, to guide future, quantitative research.
Stephen B. Ferencz, Ning Sun, Sean W. D. Turner, Brian A. Smith, and Jennie S. Rice
Nat. Hazards Earth Syst. Sci., 24, 1871–1896, https://doi.org/10.5194/nhess-24-1871-2024, https://doi.org/10.5194/nhess-24-1871-2024, 2024
Short summary
Short summary
Drought has long posed an existential threat to society. Population growth, economic development, and the potential for more extreme and prolonged droughts due to climate change pose significant water security challenges. Better understanding the impacts and adaptive responses resulting from extreme drought can aid adaptive planning. The 2008–2015 record drought in the Colorado Basin, Texas, United States, is used as a case study to assess impacts and responses to severe drought.
Alex Dunant, Tom R. Robinson, Alexander Logan Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1374, https://doi.org/10.5194/egusphere-2024-1374, 2024
Short summary
Short summary
Our study introduces a new method using hypergraph theory to assess risks from interconnected natural hazards. Traditional models often overlook how these hazards can interact and worsen each other's effects. By applying our method to the 2015 Nepal earthquake, we successfully demonstrated its ability to predict broad damage patterns, despite slightly overestimating impacts. Being able to anticipate the effects of complex, interconnected hazards is critical for disaster preparedness.
Leandro Iannacone, Kenneth Otárola, Roberto Gentile, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/nhess-24-1721-2024, https://doi.org/10.5194/nhess-24-1721-2024, 2024
Short summary
Short summary
The paper presents a review of the available classifications for hazard interactions in a multi-hazard context, and it incorporates such classifications from a modeling perspective. The outcome is a sequential Monte Carlo approach enabling efficient simulation of multi-hazard event sets (i.e., sequences of events throughout the life cycle). These event sets can then be integrated into frameworks for the quantification of consequences for the purposes of life cycle consequence (LCCon) analysis.
Rodrigo Cienfuegos, Gonzalo Álvarez, Jorge León, Alejandro Urrutia, and Sebastián Castro
Nat. Hazards Earth Syst. Sci., 24, 1485–1500, https://doi.org/10.5194/nhess-24-1485-2024, https://doi.org/10.5194/nhess-24-1485-2024, 2024
Short summary
Short summary
This study carries out a detailed analysis of possible tsunami evacuation scenarios in the city of Iquique in Chile. Evacuation modeling and tsunami modeling are integrated, allowing for an estimation of the potential number of people that the inundation may reach under different scenarios by emulating the dynamics and behavior of the population and their decision-making regarding the starting time of the evacuation.
Laurine A. de Wolf, Peter J. Robinson, W. J. Wouter Botzen, Toon Haer, Jantsje M. Mol, and Jeffrey Czajkowski
Nat. Hazards Earth Syst. Sci., 24, 1303–1318, https://doi.org/10.5194/nhess-24-1303-2024, https://doi.org/10.5194/nhess-24-1303-2024, 2024
Short summary
Short summary
An understanding of flood risk perceptions may aid in improving flood risk communication. We conducted a survey among 871 coastal residents in Florida who were threatened to be flooded by Hurricane Dorian. Part of the original sample was resurveyed after Dorian failed to make landfall to investigate changes in risk perception. We find a strong influence of previous flood experience and social norms on flood risk perceptions. Furthermore, flood risk perceptions declined after the near-miss event.
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
EGUsphere, https://doi.org/10.5194/egusphere-2024-758, https://doi.org/10.5194/egusphere-2024-758, 2024
Short summary
Short summary
Natural disturbances will increase in the future endangering our forests and their provision of wood, protection against natural hazards and carbon sequestration. Considering the hazard to forests by wind or fire damage together with vulnerability of carbon, it is possible to prioritize high-risk forest stands. In this study we propose a new methodological approach helping with decision-making process for climate-smart forest management.
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-59, https://doi.org/10.5194/nhess-2024-59, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in water management, spatial and landscape planning in the Spree River basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this planning gap, more frequent updates of plans, a stronger focus on multifunctional measures and the adaptation of best practice examples for systematic integration of climate change impacts and adaptation are needed.
Christian Geiß, Jana Maier, Emily So, Elisabeth Schoepfer, Sven Harig, Juan Camilo Gómez Zapata, and Yue Zhu
Nat. Hazards Earth Syst. Sci., 24, 1051–1064, https://doi.org/10.5194/nhess-24-1051-2024, https://doi.org/10.5194/nhess-24-1051-2024, 2024
Short summary
Short summary
We establish a model of future geospatial population distributions to quantify the number of people living in earthquake-prone and tsunami-prone areas of Lima and Callao, Peru, for the year 2035. Areas of high earthquake intensity will experience a population growth of almost 30 %. The population in the tsunami inundation area is estimated to grow by more than 60 %. Uncovering those relations can help urban planners and policymakers to develop effective risk mitigation strategies.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Vakhitkhan Ismailov, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Faga
Nat. Hazards Earth Syst. Sci., 24, 929–945, https://doi.org/10.5194/nhess-24-929-2024, https://doi.org/10.5194/nhess-24-929-2024, 2024
Short summary
Short summary
Central Asia is highly exposed to multiple hazards, including earthquakes, floods and landslides, for which risk reduction strategies are currently under development. We provide a regional-scale database of assets at risk, including population and residential buildings, based on existing information and recent data collected for each Central Asian country. The population and number of buildings are also estimated for the year 2080 to support the definition of disaster risk reduction strategies.
