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Abstract. Weakly forced thunderstorms (WFTs), short-lived
convection forming in synoptically quiescent regimes, are
a contemporary forecasting challenge. The convective en-
vironments that support severe WFTs are often similar to
those that yield only non-severe WFTs and, additionally,
only a small proportion of individual WFTs will ultimately
produce severe weather. The purpose of this study is to bet-
ter characterize the relative severe weather potential in these
settings as a function of the convective environment. Thirty-
one near-storm convective parameters for > 200 000 WFTs
in the Southeastern United States are calculated from a high-
resolution numerical forecasting model, the Rapid Refresh
(RAP). For each parameter, the relative odds of WFT days
with at least one severe weather event is assessed along
a moving threshold. Parameters (and the values of them) that
reliably separate severe-weather-supporting from non-severe
WFT days are highlighted.

Only two convective parameters, vertical totals (VTs)
and total totals (TTs), appreciably differentiate severe-wind-
supporting and severe-hail-supporting days from non-severe
WFT days. When VTs exceeded values between 24.6 and
25.1 ◦C or TTs between 46.5 and 47.3 ◦C, odds of severe-
wind days were roughly 5× greater. Meanwhile, odds of
severe-hail days became roughly 10× greater when VTs
exceeded 24.4–26.0 ◦C or TTs exceeded 46.3–49.2 ◦C. The
stronger performance of VT and TT is partly attributed to the
more accurate representation of these parameters in the nu-
merical model. Under-reporting of severe weather and model
error are posited to exacerbate the forecasting challenge by
obscuring the subtle convective environmental differences
enhancing storm severity.

1 Introduction

Weakly forced thunderstorms (WFTs), convection forming
in synoptically benign, weakly sheared environments, are
a dual forecasting challenge. Not only is the exact loca-
tion and time of convective initiation difficult to predict,
but, once present, the successful differentiation of severe
WFTs from their benign counterparts is equally demanding.
Consequently, severe weather warnings issued on WFTs in
the US are less accurate than more organized storm modes,
such as squall lines and supercells (Guillot et al., 2008).
American operational meteorologists have coined these se-
vere WFTs “pulse thunderstorms” because the surge of the
updraft that produces the severe weather occurs in a brief
“pulse” (Miller and Mote, 2017). The United States Na-
tional Weather Service defines “severe weather” as any of
the following: winds≥ 26 ms−1, hail≥ 2.54 cm in diameter,
or a tornado.

Environments thought to support pulse thunderstorms are
typically characterized by weak vertical wind shear and
strong convective available potential energy (CAPE). How-
ever, not all weak-shear, high-CAPE environments facili-
tate pulse thunderstorms, nor are all pulse thunderstorms
confined to environments with the weakest shear and/or
strongest instability. The result is a low signal-to-noise ra-
tio (SNR) which obstructs the reliable discernment of pulse-
supporting environments. The SNR is a common discussion
point in climate variability research, where it often describes
the relative magnitudes of a climate change trend (i.e., the
signal) vs. interannual variability (i.e., the noise) (e.g., Ham-
lington et al., 2010; Sutton and Hodson, 2007; Trenberth,
1984). In our context, the “signal” refers to the true differ-
ence between the large-scale convective environments that
support severe weather and those that do not. Meanwhile,
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the “noise” represents the many processes than might cause
storms to produce (not produce) severe weather in an envi-
ronment where it was not expected (expected). Cell inter-
actions, stabilization from prior convection, surface conver-
gence, locally enhanced shear, and model error, for example,
can act as noise in the operational setting.

Prior research directed at pulse thunderstorms is limited,
and work has not typically included a representative pro-
portion of non-severe WFTs in their samples (Atkins and
Wakimoto, 1991; Cerniglia and Snyder, 2002). If the sam-
ple contains too many pulse thunderstorms, the SNR may be
artificially bolstered, results overstated, and the potential re-
liability in an operational setting diminished. For instance,
in a meta-analysis of studies pertaining to new lightning-
based storm warning techniques, Murphy (2017) found that
the studies’ reported false alarms ratios were directly propor-
tional to the fraction of non-severe storms contained in the
sample. Samples that included a realistic ratio of severe to
non-severe storms demonstrated the weakest skill scores.

