Articles | Volume 19, issue 7
https://doi.org/10.5194/nhess-19-1399-2019
https://doi.org/10.5194/nhess-19-1399-2019
Research article
 | 
15 Jul 2019
Research article |  | 15 Jul 2019

Towards early warning of gravitational slope failure with co-detection of microseismic activity: the case of an active rock glacier

Jérome Faillettaz, Martin Funk, Jan Beutel, and Andreas Vieli

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (further review by editor and referees) (02 Jun 2019) by Thomas Glade
AR by Jerome Faillettaz on behalf of the Authors (04 Jun 2019)  Manuscript 
ED: Publish as is (07 Jun 2019) by Thomas Glade
AR by Jerome Faillettaz on behalf of the Authors (07 Jun 2019)  Manuscript 
Download
Short summary
We developed a new strategy for real-time early warning of gravity-driven slope failures (such as landslides, rockfalls, glacier break-off, etc.). This method enables us to investigate natural slope stability based on continuous monitoring and interpretation of seismic waves generated by the potential instability. Thanks to a pilot experiment, we detected typical patterns of precursory events prior to slide events, demonstrating the potential of this method for real-word applications.
Altmetrics
Final-revised paper
Preprint