Tianyang Yu, Banghua Lu, Hui Jiang, and Zhi Liu
Nat. Hazards Earth Syst. Sci., 24, 803–822, https://doi.org/10.5194/nhess-24-803-2024, https://doi.org/10.5194/nhess-24-803-2024, 2024
Short summary
Short summary
A basic database for seismic risk assessment of 720 urban water supply systems in mainland China is established. The parameters of the seismic risk curves of 720 cities are calculated. The seismic fragility curves of various facilities in the water supply system are given based on the logarithmic normal distribution model. The expected seismic loss and the expected loss rate index of 720 urban water supply systems in mainland China in the medium and long term are given.
Connor Darlington, Jonathan Raikes, Daniel Henstra, Jason Thistlethwaite, and Emma K. Raven
Nat. Hazards Earth Syst. Sci., 24, 699–714, https://doi.org/10.5194/nhess-24-699-2024, https://doi.org/10.5194/nhess-24-699-2024, 2024
Short summary
Short summary
The impacts of climate change on local floods require precise maps that clearly demarcate changes to flood exposure; however, most maps lack important considerations that reduce their utility in policy and decision-making. This article presents a new approach to identifying current and projected flood exposure using a 5 m model. The results highlight advancements in the mapping of flood exposure with implications for flood risk management.
Chiara Arrighi and Alessio Domeneghetti
Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, https://doi.org/10.5194/nhess-24-673-2024, 2024
Short summary
Short summary
In this communication, we reflect on environmental flood impacts by analysing the reported environmental consequences of the 2023 Emilia-Romagna floods. The most frequently reported damage involves water resources and water-related ecosystems. Indirect effects in time and space, intrinsic recovery capacity, cascade impacts on socio-economic systems, and the lack of established monitoring activities appear to be the most challenging aspects for future research.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Zukhritdin Ergashev, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Fagà
Nat. Hazards Earth Syst. Sci., 24, 355–373, https://doi.org/10.5194/nhess-24-355-2024, https://doi.org/10.5194/nhess-24-355-2024, 2024
Short summary
Short summary
Central Asia is prone to multiple hazards such as floods, landslides and earthquakes, which can affect a wide range of assets at risk. We develop the first regionally consistent database of assets at risk for non-residential buildings, transportation and croplands in Central Asia. The database combines global and regional data sources and country-based information and supports the development of regional-scale disaster risk reduction strategies for the Central Asia region.
Mersedeh Kooshki Forooshani, Marc van den Homberg, Kyriaki Kalimeri, Andreas Kaltenbrunner, Yelena Mejova, Leonardo Milano, Pauline Ndirangu, Daniela Paolotti, Aklilu Teklesadik, and Monica L. Turner
Nat. Hazards Earth Syst. Sci., 24, 309–329, https://doi.org/10.5194/nhess-24-309-2024, https://doi.org/10.5194/nhess-24-309-2024, 2024
Short summary
Short summary
We improve an existing impact forecasting model for the Philippines by transforming the target variable (percentage of damaged houses) to a fine grid, using only features which are globally available. We show that our two-stage model conserves the performance of the original and even has the potential to introduce savings in anticipatory action resources. Such model generalizability is important in increasing the applicability of such tools around the world.
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
EGUsphere, https://doi.org/10.5194/egusphere-2024-204, https://doi.org/10.5194/egusphere-2024-204, 2024
Short summary
Short summary
Operationalision of “resilience” will be a major milestone contributing to hazard management for Critical infrastructures (CIs). To integrate resilience assessment into operational management, this study designs a step-by-step guide that enables users to create specific indicators to suit their particular situation. The assessment results can assist CIs managers in their decision-making as it is based on a multi-criteria framework that considers the various interests of stakeholders.
Jia Xu, Makoto Takahashi, and Weifu Li
Nat. Hazards Earth Syst. Sci., 24, 179–197, https://doi.org/10.5194/nhess-24-179-2024, https://doi.org/10.5194/nhess-24-179-2024, 2024
Short summary
Short summary
Through the development of micro-individual social vulnerability indicators and cluster analysis, this study assessed the level of social vulnerability of 599 residents from 11 communities in the Hongshan District of Wuhan. The findings reveal three levels of social vulnerability: high, medium, and low. Quantitative assessments offer specific comparisons between distinct units, and the results indicate that different types of communities have significant differences in social vulnerability.
Tommaso Piseddu, Mathilda Englund, and Karina Barquet
Nat. Hazards Earth Syst. Sci., 24, 145–161, https://doi.org/10.5194/nhess-24-145-2024, https://doi.org/10.5194/nhess-24-145-2024, 2024
Short summary
Short summary
Contributions to social capital, risk awareness, and preparedness constitute the parameters to test applications in disaster risk management. We propose an evaluation of four of these: mobile positioning data, social media crowdsourcing, drones, and satellite imaging. The analysis grants the opportunity to investigate how different methods to evaluate surveys' results may influence final preferences. We find that the different assumptions on which these methods rely deliver diverging results.
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci., 24, 63–77, https://doi.org/10.5194/nhess-24-63-2024, https://doi.org/10.5194/nhess-24-63-2024, 2024
Short summary
Short summary
This article is aimed at developing a method to quantify the influence of inclement weather on the accessibility of emergency medical services (EMSs) in Beijing, China, and identifying the vulnerable areas that could not get timely EMSs under inclement weather. We found that inclement weather could reduce the accessibility of EMSs by up to 40%. Furthermore, towns with lower baseline EMSs accessibility are more vulnerable when inclement weather occurs.