Most research considering pulse thunderstorms in the
Southeastern US has typically focused on one of its primary
severe weather mechanisms: the wet microburst. Severe wet
microbursts generally occur in atmospheres characterized by
a deep moist layer extending from the surface to 4–5 kma.g.l.
(Johns and Doswell, 1992). Above the moist layer lies a mid-
level dry layer with lower equivalent potential temperature
values (θe). In wet microburst environments, the difference
between the maximum θe observed just above the surface
and the minimum θe aloft exceeded 20 K, whereas non-
microburst-producing thunderstorm days had differences less
than 13 K (Atkins and Wakimoto, 1991; Roberts and Wilson,
1989; Stewart, 1991; Wheeler and Spratt, 1995). However,
Atkins and Wakimoto (1991) examined only 14 microburst
days vs. 3 non-microburst days. Adding to the uncertainty,
James and Markowski (2010) challenged the role of mid-
level dry air in severe weather production. The results of their
cloud-scale modeling experiment indicated that, for all but
the highest instabilities tested, drier mid-level air did not cor-
respond to increased downdraft and cold pool intensity.

Building on these findings, several severe weather fore-
casting parameters have been developed to distill the atmo-
sphere’s vertical thermodynamic profile into a single value
representing the damaging wind potential. McCann (1994)
developed a microburst-predicting “wind index” (WINDEX)
to be used in the forecasting of wet downburst potential.
However, although WINDEX performed well when tested
in known microburst environments, no null cases were pre-
sented (McCann, 1994). Additional severe-wind potential in-
dices include the wind damage parameter and the microburst
index described by the United States Storm Prediction Center
(SPC; http://www.spc.noaa.gov/exper/soundings/help/index.
html, last access: 20 April 2018). Tools such as TTs, K-
index, and the Severe WEAther Threat (SWEAT) index,
among others, are also commonly used to forecast convec-
tive potential as well as the severity of thunderstorms.

However, the comparative utility of these environmental
parameters within weakly forced regimes is unclear, particu-
larly when they are tested with a realistic proportion of severe
storms. Many of the results above were obtained by analyz-
ing relatively small datasets, and they have not been tested
against each other in a weakly forced environment. There-
fore, this study seeks to compare the relative skill of con-
vective parameters using a large WFT dataset to determine
which are most appropriate for detecting environments sup-
portive of pulse-thunderstorm-related severe weather.

2 Data and methods

2.1 WFT selection and environmental characterization

This study uses the 15-year WFT dataset developed by Miller
and Mote (2017) for the Southeastern US (Fig. 1). Their de-
tection method first identifies thunderstorms as regions of
spatiotemporally contiguous composite reflectivities meeting
or exceeding 40 dBZ using connected neighborhoods label-
ing. Each thunderstorm is then assigned five morphological
attributes describing its shape, duration, intensity, etc., and all
thunderstorms are clustered into 10 morphologically similar
groups using Ward’s clustering (Ward, 1963). The compos-
ite convective environments associated with each morpho-
logical group were characterized using radiosonde observa-
tions from three launch sites in the Southeastern US. WFTs
were designated as the subset of morphological groups with
small, short-lived, diurnally driven thunderstorms that also
formed in weak-shear, strong-instability composite environ-
ments. Table 1 provides the composite kinematic and ther-
modynamic environmental characteristics for the 10 morpho-
logical groups from Miller and Mote (2017). The WFTs are
spatially referenced according to their first-detection loca-
tion, the centroid of the composite reflectivities constituting
the first appearance on radar. The storms were then paired
with severe weather reports from the publication Storm Data,
a storm event database maintained by the United States Na-
tional Centers for Environmental Information, to differenti-
ate benign WFTs from pulse thunderstorms. The entire 15-
year dataset contains 885 496 WFTs including 5316 pulse
thunderstorms.

