Articles | Volume 20, issue 5
https://doi.org/10.5194/nhess-20-1369-2020
https://doi.org/10.5194/nhess-20-1369-2020
Research article
 | 
20 May 2020
Research article |  | 20 May 2020

Systematic error analysis of heavy-precipitation-event prediction using a 30-year hindcast dataset

Matteo Ponzano, Bruno Joly, Laurent Descamps, and Philippe Arbogast

Related authors

Systematic evaluation of the predictability of different Mediterranean cyclone categories
Benjamin Doiteau, Florian Pantillon, Matthieu Plu, Laurent Descamps, and Thomas Rieutord
Weather Clim. Dynam., 5, 1409–1427, https://doi.org/10.5194/wcd-5-1409-2024,https://doi.org/10.5194/wcd-5-1409-2024, 2024
Short summary
Combining short-range dispersion simulations with fine-scale meteorological ensembles: probabilistic indicators and evaluation during a 85Kr field campaign
Youness El-Ouartassy, Irène Korsakissok, Matthieu Plu, Olivier Connan, Laurent Descamps, and Laure Raynaud
Atmos. Chem. Phys., 22, 15793–15816, https://doi.org/10.5194/acp-22-15793-2022,https://doi.org/10.5194/acp-22-15793-2022, 2022
Short summary
Diabatic processes modulating the vertical structure of the jet stream above the cold front of an extratropical cyclone: sensitivity to deep convection schemes
Meryl Wimmer, Gwendal Rivière, Philippe Arbogast, Jean-Marcel Piriou, Julien Delanoë, Carole Labadie, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 3, 863–882, https://doi.org/10.5194/wcd-3-863-2022,https://doi.org/10.5194/wcd-3-863-2022, 2022
Short summary
The impact of deep convection representation in a global atmospheric model on the warm conveyor belt and jet stream during NAWDEX IOP6
Gwendal Rivière, Meryl Wimmer, Philippe Arbogast, Jean-Marcel Piriou, Julien Delanoë, Carole Labadie, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 2, 1011–1031, https://doi.org/10.5194/wcd-2-1011-2021,https://doi.org/10.5194/wcd-2-1011-2021, 2021
Short summary
SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021,https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024,https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024,https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Intense rains in Israel associated with the train effect
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024,https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024,https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024,https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary

Cited articles

AghaKouchak, A., Behrangi, A., Sorooshian, S., Hsu, K., and Amitai, E.: Evaluation of Satellite-Retrieved Extreme Precipitation Rates across the Central United States, J. Geophys. Res.-Atmos., 116, https://doi.org/10.1029/2010JD014741, 2011. a
Anagnostopoulou, C. and Tolika, K.: Extreme Precipitation in Europe: Statistical Threshold Selection Based on Climatological Criteria, Theor. Appl. Climatol., 107, 479–489, https://doi.org/10.1007/s00704-011-0487-8, 2012. a
Anderson, T. W. and Darling, D. A.: Asymptotic Theory of Certain “Goodness of Fit” Criteria Based on Stochastic Processes, Ann. Math. Stat., 23, 193–212, https://doi.org/10.1214/aoms/1177729437, 1952. a
Argence, S., Lambert, D., Richard, E., Chaboureau, J.-P., and Söhne, N.: Impact of Initial Condition Uncertainties on the Predictability of Heavy Rainfall in the Mediterranean: A Case Study, Q. J. Roy. Meteorol. Soc., 134, 1775–1788, https://doi.org/10.1002/qj.314, 2008. a
Bazile, E., Marquet, P., Bouteloup, Y., and Bouyssel, F.: The Turbulent Kinetic Energy (TKE) scheme in the NWP models at Meteo France, in: Workshop on Workshop on Diurnal cycles and the stable boundary layer, 7–10 November 2011, pp. 127–135, ECMWF, ECMWF, Shinfield Park, Reading, 2012. a
Download
Short summary
We assess a methodology to evaluate and improve intense precipitation forecasting in the southeastern French region. This methodology is based on the use of a 30-year dataset of past forecasts which are analysed using a spatial verification approach. We found that precipitation forecasting is qualitatively driven by the deep-convection parametrization. Locally the model is able to reproduce the distribution of spatially integrated rainfall patterns of the most intense precipitation.
Altmetrics
Final-revised paper
Preprint