Soheil Mohammadi, Silvia De Angeli, Giorgio Boni, Francesca Pirlone, and Serena Cattari
Nat. Hazards Earth Syst. Sci., 24, 79–107, https://doi.org/10.5194/nhess-24-79-2024, https://doi.org/10.5194/nhess-24-79-2024, 2024
Short summary
Short summary
This paper critically reviews disaster recovery literature from a multi-risk perspective. Identified key challenges encompass the lack of approaches integrating physical reconstruction and socio-economic recovery, the neglect of multi-risk interactions, the limited exploration of recovery from a pre-disaster planning perspective, and the low consideration of disaster recovery as a non-linear process in which communities need change over time.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, Wouter Botzen, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-17, https://doi.org/10.5194/egusphere-2024-17, 2024
Short summary
Short summary
SLR will lead to more frequent flooding, and salt intrusion in coastal areas will be a major concern for farming households that are highly dependent on the soil quality for their livelihoods. In this study, we simulated the risk of SLR and flooding to coastal farmers by assessing salt intrusion risk and flood damage to buildings.
Emilio Berny, Carlos Avelar, Mario A. Salgado-Gálvez, and Mario Ordaz
Nat. Hazards Earth Syst. Sci., 24, 53–62, https://doi.org/10.5194/nhess-24-53-2024, https://doi.org/10.5194/nhess-24-53-2024, 2024
Short summary
Short summary
This paper presents a methodology to estimate the total emergency costs based on modelled damages for earthquakes and floods, together with the demographic and building characteristics of the study area. The methodology has been applied in five countries in central Asia, the first time that these estimates are made available for the study area and are intended to be useful for regional and local stakeholders and decision makers.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 13–27, https://doi.org/10.5194/nhess-24-13-2024, https://doi.org/10.5194/nhess-24-13-2024, 2024
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows us to identify where physical and economic losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for central Asia, and it represents an advanced step in the field of risk analysis for very large areas. Our findings show, per square kilometer, a total risk of about USD 3.9 billion and a mean risk of USD 0.6 million.
Marta Sapena, Moritz Gamperl, Marlene Kühnl, Carolina Garcia-Londoño, John Singer, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 23, 3913–3930, https://doi.org/10.5194/nhess-23-3913-2023, https://doi.org/10.5194/nhess-23-3913-2023, 2023
Short summary
Short summary
A new approach for the deployment of landslide early warning systems (LEWSs) is proposed. We combine data-driven landslide susceptibility mapping and population maps to identify exposed locations. We estimate the cost of monitoring sensors and demonstrate that LEWSs could be installed with a budget ranging from EUR 5 to EUR 41 per person in Medellín, Colombia. We provide recommendations for stakeholders and outline the challenges and opportunities for successful LEWS implementation.
Dong Qiu, Binglin Lv, Yuepeng Cui, and Zexiong Zhan
Nat. Hazards Earth Syst. Sci., 23, 3789–3803, https://doi.org/10.5194/nhess-23-3789-2023, https://doi.org/10.5194/nhess-23-3789-2023, 2023
Short summary
Short summary
This paper divides preparedness behavior into minimal and adequate preparedness. In addition to studying the main factors that promote families' disaster preparedness, we also study the moderating effects of response efficacy and self-efficacy on preparedness actions by vulnerable families. Based on the findings of this study, policymakers can target interventions and programs that can be designed to remedy the current lack of disaster preparedness education for vulnerable families.
Jenni Barclay, Richie Robertson, and M. Teresa Armijos
Nat. Hazards Earth Syst. Sci., 23, 3603–3615, https://doi.org/10.5194/nhess-23-3603-2023, https://doi.org/10.5194/nhess-23-3603-2023, 2023
Short summary
Short summary
Stories create avenues for sharing the meanings and social implications of scientific knowledge. We explore their value when told between scientists during a volcanic eruption. They are important vehicles for understanding how risk is generated during volcanic eruptions and create new knowledge about these interactions. Stories explore how risk is negotiated when scientific information is ambiguous or uncertain, identify cause and effect, and rationalize the emotional intensity of a crisis.
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
EGUsphere, https://doi.org/10.5194/egusphere-2023-2715, https://doi.org/10.5194/egusphere-2023-2715, 2023
Short summary
Short summary
This manuscript addresses to numerically analyze the dynamic responses and damage mechanism of the pile-slab retaining wall under the rockfall impacts by employing the refined finite element model. The results provide insights into structure dynamic response analysis of the PSRW and serve as a benchmark for further research.
Isabelle Ousset, Guillaume Evin, Damien Raynaud, and Thierry Faug
Nat. Hazards Earth Syst. Sci., 23, 3509–3523, https://doi.org/10.5194/nhess-23-3509-2023, https://doi.org/10.5194/nhess-23-3509-2023, 2023
Short summary
Short summary
This paper deals with an exceptional snow and rain event in a Mediterranean region of France which is usually not prone to heavy snowfall and its consequences on a particular building that collapsed completely. Independent analyses of the meteorological episode are carried out, and the response of the building to different snow and rain loads is confronted to identify the main critical factors that led to the collapse.
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-142, https://doi.org/10.5194/nhess-2023-142, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
In this paper, we provide a brief introduction on the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-hazard risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructures to increase their capabilities.