Meanwhile, the thermodynamic and kinematic environ-
ment of each WFT was characterized using the 0 h Rapid
Refresh (RAP) analysis. The RAP, implemented on 9 May
2012, is a 13 km non-hydrostatic weather model initialized
hourly for the purpose of near-term mesoscale forecast-
ing which is operated by the United States National Cen-
ters for Environmental Prediction. The RAP uses the Na-
tional Oceanic and Atmospheric Administration (NOAA)
Gridpoint Statistical Interpolation (GSI) system to assimi-
late radar reflectivity, lightning flashes (added in version 3),
radiosonde observations, GOES cloud analysis, wind pro-
filer data, surface station observations, etc. Lateral bound-
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Figure 1. WSR-88D sites contributing to the Miller and Mote (2017) WFT climatology.

Table 1. Kinematic and thermodynamic parameters of 12:00 UTC composite soundings from Atlanta, GA, USA, for each radar-identified
morphological type in Miller and Mote (2017). Morphological types classified as WFTs are bolded. All kinematic values are shown in ms−1,
whereas the units of the thermodynamic parameters are provided in the table. Explanations for the variable abbreviations can be found in
Table 2 and Appendix A.

Type 0–6 km_SHR 0–8 km_SHR 0–12 km max wind 0–12 km mean wind ThE_LOW MLCAPE Forecast SBCAPE
(K) (Jkg−1) (Jkg−1)

1 4.3 5.1 7.2 3.0 343.0 562 1585
2 4.3 5.1 8.8 3.6 341.9 365 1214
3 4.7 6.2 9.4 3.7 340.5 289 1176
4 4.3 5.7 8.3 3.7 341.1 357 1121
5 3.2 5.1 9.6 3.2 341.7 283 1006
6 6 7.7 11.6 5.0 339.0 211 973
7 8.2 10.8 16.5 6.1 336.6 66 723
8 4.9 7.7 13.6 3.1 336.0 24 558
9 5.4 8.7 15.4 3.0 330.6 0 32
10 7.9 9.8 13.5 5.8 334.5 0 391

ary conditions are provided by the Global Forecast System
(GFS). Additional information regarding the RAP assimila-
tion system and model physics can be found in Benjamin
et al. (2016). The model has output available at 37 vertical
levels spaced at 25 hPa intervals between 1000 and 100 hPa
and 10 hPa intervals above 100 hPa. Several previous studies
have relied upon the RAP’s predecessor, the Rapid Update
Cycle (RUC; Benjamin et al., 2004), to effectively charac-
terize near-storm environments differentiating supercellular

vs. non-supercellular and tornadic vs. non-tornadic thunder-
storms (Thompson et al., 2007, 2014).

For the grid cell containing each WFT’s first-detection
location, a RAP proxy sounding was created using the
SHARPpy software package (Blumberg et al., 2017). Thus,
each proxy sounding represents the model-derived storm en-
vironment for a point no more than 13 km and 30 min distant
from the WFT first-detection location. The proxy soundings
were used to calculate 31 near-storm environmental vari-
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Table 2. List of the 31 convective parameters computed from the proxy soundings where CAPE, CIN, LCL, LFC, and EL and correspond
to convective available potential energy, convective inhibition, lifted condensation level, level of free convection, and equilibrium level,
respectively.

Abbrev. Full name Units

MLCAPE Mean-layer CAPE Jkg−1

MLCIN Mean-layer CIN Jkg−1

MLLCL Mean-layer LCL m
MLLFC Mean-layer LFC m
MLEL Mean-layer EL m
NCAPE Normalized MLCAPE ms−2

K_IND K index ◦C
TT Total totals ◦C
CT Cross totals ◦C
VT Vertical totals ◦C
PW Precipitable water mm
HGT0 Height of 0 ◦C temperature isotherm hPa
ApWBZ Approximate height of 0 ◦C wet bulb temperature m
W_LOW Mean low-level mixing ratio gkg−1

