Articles | Volume 19, issue 4
https://doi.org/10.5194/nhess-19-857-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-19-857-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Projected changes to extreme freezing precipitation and design ice loads over North America based on a large ensemble of Canadian regional climate model simulations
Climate Research Division, Environment and Climate Change Canada,
Toronto, Ontario, M3H 5T4, Canada
Alex J. Cannon
Climate Research Division, Environment and Climate Change Canada,
Victoria, British Columbia, V8W 2Y2, Canada
Xuebin Zhang
Climate Research Division, Environment and Climate Change Canada,
Toronto, Ontario, M3H 5T4, Canada
Related authors
No articles found.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021, https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Short summary
Shrub and sedge plant functional types (PFTs) were incorporated in the land surface component of the Canadian Earth System Model to improve representation of Arctic tundra ecosystems. Evaluated against 14 years of non-winter measurements, the magnitude and seasonality of carbon dioxide and energy fluxes at a Canadian dwarf-shrub tundra site were better captured by the shrub PFTs than by previously used grass and tree PFTs. Model simulations showed the tundra site to be an annual net CO2 source.
Cited articles
Armenakis, C. and Nirupama, N.: Urban impacts of ice storms: Toronto December
2013, Nat. Hazards, 74, 1291–1298, 2014.
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L.,
Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon
emission limits required to satisfy future representative concentration
pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805,
https://doi.org/10.1029/2010GL046270, 2011.
ASCE (American Society of Civil Engineers): Minimum Design Loads for
Buildings and Other Structures, ASCE Standard 7-02, ASCE, Reston, VA, 2006.
Baldwin, E. and Contorno, S.: Development of a weather-type prediction system
for NMC's mesoscale ETA model, Preprints, 13th conference on weather
analysis and forecasting American Meteor. Society, Vienna, VA, 86–87, 1993.
Bourgouin, P.: A method to determine precipitation types, Weather Forecast.,
15, 583–592, 2000.
Chaîné, P. M. and Castonguay, G.: New approach to radial ice
thickness concept applied to bundle-like conductors, Canadian Climate Centre
Internal Report, Industrial Meteorology-Study IV, Atmospheric Environment
Service, Downsview, Ontario, 1974.
Chaîné, P. M. and Skeates P.: Wind and Ice Loading Criteria
Selection, Canadian, Climate Centre Internal Report,
Industrial Meteorology-Study III, Atmospheric Environment Service, Downsview,
Ontario, 1974.
City Report: Impacts from the December, 2013 extreme winter storm event,
Staff Report, City of Toronto, 8 January 2014, p. 10, 2014.
Cortinas, J.: A climatology of freezing rain in the Great Lakes region of
North America, Mon. Weather Rev., 128, 3574–3588, 2000.
Cortinas, J. V., Bernstein, B. C., Robbins, C. C., and Walter Strapp,
J.: An analysis of freezing rain, freezing
drizzle, and ice pellets across the United States and Canada: 1976–90,
Weather Forecast., 19, 377–390, 2004.
Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and
Staniforth, A.: The operational CMC-MRB global environmental multiscale (GEM)
model. Part I: Design considerations and formulation, Mon. Weather. Rev.,
126, 1373–1395, 1998.
CSA (Canadian Standard Association): CAN/CSA-C22.3 No. 60826-10, Design Criteria of Overhead Transmission
Lines, CSA, Mississauga, Ont., 2010.
CSA (Canadian Standard Association): S37-13, Antennas, Towers, and
Antenna-supporting Structures, CSA, Mississauga, Ont., 2013.
CSA (Canadian Standard Association): CAN/CSA-S6-14, Canadian Highway Bridge Design Code, CSA, Mississauga,
Ont., 2014.
Diaconescu, E. P., Gachon, P., Laprise, R., and Scinocca, J. F.: Evaluation of
precipitation indices over North America from various configurations of
regional climate models, Atmos. Ocean., 54, 418–439, 2016.
Fu, P., Farzaneh, M., and Bouchard, G.: Two-dimensional modelling of the ice
accretion process on transmission line wires and conductors, Cold Reg. Sci. Technol., 46, 132–146, 2006.
Fyfe, J. C., Derksen, C., Mudryk, L., Flato, G. M., Santer, B. D., Swart, N.
C., Molotch, N. P., Zhang, X., Wan, H., Arora, V. K., Sciocca, J., and Jiao,
Y.: Large near-term projected snowpack loss over the western United States,
Nat. Commun., 8, 14996, https://doi.org/10.1029/2010GL046270, 2017.