Jiachang Tu, Jiahong Wen, Liang Emlyn Yang, Andrea Reimuth, Stephen S. Young, Min Zhang, Luyang Wang, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 23, 3247–3260, https://doi.org/10.5194/nhess-23-3247-2023, https://doi.org/10.5194/nhess-23-3247-2023, 2023
Short summary
Short summary
This paper evaluates the flood risk and the resulting patterns in buildings following low-probability, high-impact flood scenarios by a risk analysis chain in Shanghai. The results provide a benchmark and also a clear future for buildings with respect to flood risks in Shanghai. This study links directly to disaster risk management, e.g., the Shanghai Master Plan. We also discussed different potential adaptation options for flood risk management.
Ignace Pelckmans, Jean-Philippe Belliard, Luis E. Dominguez-Granda, Cornelis Slobbe, Stijn Temmerman, and Olivier Gourgue
Nat. Hazards Earth Syst. Sci., 23, 3169–3183, https://doi.org/10.5194/nhess-23-3169-2023, https://doi.org/10.5194/nhess-23-3169-2023, 2023
Short summary
Short summary
Mangroves are increasingly recognized as a coastal protection against extreme sea levels. Their effectiveness in doing so, however, is still poorly understood, as mangroves are typically located in tropical countries where data on mangrove vegetation and topography properties are often scarce. Through a modelling study, we identified the degree of channelization and the mangrove forest floor topography as the key properties for regulating high water levels in a tropical delta.
André Felipe Rocha Silva and Julian Cardoso Eleutério
Nat. Hazards Earth Syst. Sci., 23, 3095–3110, https://doi.org/10.5194/nhess-23-3095-2023, https://doi.org/10.5194/nhess-23-3095-2023, 2023
Short summary
Short summary
This work evaluates the application of flood consequence models through their application in a real case related to a tailings dam failure. Furthermore, we simulated the implementation of less efficient alert systems on life-loss alleviation. The results revealed that the models represented the event well and were able to estimate the relevance of implementing efficient alert systems. They highlight that their use may be an important tool for new regulations for dam safety legislation.
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, and Zacharias Fasoulakis
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-137, https://doi.org/10.5194/nhess-2023-137, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Central Asia is prone to earthquake losses which can impact population and assets of different types. This paper presents the details of a probabilistic earthquake model which made use of a regionally consistent approach to assess the feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed to facilitate a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
Max Schneider, Fabrice Cotton, and Pia-Johanna Schweizer
Nat. Hazards Earth Syst. Sci., 23, 2505–2521, https://doi.org/10.5194/nhess-23-2505-2023, https://doi.org/10.5194/nhess-23-2505-2023, 2023
Short summary
Short summary
Hazard maps are fundamental to earthquake risk reduction, but research is missing on how to design them. We review the visualization literature to identify evidence-based criteria for color and classification schemes for hazard maps. We implement these for the German seismic hazard map, focusing on communicating four properties of seismic hazard. Our evaluation finds that the redesigned map successfully communicates seismic hazard in Germany, improving on the baseline map for two key properties.
Leon Scheiber, Christoph Gabriel David, Mazen Hoballah Jalloul, Jan Visscher, Hong Quan Nguyen, Roxana Leitold, Javier Revilla Diez, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2333–2347, https://doi.org/10.5194/nhess-23-2333-2023, https://doi.org/10.5194/nhess-23-2333-2023, 2023
Short summary
Short summary
Like many other megacities in low-elevation coastal zones, Ho Chi Minh City in southern Vietnam suffers from the convoluting impact of changing environmental stressors and rapid urbanization. This study assesses quantitative hydro-numerical results against the background of the low-regret paradigm for (1) a large-scale flood protection scheme as currently constructed and (2) the widespread implementation of small-scale rainwater detention as envisioned in the Chinese Sponge City Program.
Dirk Eilander, Anaïs Couasnon, Frederiek C. Sperna Weiland, Willem Ligtvoet, Arno Bouwman, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 2251–2272, https://doi.org/10.5194/nhess-23-2251-2023, https://doi.org/10.5194/nhess-23-2251-2023, 2023
Short summary
Short summary
This study presents a framework for assessing compound flood risk using hydrodynamic, impact, and statistical modeling. A pilot in Mozambique shows the importance of accounting for compound events in risk assessments. We also show how the framework can be used to assess the effectiveness of different risk reduction measures. As the framework is based on global datasets and is largely automated, it can easily be applied in other areas for first-order assessments of compound flood risk.
Juan Camilo Gómez Zapata, Massimiliano Pittore, Nils Brinckmann, Juan Lizarazo-Marriaga, Sergio Medina, Nicola Tarque, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 23, 2203–2228, https://doi.org/10.5194/nhess-23-2203-2023, https://doi.org/10.5194/nhess-23-2203-2023, 2023
Short summary
Short summary
To investigate cumulative damage on extended building portfolios, we propose an alternative and modular method to probabilistically integrate sets of single-hazard vulnerability models that are being constantly developed by experts from various research fields to be used within a multi-risk context. We demonstrate its application by assessing the economic losses expected for the residential building stock of Lima, Peru, a megacity commonly exposed to consecutive earthquake and tsunami scenarios.
Oya Kalaycıoğlu, Serhat Emre Akhanlı, Emin Yahya Menteşe, Mehmet Kalaycıoğlu, and Sibel Kalaycıoğlu
Nat. Hazards Earth Syst. Sci., 23, 2133–2156, https://doi.org/10.5194/nhess-23-2133-2023, https://doi.org/10.5194/nhess-23-2133-2023, 2023
Short summary
Short summary
The associations between household characteristics and hazard-related social vulnerability in Istanbul, Türkiye, were assessed using machine learning techniques. The results indicated that less educated households with no social security and job insecurity that live in squatter houses are at a higher risk of social vulnerability. We present the findings in an open-access R Shiny web application, which can serve as a guidance for identifying the target groups in the interest of risk mitigation.