W_MID Mean mid-level mixing ratio gkg−1

RH_LOW Mean low-level relative humidity –
RH_MID Mean mid-level relative humidity –
ThE_LOW Mean low-level θe K
ThE_MID Mean mid-level θe K
ML_BRN Mean-layer bulk Richardson number –
Tc Convective temperature ◦C
PEFF Precipitation efficiency –
DCAPE Downdraft CAPE Jkg−1

WNDG Wind damage parameter –
TEI θe index ◦C
MICROB Microburst composite index –
SWEAT Severe weather and threat index –
0–3 km_SHR 0–3 km vertical wind shear ms−1

0–6 km_SHR 0–6 km vertical wind shear ms−1

0–8 km_SHR 0–8 km vertical wind shear ms−1

EBWD Effective layer vertical wind shear ms−1

ables and indices, a complete list of which is provided in Ta-
ble 2 with more thorough descriptions in Appendix A. The
31 variables were largely selected by virtue of their acces-
sibility in SHARPpy. Four warm seasons of the Miller and
Mote (2017) dataset, containing 228 363 WFTs and 1481
pulse thunderstorms, overlapped with the RAP’s operational
archive period, allowing> 6 million near-storm parameters
to contribute to the analysis.

2.2 RAP error assessment

Thompson et al. (2003) demonstrated the suitability of the
RUC, version 2 (RUC-2), to represent storm environments
as evaluated using co-located radiosonde observations, and
the Benjamin et al. (2016) RAP validation statistics show
that the RAP is more accurate than its predecessor. Figure 2a
shows the results of an error evaluation specific to the pur-
poses of this study. Vertical error profiles were calculated for

3562 co-located RAP predictions and observed radiosonde
profiles in the Southeastern US. The comparisons contain
00:00 and 12:00 UTC soundings during the warm season
(May–September) between 2012 and 2015 at three launch
sites along a north–south trajectory through the Miller and
Mote (2017) domain: Nashville, TN, Peachtree City, GA, and
Tampa, FL, corresponding to US radar identification codes
KOHX, KFFC, and KTBW in Fig. 1. The synoptic station
codes for these three sites are the same as their US radar
identifications with the exception of Nashville, whose syn-
optic code is KBNA.

Similar to the Thompson RUC-2 analysis, the greatest, al-
beit small, temperature and moisture biases (mean errors)
from the RAP reside near the surface and the upper atmo-
sphere (Fig. 2a). Aided by the large sample of comparison
soundings, the 95 % confidence intervals indicate that the
true bias of the selected RAP output variables at these sites
can be estimated with reasonable confidence. The 95 % mix-
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Figure 2. Vertical profiles of RAP output errors measured by co-
located radiosonde observations (a). Errors were calculated at 1000,
925, 850, 700, 500, 300, and 200 hPa. The 95 % confidence interval
for the mean error (solid lines) is shaded. Box plots of the result-
ing error for six derived quantities is shown in panels (b–d). The
interquartile range (IQR), representing the middle 50 % of values,
is depicted by the gray box. Values lying more than 1.5× IQR from
the median (red line) are marked with dots.

ing ratio confidence interval captures zero at all altitudes ex-
cept 500 hPa, where the RAP predicted drier-than-observed
values by 0.08 gkg−1. Temperatures are warmer than ob-
served throughout most of the troposphere with a maximum
bias of 0.26 ◦C at 850 hPa. In contrast, the RAP underes-
timated wind speeds on average throughout the depth of
the troposphere. The largest bias, 0.46 ms−1, was found at
925 hPa with similar errors above 500 hPa. The 95 % con-
fidence interval for wind speed error is largest near the
tropopause and demonstrates larger uncertainty than for tem-
perature and mixing ratio. These results generally agree with
the error statistics provided by Benjamin et al. (2016), and
the reader should reference that paper for additional infor-
mation, including validation statistics, about the RAP.

Although the RAP appears to resolve temperature, mix-
ing ratios, and wind speeds more accurately than the RUC-

Table 3. RAP error statistics for surface-based CAPE (SBCAPE)
and several of the variables listed in Table 2. The statistics are pre-
sented similarly to Thompson et al. (2003) by providing the mean
RAP-derived value, the mean arithmetic error (bias), and the mean
absolute error (MAE).