Gastineau, G. and Soden, B. J.: Model projected changes of extreme wind
events in response to global warming, Geophys. Res. Lett., 36, L10810,
https://doi.org/10.1029/2009GL037500, 2009.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K.,
Gayler, V., Haak, H., Hollweg, H. D., Ilyina, T., Kinne, S., Kornblueh, L.,
Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan,
F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R.,
Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K. H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for
the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Sy.,
5, 572–597, 2013.
Hauer, R. J., Hauer, A. J., Hartel, D. R., and Johnson, J. R.: Rapid
assessment of tree debris following urban forest ice storms, Arboriculture
and Urban Forestry, 37, 236–46, 2011.
Henson, W., Stewart, R., and Kochtubajda, B.: On the precipitation and
related features of the 1998 ice storm in the Montréal area, Atmos.
Res., 83, 36–54, 2007.
IPCC: Climate Change 2013, The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.,
2013.
Jeong, D. I. and Sushama, L.: Projected changes to extreme wind and snow
environmental loads for buildings and infrastructure across Canada,
Sustain. Cities Soc., 36, 225–236, 2018.
Jeong, D. I., Sushama, L., and Khaliq, M. N.: The role of temperature in
drought projections over North America, Clim. Change, 127, 289–303, 2014a.
Jeong, D. I., Sushama, L., Khaliq, M. N., and Roy, R.: A copula-based
multivariate analysis of Canadian RCM projected changes to flood
characteristics for northeastern Canada, Clim. Dynam., 42, 2045–2066, 2014b.
Jeong, D. I., Sushama, L., Diro, G. T., and Khaliq, M. N.: Projected changes to
winter temperature characteristics over Canada based on an RCM ensemble,
Clim. Dynam., 47, 1351–1366, 2016a.
Jeong, D. I., Sushama, L., Diro, G. T., Khaliq, M. N., Beltrami, H., and Caya,
D.: Projected changes to high temperature events for Canada based on a
regional climate model ensemble, Clim. Dynam., 46, 3163–3180, 2016b.
Jeong, D. I., Sushama, L., Vieira, M. J. F., and Koenig, K. A.: Projected changes
to extreme ice loads for overhead transmission lines across Canada,
Sustain. Cities Soc., 39, 639–649, 2018.
Jones, K. F.: A simple model for freezing rain ice loads, Atmos. Res.,
46, 87–97, 1998.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, Roy, and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–472, 1996.
Kumar, D., Mishra, V., and Ganguly, A. R.: Evaluating wind extremes in CMIP5
climate models, Clim. Dynam., 45, 441–453, 2015.
Lamraoui, F., Fortin, G., Benoit, R., Perron, J., and Masson, C.: Atmospheric
icing severity: Quantification and mapping, Atmos. Res., 128, 57–75, 2013.
Lecomte, E. L., Pang, A. W., and Russell, J. W.: Ice storm “98”, Ottawa,
Canada: Institute for Catastrophic Loss Reduction, p. 99, 1998.
Makkonen, L.: Modeling power line icing in freezing precipitation, Atmos.
Res., 46, 131–142, 1998.
Matte, D., Thériault, J. M., and Laprise, R.: Mixed precipitation
occurrences over southern Québec, Canada, under warmer climate conditions
using a regional climate model, Clim. Dynam., 1–17,
https://doi.org/10.1007/s00382-018-4231-2, 2018.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C.,
Ebisuzaki, W., Jovic, D., Woollen, J., Rogers, E., Berbery, E. H., Ek, M. B.,
Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, G., Manikin, G., Parrish,
D., and Shi, W.: North American regional reanalysis, B. Am. Meteorol. Soc.,
87, 343–360, 2006.
Mulherin, N. D.: Atmospheric icing and communication tower failure in the
United States, Cold Reg. Sci. Technol., 27, 91–104, 1998.
Nygaard, B. E. K., Seierstad, I. A., and Veal, A. T.: A new snow and ice load map
for mechanical design of power lines in Great Britain, Cold Reg. Sci. Technol., 108, 28–35, 2014.
Proulx, O. J. and Greene, D. F.: The relationship between ice thickness and
northern hardwood tree damage during ice storms, Can. J. Forest Res., 31, 1758–1767, 2001.