Cited articles
Akkar, S. and Bommer, J. J.: Empirical equations for the prediction of PGA,
PGV, and spectral accelerations in Europe, the Mediterranean region, and the
Middle East, Seismol. Res. Lett., 81, 195–206, https://doi.org/10.1785/gssrl.81.2.195, 2010.
Ambraseys, N. N., Douglas, J., Sarma, S. K., and Smit, P. M.: Equations for
the estimation of strong ground motions from shallow crustal earthquakes
using data from Europe and the Middle East: horizontal peak ground
acceleration and spectral acceleration, Bull. Earthq. Eng., 3, 1–53, https://doi.org/10.1007/s10518-005-0183-0, 2005.
Bachmann, C. E., Wiemer, S., Woessner, S., and Hainzl, S.: Statistical
analysis of the induced Basel 2006 earthquake sequence: introducing a
probability-based monitoring approach for Enhanced Geothermal Systems,
Geophys. J. Int., 186, 793–807, https://doi.org/10.1111/j.1365-246X.2011.05068.x, 2011.
Baisch, S., Koch, C., and Muntendam-Bos, A.: Traffic light systems: to what
extent can induced seismicity be controlled?, Seismol. Res. Lett., 90, 1145–1154, https://doi.org/10.1785/0220180337, 2019.
Baker, J. W. and Gupta, A.: Bayesian Treatment of Induced Seismicity in
Probabilistic Seismic-Hazard Analysis, Bull. Seismol. Soc. Am., 106, 860–870, https://doi.org/10.1785/0120150258, 2016.
Baltay, A. S. and Hanks, T. C.: Understanding the magnitude dependence of
PGA and PGV in NGA-West 2 data, Bull. Seismol. Soc. Am., 104, 2851–2865, https://doi.org/10.1785/0120130283, 2014.
Bessason, B. and Bjarnason, J. Ö.: Seismic vulnerability of low-rise
residential buildings based on damage data from three earthquakes (Mw6.5, 6.5 and 6.3), Eng. Struct., 111, 64–79, https://doi.org/10.1016/j.engstruct.2015.12.008, 2016.
Bommer, J. J., Oates, S., Cepeda, J. M., Lindholm, C., Bird, J., Torres, R.,
Marroquin, G., and Rivas, J.: Control of hazard due to seismicity induced by a hot fractured rock geothermal project, Eng. Geol., 83, 287–306,
https://doi.org/10.1016/j.enggeo.2005.11.002, 2006.
Bommer, J. J., Stafford, P. J., Alarcón, J. E., and Akkar, S.: The
influence of magnitude range on empirical ground-motion prediction, Bull.
Seismol. Soc. Am., 97, 2152–2170, https://doi.org/10.1785/0120070081, 2007.
Bommer, J. J., Crowley, H., and Pinho, R.: A risk-mitigation approach to the
management of induced seismicity, J. Seismol., 19, 623–646, https://doi.org/10.1007/s10950-015-9514-z, 2015.
Broccardo, M., Mignan, A., Wiemer, S., Stojadinovic, B., and Giardini, D.:
Hierarchical Bayesian Modeling of Fluid-Induced Seismicity, Geophys. Res. Lett., 44, 11357–11367, https://doi.org/10.1002/2017GL075251, 2017a.
Broccardo, M., Danciu, L., Stojadinovic, B., and Wiemer, S.: Individual and
societal risk metrics as parts of a risk governance framework for induced
seismicity, in: 16th World Conference on Earthquake Engineering (WCEE16),
9–13 January 2017, Santiago, Chile, 2017b.
Cauzzi, C. and Faccioli, E.: Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records, J. Seismol., 12, 453–475, https://doi.org/10.1007/s10950-008-9098-y, 2008.
Cornell, C. A.: Engineering seismic risk analysis, Bull. Seismol. Soc. Am., 58, 1583–1606, 1968.
Cornell, C. A. and Krawinkler, H.: Progress and challenges in seismic performance assessment, PEER Center News, Spring, available at:
http://peer.berkeley.edu/news/2000spring/index.html (last access: May 2020), 2000.
Danciu, L. and Tselentis, G. A.: Engineering ground-motion parameters attenuation relationships for Greece, Bull. Seismol. Soc. Am., 97, 162–183, https://doi.org/10.1785/0120050087, 2007.
Diehl, T., Kraft, T., Kissling, E., and Wiemer, S.: The induced earthquake
sequence related to the St. Gallen deep geothermal project (Switzerland):
Fault reactivation and fluid interactions imaged by microseismicity, J. Geophys. Res.-Solid, 122, 7272–7290, https://doi.org/10.1002/2017JB014473, 2017.
Dinske, C. and Shapiro, S. A.: Seismotectonic state of reservoirs inferred from magnitude distributions of fluid-induced seismicity, J. Seismol., 17, 13–25, https://doi.org/10.1007/s10950-012-9292-9, 2013.
Ellsworth, W. L.: Injection-induced earthquakes, Science, 341, 1225942,
https://doi.org/10.1126/science.1225942, 2013.
Embrechts, P., Klüppelberg, C., and Mikosch, T.: Modelling extremal
events: for insurance and finance, in: Vol. 33, Springer Science & Business
Media, Springer-Verlag, Berlin, Heidelberg, ISBN 978-3-642-33483-2, 2013.
Faccioli, E. and Cauzzi, C.: Macroseismic intensities for seismic scenarios
estimated from instrumentally based correlations, in: Proc. First European
Conference on Earthquake Engineering and Seismology, 3–8 September 2006, Geneva, Switzerland, 2006.