Parameter Mean Bias MAE R2

SBCAPE 1354.3 141.3 530.4 0.59
MLCAPE 943.4 112.6 338.0 0.64
MLLCL 1077.4 −32.9 151.8 0.82
Total totals 44.8 0.51 1.54 0.74
TEI 21.1 −2.30 3.80 0.69
0–3 km shear 6.33 −0.48 1.38 0.82
0–6 km shear 8.39 −0.28 1.40 0.88

2, the transmission of these errors onto the derived convec-
tive parameters can be large. Table 3 expresses error mea-
sures for surface-based (SBCAPE) and mean-layer CAPE
(MLCAPE), 0–3 km and 0–6 km wind shear, TTs, and TEI.
Because the focus of this study is surface-based convec-
tion, only days when the observed surface-based CAPE was
greater than zero were used to calculate the derived quan-
tity error metrics. Similar to previous work (e.g., Lee, 2002),
parameters calculated via the vertical integration of a parcel
trajectory, such as CAPE, are sensitive to errors in low-level
temperature and moisture. The RAP’s low-level temperature
and moisture biases influence the lifted condensation level
(LCL) calculation (negative MLLCL bias; Table 3) yielding
a premature transition to the pseudo-adiabatic lapse rate and
an overestimate of parcel instability (positive SBCAPE and
MLCAPE biases; Table 3)1. Thompson et al. (2003) iden-
tified smaller CAPE errors generated by the RUC-2; how-
ever, the nature of the thermodynamic environments being
examined is significantly different in this study. Similar to
the RUC-2, the RAP is more adept at representing MLCAPE
than SBCAPE with Fig. 2b and, consequently, the mean-
layer parcel trajectory will be used for all parcel-related cal-
culations.

In some cases, RAP proxy soundings may have been con-
taminated by premature convective overturning within the
model. However, because the RAP assimilates radar reflec-
tivity from the US (Benjamin et al., 2016), the 0 h RAP
analysis fields should generally mirror the radar-observed ar-
eas of convection. Additionally, any such instances will be
dampened by the methodological design decision to aggre-
gate all proxy soundings on a daily level, as will be described
in Sect. 2.3. The accuracy of the proxy soundings could
be improved by employing a convection-permitting numer-

1The near-surface temperature and moisture errors in Fig. 2a
are more pronounced following the upgrade to RAPv2 in Febru-
ary 2014. However, because the RAP is an operational tool and this
work has operational relevance, no attempt was made to correct for
this change.
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Figure 3. Comparison of observed (a) vs. RAP-derived (b) soundings for a case when the MLCAPE discrepancy exceeded 1000 Jkg−1

(observed: 1028 Jkg−1; RAP: 2051 Jkg−1). Minor mischaracterizations of low-level moisture contributed to a large response in MLCAPE
during the vertical integration of the parcel trajectory.

ical model, such as the 3 km High-Resolution Rapid Refresh
(HRRR). By explicitly modeling deep convection, the HRRR
would limit convective contamination by more closely repre-
senting areas of thunderstorm activity. At the time of publi-
cation, the absence of a publicly accessible HRRR archive
prevented its application in this research.

Figure 2b–d demonstrate that although large outliers cer-
tainly occur, the majority of RAP-derived thermodynamic
and kinematic parameters are concentrated within a narrower
range of error. Figure 3 provides an example skewT-logP di-
agram for a large MLCAPE error shown in Fig. 2d. Though
the difference in this case exceeded 1000 Jkg−1, the discrep-
ancy can largely be attributed to the RAP’s minor mischarac-
terization of low-level moisture. Otherwise, the depiction of
the vertical profile is reasonably accurate. The advantage of
the RAP to represent the near-storm environment is under-
scored when compared to results from coarser-scale models.
For instance, the coefficients of determination (R2) for RAP-
derived SBCAPE and MLCAPE are appreciably larger than
those calculated from the 32 km horizontal and 3 h tempo-
ral resolution North American Regional Reanalysis (NARR;
Mesinger et al., 2006) in Gensini et al. (2014).

