Articles | Volume 18, issue 4
https://doi.org/10.5194/nhess-18-1261-2018
https://doi.org/10.5194/nhess-18-1261-2018
Research article
 | 
27 Apr 2018
Research article |  | 27 Apr 2018

Characterizing severe weather potential in synoptically weakly forced thunderstorm environments

Paul W. Miller and Thomas L. Mote

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (further review by editor and referees) (25 Jan 2018) by Uwe Ulbrich
AR by Paul Miller on behalf of the Authors (30 Jan 2018)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (20 Feb 2018) by Uwe Ulbrich
RR by Anonymous Referee #2 (12 Mar 2018)
ED: Publish as is (02 Apr 2018) by Uwe Ulbrich
AR by Paul Miller on behalf of the Authors (05 Apr 2018)
Download
Short summary
The likelihood of severe weather events in synoptically weakly forced thunderstorm (WFT) environments is best characterized by lapse-rate-based parameters. These measures, also among the most accurate model-derived variables, are posited to best capture the subtle convective environmental differences that favor WFT severity. Forecasters should consider weighting their WFT forecasts in favor of lapse-rate-based parameters over others that may be more sensitive to model biases.
Altmetrics
Final-revised paper
Preprint