Faenza, L. and Michelini, A.: Regression analysis of MCS intensity and
ground motion parameters in Italy and its application in ShakeMap, Geophys. J. Int., 180, 1138–1152, https://doi.org/10.1111/j.1365-246X.2009.04467.x, 2010.
Galanis, P., Sycheva, A., Mimra, W., and Stojadinović, B.: A framework to
evaluate the benefit of seismic upgrading, Earthq. Spectra, 34, 527–548, https://doi.org/10.1193/120316EQS221M, 2018.
Giardini, D.: Geothermal quake risks must be faced, Nature, 462, 848–849, https://doi.org/10.1038/462848a, 2009.
Gischig, V. S. and Wiemer, S.: A stochastic model for induced seismicity
based on non-linear pressure diffusion and irreversible permeability
enhancement, Geophys. J. Int., 194, 1229–1249, https://doi.org/10.1093/gji/ggt164, 2013.
Gischig, V., Wiemer, S., and Alcolea, A.: Balancing reservoir creation and
seismic hazard in enhanced geothermal systems, Geophys. J. Int., 198, 1585–1598, https://doi.org/10.1093/gji/ggu221, 2014.
Goertz-Allmann, B. P. and Wiemer, S.: Geomechanical modeling of induced
seismicity source parameters and implications for seismic hazard assessment, Geophysics, 78, KS25–KS39, https://doi.org/10.1190/geo2012-0102.1, 2013.
Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A. P., Clinton, J. F., Stabile, T. A., Dost, B., Fernandez, M. G., Wiemer, S., and Dahm, T.: Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective, Rev. Geophys., 55, 310–340, https://doi.org/10.1002/2016RG000542, 2017.
Grigoli, F., Cesca, S., Rinaldi, A. P., Manconi, A., López-Comino, J. A., Westaway, R., Cauzzi, C., Dahm, T., and Wiemer, S.: The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea, Science, 360, 1003–1006, https://doi.org/10.1126/science.aat2010, 2018.
Grünthal, G.: European macroseismic scale 1998. European Seismological
Commission (ESC), Luxemburg, 1998.
Gülkan, P. and Kalkan, E.: Attenuation modeling of recent earthquakes in
Turkey, J. Seismol., 6, 397–409, https://doi.org/10.1023/A:1020087426440, 2002.
Gunnlaugsson, E., Gislason, G., Ivarsson, G., and Kjaran, S. P.: Low
temperature geothermal fields utilized for district heating in reykjavik,
iceland, in: Vol. 74, Proceedings World Geothermal Congress, 28 May–10 June 2000, Kyushu, Tohoku, Japan, 2000.
Gupta, A. and Baker, J. W.: Sensitivity of induced seismicity risk to source
characterization, ground motion prediction, and exposure, in: Proceedings
16th world conference on earthquake engineering, 9–13 January 2017, Santiago, Chile, 2017.
Haimson, B. C.: The hydrofracturing stress measuring method and recent field
results, in: International Journal of Rock Mechanics and Mining Sciences &Geomechanics Abstracts, Vol. 15, Pergamon, UK, https://doi.org/10.1016/0148-9062(78)91223-8, 1978.
Haimson, B. C. and Voight, B.: Stress measurements in Iceland, EOS Trans. Am. Geophys. Union, 57, 1007, 1976.
HAZUS MH MR3 – Multi-hazard Loss Estimation Methodology: Earthquake Model,
Technical Manual, NIST, Washington, D.C., 2003.
Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., and WSM Team: World Stress Map Database Release 2016, V. 1.1, GFZ Data Services, https://doi.org/10.5880/WSM.2016.001, 2016.
Hirschberg, S., Wiemer, S., and Burgherr, P. (Eds.): Energy from the Earth:
Deep Geothermal as a Resource for the Future?, in: Vol. 62, vdf Hochschulverlag AG, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-a-010277690, 2015.
Hofmann, H., Zimmermann, G., Zang, A., Aldaz, S., Cesca, S., Heimann, S., Mikulla, S., Milkereit, C., Dahm, T., Huenges, E., Hjörleifsdóttir, V., Snæbjörnsdóttir, S. O., Aradóttir, E. S., Ásgeirsdóttir, R. t., Ágústsson, K., Magnússon, R., Stefánsson, S. A., Flovenz, O., Mignan, A., Broccardo, M., Rinaldi, A. P., Scarabello, L., Karvounis, D., Grigoli, F., Wiemer, S., and Hólmgeirsson, S.: Hydraulic Stimulation Design for Well RV-43 on Geldinganes, Iceland, in: Proceedings World Geothermal Congress 2020, 26 April–2 May 2020, Reykjavik, Iceland, 2020.
Holschneider, M., Zöller, G., and Hainzl, S.: Estimation of the maximum
possible magnitude in the framework of a doubly truncated Gutenberg–Richter
model, Bull. Seismol. Soc. Am., 101, 1649–1659, https://doi.org/10.1785/0120100289, 2011.
Jones, D. A.: Nomenclature for hazard and risk assessment in the process
industries, IChemE – Institution of Chemical Engineers, Rugby, Warwickshire, UK, 1992.
Jonkman, S. N., Van Gelder, P. H. A. J. M., and Vrijling, J. K.: An overview
of quantitative risk measures for loss of life and economic damage, J.
Hazard. Mater., 99, 1–30, https://doi.org/10.1016/S0304-3894(02)00283-2, 2003.