2.3 Assessing convective parameter skill

The quality of severe weather reports is a significant im-
pediment to severe storm research (e.g., Miller et al., 2016;
Weiss et al., 2002), particularly regarding the certainty with
which non-severe storms can be declared non-severe. These
storms may only appear benign because their associated se-
vere weather was not reported. Consequently, the results of

the proxy soundings are subdivided by nearest radar site
(Fig. 1) and aggregated daily (12:00–12:00 UTC) by com-
puting the mean parameter value associated with all WFTs
forming within each polygon on a given day. Days containing
at least one severe weather report are considered supportive
of severe weather, whereas days with no severe weather re-
ports will serve as the control. This approach is similar to the
methods the Hurlbut and Cohen (2013) study of severe thun-
derstorm environments in the Northeastern US. Severe-wind-
supporting (SWS) days and severe-hail-supporting (SHS)
days are treated separately because their thermodynamic en-
vironments have been shown to contain unique elements
related to downdraft and hailstone production (Johns and
Doswell, 1992). Table 4 provides the specific subdivision de-
tails of the frequency of WFT days, SWS days, SHS days,
and their respective control days. Figure 4 shows the annual
average of WFT days for each radar site within the study
area during the 2012–2015 warm seasons. As expected, WFT
days are most frequent along coastlines and the Appalachian
Mountains (Miller and Mote, 2017).

Given the low SNR in WFT environments, t tests are de-
ceiving. Statistically significant differences in the mean val-
ues of parameters on severe vs. non-severe days are routinely
reported, but the considerable overlap between the distribu-
tions (e.g., Craven and Brooks, 2004; Taszarek et al., 2017)
can remove much practical value. This study explores the
relationship between convective parameters and pulse thun-
derstorm environments by means of an odds ratio (OR; e.g.,
Fleiss et al., 2003). The OR is a common measure of con-
ditional likelihood in human health and risk literature (e.g.,
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Figure 4. Average number of WFT days during the 4-year study period (a) compared to the proportion of WFT days affiliated with severe-
wind (b) and severe-hail (c) events.

Bland and Altman, 2000) with precedence in the atmospheric
sciences (e.g., Black and Mote, 2015; Black et al., 2017). The
OR looks past the descriptive statistics of the severe vs. non-
severe distributions and more directly compares differences
in where the data are concentrated within the distributions.

Equation (1) shows the standard definition of the OR, es-
sentially the ratio of two ratios:

OR =
A/C

B/D
, (1)

where the numerator represents the ratio of events (A) to non-
events (C) when a condition is met, whereas the denominator
is the ratio of events (B) to non-events (D) when the same
condition is not satisfied. In this context, “events” are SWS
or SHS days whereas “non-events” would be the respective
control days. Higher ORs indicate that events are more fre-
quent (relative to non-events) when the condition is met, or
conversely, that events are less frequent when the condition is
not met. For this study, a condition might be a convective pa-
rameter exceeding a specified threshold. For instance, if the
SWS OR equals 4 for the condition MLCAPE> 1000 Jkg−1,

then the odds of an SWS day are 4× greater when ML-
CAPE is greater than 1000 Jkg−1 than when it is less than
1000 Jkg−1.

We employ a modified form of the OR in which both the
numerator and denominator are standardized by the clima-
tological ratio of events to non-events (Eq. 2), allowing the
components of the OR to be separated and interpreted inde-
pendently by comparison to climatology.

OR =
A/C

(A+B)/(C+D)

B/D
(A+B)/(C+D)

(2)

The modification does not change the value of the quotient
OR, but it does improve the interpretability of the numer-
ator and denominator. When the numerator or denominator
is near 0 (1), then the odds of SWS or SHS days are much
lower than (nearly equal to) climatology. The climatological
odds ratio was 0.069 for SWS days and 0.025 for SHS days.
A 95 % confidence interval for the OR was calculated using
the four-step method presented in Black et al. (2017).
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Table 4. WFT, SWS, and SHS day frequency by radar site.