Pryor, S. C., Barthelmie, R. J., Young, D. T., Takle, E. S., Arritt, R. W.,
Flory, D., Gutowski Jr., W. J., Nunes, A., and Roads, J.: Wind speed trends
over the contiguous United States, J. Geophys. Res.-Atmos., 114,
https://doi.org/10.1029/2008JD011416, 2009.
Rezaei, S. N., Chouinard, L., Langlois, S., and Légeron, F.: Analysis of
the effect of climate change on the reliability of overhead transmission
lines, Sustain. Cities Soc., 27, 137–144, 2016.
Sanford, T., Frumhoff, P. C., Luers, A., and Gulledge, J.: The climate policy
narrative for a dangerously warming world, Nat. Clim. Change, 4, 164–166,
2014.
Schleussner, C.-F., Lissner, T. K., Fischer, E. M., Wohland, J., Perrette,
M., Golly, A., Rogelj, J., Childers, K., Schewe, J., Frieler, K., Mengel, M.,
Hare, W., and Schaeffer, M.: Differential climate impacts for policy-relevant
limits to global warming: the case of 1.5 ∘C and 2 ∘C,
Earth Syst. Dynam., 7, 327–351, https://doi.org/10.5194/esd-7-327-2016,
2016.
Scinocca, J. F., Kharin, V. V., Jiao, Y., Qian, M. W., Lazare, M., Solheim,
L., Flato, G. M., Biner, S., Desgagne, M., and Dugas, B.: Coordinated global
and regional climate modeling, J. Climate, 29, 17–35, 2016.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano,
G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk,
V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., and Reyer, C. P. O.:
Forest disturbances under climate change, Nat. Clim. Change, 7, 395–402,
2017.
Smith, A., Lott, N., and Vose, R.: The integrated surface database: Recent
developments and partnerships, B. Am. Meteorol. Soc., 92, 704–708, 2011.
Teufel, B., Diro, G. T., Whan, K., Milrad, S. M., Jeong, D. I., Ganji, A.,
Huziy, O., Winger, K., Gyakum, J. R., de Elia, R., Zwiers, F. W., and
Sushama, L.: Investigation of the 2013 Alberta flood from weather and climate
perspectives, Clim. Dynam., 48, 2881–2899, 2017.
Verseghy, D.: CLASS-The Canadian Land Surface Scheme (Version 3.6). Tech.
Rep., Climate Research Division, Science and Technology Branch, Environment
Canada, p. 179, 2012.
von Salzen, K., McFarlane, N. A., and Lazare, M.: The role of shallow
convection in the water and energy cycles of the atmosphere, Clim. Dynam.,
25, 671–688, 2005.
von Salzen, K., Scinocca, J. F., McFarlane, N. A., Li, J., Cole, J. N. S.,
Plummer, D., Verseghy, D., Reader, M. C., Ma, X., Lazare, M., and Solheim,
L.: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4),
Part I: Representation of Physical Processes, Atmos. Ocean, 51, 104–125,
2013.
Whan, K., Zwiers, F., and Sillmann, J.: The influence of atmospheric blocking
on extreme winter minimum temperatures in North America, J. Climate, 29,
4361–4381, 2016.
Yang, J., Yu, W., Choisnard, J., Forcione, A., and Antic, S.: Coupled
Atmospheric–Ice Load Model for Evaluation of Wind Plant Power Loss, J. Appl.
Meteorol. Clim., 54, 1142–1161, 2015.
Yip, T. C.: Estimating icing amounts caused by freezing precipitation in
Canada, Atmos. Res., 36, 221–232, 1995.
Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to the
parameterization of cumulus convection in the CCC-GCM, Atmos. Ocean, 3,
407–446, 1995.
Zhu, K., Liu, B., Yang, J. L., and Li, X. Y.: A study to make regional
ice-load map for transmission lines in China, T&D Conference and
Exposition 2014 IEEE PES, 1–5, https://doi.org/10.1109/TDC.2014.6863251, 2014.
Short summary
Atmospheric ice accretion caused by freezing precipitation leads to severe damage and failure of buildings and infrastructure. This study investigates projected changes to extreme ice loads used to design infrastructure over North America for future periods of specified global mean temperature change using a Canadian regional climate model. Increases in ice accretion for latitudes higher than 40° N are substantial and would have clear implications for future building and infrastructure design.
Atmospheric ice accretion caused by freezing precipitation leads to severe damage and failure of...
Special issue
Altmetrics
Final-revised paper
Preprint