Karvounis, D. C., Gischig, V. S., and Wiemer, S.: Towards a real-time forecast of induced seismicity for enhanced geothermal systems, in: Shale Energy Engineering 2014: Technical Challenges, Environmental Issues, and Public Policy, ASCE – American Society of Civil Engineers, 21–23 July 2014, Pittsburgh, Pennsylvania, 246–255, https://doi.org/10.1061/9780784413654.026, 2014.
Karvounis, D. C. and Jenny, P.: Adaptive Hierarchical Fracture Model for Enhanced Geothermal Systems, Multisc. Model. Simul., 14, 207–231, https://doi.org/10.1137/140983987, 2016.
Kim, K. H., Ree, J. H., Kim, Y., Kim, S., Kang, S. Y., and Seo, W.: Assessing
whether the 2017 Mw5.4 Pohang earthquake in South Korea was an induced event, Science, 360, 1007–1009, https://doi.org/10.1126/science.aat6081, 2018.
Kowsari, M., Halldorsson, B., Hrafnkelsson, B., Snæbjörnsson, J. Þ., and Jónsson, S.: Calibration of ground motion models to Icelandic
peak ground acceleration data using Bayesian Markov Chain Monte Carlo simulation, Bull. Earthq. Eng., 17, 2841–2870, https://doi.org/10.1007/s10518-019-00569-5, 2019.
Kwiatek, G., Saarno, T., Ader, T., Bluemle, F., Bohnhoff, M., Chendorain, M., Dresen, G., Heikkinen, P., Kukkonen, I., Leary, P., and Leonhardt, M.: Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland, Sci. Adv., 5, eaav7224, https://doi.org/10.1126/sciadv.aav7224, 2019.
Lagomarsino, S. and Giovinazzi, S.: Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings, Bull. Earthq. Eng., 4, 415–443, https://doi.org/10.1007/s10518-006-9024-z, 2016.
Langenbruch, C., Weingarten, M., and Zoback, M. D.: Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas, Nat. Commun., 9, 3946, https://doi.org/10.1038/s41467-018-06167-4, 2018.
Lee, K. K., Ellsworth, W. L., Giardini, D., Townend, J., Shemin, G., Shimamoto, T., Yeo, I.-W., Kang, T.-S., Rhie, J., Sheen, D.-H., Chang, C.,
Wool, J.-U., and Langenbruch, C.: Managing injection-induced seismic risks,
Science, 364, 730–732, https://doi.org/10.1126/science.aax1878, 2019.
Lin, P. S. and Lee, C. T.: Ground-motion attenuation relationships for
subduction-zone earthquakes in northeastern Taiwan, Bull. Seismol. Soc. Am., 98, 220–240, https://doi.org/10.1785/0120060002, 2008.
Majer, E., Nelson, J., Robertson-Tait, A., Savy, J., and Wong, I.: Protocol for addressing induced seismicity associated with enhanced geothermal systems, US Department of Energy, Energy Efficiency & Renewable Energy, 52 pp., 2012.
Majer, E. L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, B., and
Asanuma, H.: Induced seismicity associated with enhanced geothermal systems,
Geothermics, 36, 185–222, https://doi.org/10.1016/j.geothermics.2007.03.003, 2007.
McGarr, A.: Seismic moments and volume changes, J. Geophys. Res., 81, 1487–1494, https://doi.org/10.1029/JB081i008p01487, 1976.
McGarr, A.: Maximum magnitude earthquakes induced by fluid injection, J.
Geophys. Res.-Solid, 119, 1008–1019, https://doi.org/10.1002/2013JB010597, 2014.
Mena, B., Wiemer, S., and Bachman, C.: Building robust models to forecast the
induced seismicity related to geothermal reservoir enhancement, Bull. Seismol. Soc. Am., 103, 383–393, https://doi.org/10.1785/0120120102, 2013.
Mignan, A.: Static behaviour of induced seismicity, Nonlin. Processes Geophys., 23, 107–113, https://doi.org/10.5194/npg-23-107-2016, 2016.
Mignan, A., Werner, M. J., Wiemer, S., Chen, C.-C., and Wu, Y.-M.: Bayesian
Estimation of the Spatially Varying Completeness Magnitude of Earthquake
Catalogs, Bull. Seismol. Soc. Am., 101, 1371–1385, https://doi.org/10.1785/0120100223, 2011.
Mignan, A., Landtwing, D., Kästli, P., Mena, B., and Wiemer, S.: Induced
seismicity risk analysis of the 2006 Basel, Switzerland, Enhanced Geothermal
System project: Influence of uncertainties on risk mitigation, Geothermics, 53, 133–146, https://doi.org/10.1016/j.geothermics.2014.05.007, 2015.
Mignan, A., Broccardo, M., Wiemer, S., and Giardini, D.: Induced seismicity
closed-form traffic light system for actuarial decision-making during deep
fluid injections, Scient. Rep., 7, 13607, https://doi.org/10.1038/s41598-017-13585-9, 2017.
Mignan, A., Broccardo, M., Wiemer, S., and Giardini, D.: Autonomous Decision-Making Against Induced Seismicity in Deep Fluid Injections, in: Energy Geotechnics, SEG 2018, Lausanne, Switzerland, Springer Series in Geomechanics and Geoengineering, edited by: Ferrari, A. and Laloui, L., Springer, Cham, 369–376, https://doi.org/10.1007/978-3-319-99670-7_46, 2019a.