Site WFT days Wind control SWS days % SWS Hail control SHS days % SHS

KAKQ 376 351 25 6.6 363 13 3.5
KAMX 581 569 12 2.1 575 6 1.0
KBMX 376 364 12 3.2 372 4 1.1
KCAE 401 339 62 15.5 377 24 6.0
KCLX 450 407 43 9.6 440 10 2.2
KDGX 426 403 23 5.4 416 10 2.3
KEOX 384 366 18 4.7 382 2 0.5
KEVX 467 449 18 3.9 463 4 0.9
KFCX 408 318 90 22.1 370 38 9.3
KFFC 400 358 42 10.5 387 13 3.3
KGSP 417 334 83 19.9 383 34 8.2
KGWX 362 349 13 3.6 354 8 2.2
KHPX 299 282 17 5.7 294 5 1.7
KHTX 373 343 30 8.0 369 4 1.1
KJAX 555 520 35 6.3 546 9 1.6
KJGX 384 356 28 7.3 377 7 1.8
KLIX 504 492 12 2.4 501 3 0.6
KLTX 452 439 13 2.9 444 8 1.8
KMHX 497 496 1 0.2 495 2 0.4
KMLB 540 532 8 1.5 532 8 1.5
KMOB 451 444 7 1.6 446 5 1.1
KMRX 415 349 66 15.9 384 31 7.5
KMXX 357 346 8 2.2 350 4 1.1
KNQA 356 336 20 5.6 345 11 3.1
KOHX 349 336 13 3.7 345 4 1.1
KPAH 330 305 25 7.6 318 12 3.6
KRAX 367 337 30 8.2 355 12 3.3
KTBW 546 525 21 3.8 535 11 2.0
KTLH 482 461 21 4.4 479 3 0.6
KVAX 457 430 27 5.9 452 5 1.1

Mean 425 398 27 6.7 415 10 2.5

3 Results

3.1 Convective environments of pulse thunderstorm
wind events

During the 4-year study period, pulse thunderstorm wind
events were documented somewhere in the study area on
49 % of WFT days, although the average frequency within
any single subdivision was 6.7 % (Table 4). Table 5 shows the
31 convective parameters analyzed from the proxy soundings
as well as the number of subdivisions for which each param-
eter is a statistically significant differentiator of SWS days.
A significance threshold of p< 0.10 guided the selection of
potentially useful parameters which would be examined in
more detail. Nine of the 31 variables are statistically signifi-
cant across at least two-thirds of the study area: VT, TT, ML-
CAPE, MLLCL, MICROB, DCAPE, TEI, RH_LOW, and
ThE_LOW.

Figure 5a–h depict the distributions for several parameters
from Table 5 for control vs. SWS days. These eight parame-

ters are significant across much of the domain (VT and TT),
demonstrate larger relative changes on SWS days (MLCAPE
and MLLCL), and/or are traditional operational severe-wind
forecasting tools (DCAPE, TEI, WNDG, MICROB). How-
ever, as the distributions clearly illustrate, any difference in
the mean values between the control days and SWS days is
small compared to the spread about their means. This results
in the characteristically low SNR described in the Sect. 1.
Any attempt to establish a forecasting value indicative of
pulse-wind potential will yield many missed events occur-
ring beneath the threshold and/or false alarms associated with
control days above it.

Thus, Fig. 6 employs the OR to characterize the relative
skill that some knowledge of the convective environment can
contribute to a severe vs. non-severe designation. For each
variable in Fig. 5, a progressively larger value is selected,
and the OR is calculated at each step. Figure 6 displays the
OR as well as both the numerator and denominator terms for
each iteration. High ORs can often result when a near-zero
number of severe events exist below the threshold inflating
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Figure 5. Box plots of selected convective parameters that demonstrated skill in differentiating between the control days and SWS days.