Mignan, A., Karvounis, D., Broccardo, M., Wiemer, S., and Giardini, D.: Including seismic risk mitigation measures into the Levelized Cost Of
Electricity in enhanced geothermal systems for optimal siting, Appl. Energ., 238, 831–850, https://doi.org/10.1016/j.apenergy.2019.01.109, 2019b.
Morris, M. D.: Factorial sampling plans for preliminary computational
experiments, Technometrics, 33, 161–174, https://doi.org/10.1080/00401706.1991.10484804, 1991.
Panzera, F., Mignan, A., and Vogfjord, K. S.: Spatiotemporal evolution of the
completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013, J. Seismol., 21, 615–630, https://doi.org/10.1007/s10950-016-9623-3, 2017.
Pittore, M., Boxberger, T., Fleming, K., Megalooikonomou, K., Parolai, S., and Pilz, M.: DESTRESS – Demonstration of soft stimulation treatments of
geothermal reservoirs, GFZ Data Services, https://doi.org/10.14470/7Q7563484600, 2018.
Porter, K. A., Beck, J. L., and Shaikhutdinov, R. V.: Sensitivity of building loss estimates to major uncertain variables, Earthq. Spectra, 18, 719–743,
https://doi.org/10.1193/1.1516201, 2002.
Rupakhety, R. and Sigbjörnsson, R.: Ground-motion prediction equations (GMPEs) for inelastic displacement and ductility demands of
constant-strength SDOF systems, Bull. Earthq. Eng., 7, 661–679, https://doi.org/10.1007/s10518-009-9117-6, 2009.
Shapiro, S. A. and Dinske, C.: Scaling of seismicity induced by nonlinear
fluid-rock interaction, J. Geophys. Res., 114, B09307,
https://doi.org/10.1029/2008JB006145, 2009.
Steingrímsson, B., Fridleifsson, G. Ó., Gunnarsson, K., Thordarson, S., Thórhallsson, S., and Hafstad, T. H.: Well RV-43 in Geldinganes,
Prerequisites for location and design, report BS/GOF/KG/GTHOR/SThHH-02/01, Orkustofnun, Reykjavík, 11 pp., 2001.
Trutnevyte, E. and Wiemer, S.: Tailor-made risk governance for induced seismicity of geothermal energy projects: An application to Switzerland, Geothermics, 65, 295–312, https://doi.org/10.1016/j.geothermics.2016.10.006, 2017.
van der Elst, N. J., Page, M. T., Weiser, D. A., Goebel, T. H. W., and
Hosseini, S. M.: Induced earthquake magnitudes are as large as (statistically) expected, J. Geophys. Res.-Solid, 121, 4575–4590, https://doi.org/10.1002/2016JB012818, 2016.
Walters, R. J., Zoback, M. D., Baker, J. W., and Beroza, G. C.: Characterizing and responding to seismic risk associated with earthquakes
potentially triggered by fluid disposal and hydraulic fracturing, Seismol. Res. Lett., 86, 1110–1118, https://doi.org/10.1785/0220150048, 2015.
Wiemer, S., Kraft, T., Trutnevyte, E., and Roth, P.: “Good Practice” Guide for Managing Induced Seismicity in Deep Geothermal Energy Projects in Switzerland, ETH Zurich, Zurich, 2017.
Yeck, W. L., Hayes, G. P., McNamara, D. E., Rubinstein, J. L., Barnhart, W.
D., Earle, P. S., and Benz, H. M.: Oklahoma experiences largest earthquake
during ongoing regional wastewater injection hazard mitigation efforts, Geophys. Res. Lett., 44, 711–717, https://doi.org/10.1002/2016GL071685, 2017.
Zang, A., Yoon, J. S., Stephansson, O., and Heidbach, O.: Fatigue hydraulic
fracturing by cyclic reservoir treatment enhances permeability and reduces
induced seismicity, Geophys. J. Int., 195, 1282–1287, https://doi.org/10.1093/gji/ggt301, 2013.
Zang, A., Stephansson, O., and Zimmermann, G.: Keynote: fatigue hydraulic
fracturing, in: ISRM European Rock Mechanics Symposium-EUROCK 2017, International Society for Rock Mechanics and Rock Engineering, Ostrava, Czech Republic, 2017.
Zang, A., Zimmermann, G., Hofmann, H., Stephansson, O., Min, K. B., and Kim,
K. Y.: How to reduce fluid-injection-induced seismicity, Rock Mech. Rock Eng., 52, 475–493, https://doi.org/10.1007/s00603-018-1467-4, 2019.
Zhao, J.X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H. K., Somerville, P. G., and Fukushima, Y.: Attenuation relations of strong ground motion in Japan using site classification based on predominant period, Bull. Seismol. Soc. Am., 96, 898–913, https://doi.org/10.1785/0120050122, 2006.
Ziegler, M., Rajabi, M., Heidbach, O., Hersir, G. P., Ágústsson, K.,
Árnadóttir, S., and Zang, A.: The stress pattern of Iceland, Tectonophysics, 674, 101–113, https://doi.org/10.1016/0040-1951(69)90097-3, 2016.
Short summary
This study presents a first-of-its-kind pre-drilling probabilistic induced seismic risk analysis for the Geldinganes (Iceland) deep-hydraulic stimulation. The results of the assessment indicate that the individual risk within a radius of 2 km around the injection point is below the safety limits. However, the analysis is affected by a large variability due to the presence of pre-drilling deep uncertainties. This suggests the need for online risk updating during the stimulation.
This study presents a first-of-its-kind pre-drilling probabilistic induced seismic risk analysis...
Altmetrics
Final-revised paper
Preprint