Figure 6. ORs for the same eight convective parameters shown in Fig. 5. Whenever the OR, defined by Eq. (2), results from a numerator (red)
≥ 2 and a denominator (blue)≤ 0.5, then the OR is drawn in black. The left y axis expresses values corresponding to the OR’s numerator and
denominator (red and blue lines), and the right y axis corresponds to the OR value (gray line). At very low and very high threshold values,
the variance of the OR may be undefined, and the 95 % OR confidence interval cannot be computed.

the OR calculation. In these situations, the OR is indicating
that severe weather is very unlikely rather than that the severe
weather risk is enhanced. These results are not particularly
useful because forecasters would not have needed a decision-
support tool in these environments in the first place. Ideally,

large ORs will result when the numerator indicates an ap-
preciable increase against the climatology while the denom-
inator simultaneously indicates an appreciable decrease be-
low climatology. Further, these ORs would ideally occur in
a range where the severe weather risk may be uncertain. In
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Table 5. Summary of convective parameters on SWS days. The
“sites” column indicates the number of spatial subdivisions within
which the difference between the SWS mean and the control mean
was accompanied by p< 0.10; the “percent change” column shows
the relative increase or decrease of the mean on SWS days.

Parameter Sites Percent change

VT 28 5.1
TT 27 4.2
MLCAPE 25 31.2
MICROB 23 44.0
DCAPE 22 17.3
TEI 22 13.1
MLLCL 21 12.9
ThE_LOW 21 0.9
RH_LOW 20 −5.5
WNDG 19 41.2
CT 19 3.2
Tc 19 5.8
MLEL 18 8.0
SWEAT 14 7.8
W_LOW 10 3.0
K_IND 8 3.8
RH_MID 7 −3.2
ThE_MID 6 0.1
PEFF 6 −3.8
0–6 km_SHR 6 −4.5
0–8 km_SHR 6 −6.5
ApWBZ 5 −0.5
HGT0 4 0.1
W_MID 3 0.0
MLBRN 3 −0.7
NCAPE 2 23.9
PW 2 0.9
0–3 km_SHR 2 −1.2
MLCIN 0 6.6
MLLFC 0 0.9
EBWD 0 −1.9

Fig. 6, the OR is shown in a gray line, but the line is drawn
in black whenever the OR results from a numerator ≥ 2 and
a denominator ≤ 0.5. ORs resulting from this combination
indicate that the threshold yields a simultaneous 2-fold in-
crease (decrease) in the odds of SWS days above (below) the
specified value. These ORs will be hereon referenced as “2-
fold” ORs and represent a goal scenario.

Figures 6a–h show ORs for the same eight parameters in
Fig. 5. Of all eight parameters, only VT and TT achieve 2-
fold ORs for any range of thresholds, as indicated by the
black segments in Fig. 6a and b. The maximum 2-fold OR
for VT is 5.16 at 24.6 ◦C, meaning that the odds of an SWS
day are 5.16× greater when this threshold is met. TT offers
slightly more skill with a maximum 2-fold OR of 5.70 at
46.5 ◦C. As described in Appendix A, VTs and TT s are rela-
tively primitive indices. VT is purely a temperature lapse rate
whereas TT is predominantly a measure of lapse rate with an

additional dew point term included. Meanwhile, MLCAPE
and MLLCL demonstrate consistently lower ORs between 2
and 4. The four wind-specific variables in Fig. 6e–h are rela-
tively poor differentiators of SWS days in the WFT regime.
The maximum OR achieved by any of these parameters is
approximately 10 driven by very low values of DCAPE with
corresponding wide confidence intervals.

Though ORs are greater at lower VT and TT thresholds,
these values are also somewhat common. Placing the afore-
mentioned values (24.6 and 46.5 ◦C, respectively) in the con-
text of the 12 759 WFT environments included in this study,
they represent the 58.8th and 58.9th percentiles of their dis-
tributions. Alternatively, the maximum VT threshold that
yields a 2-fold OR is 25.1 ◦C, which corresponds to the
70.9th percentile of all VTs in the dataset; however, the OR
for this value is smaller, 4.77. This result illustrates the trade-
off involved by seeking climatologically exceptional values
to serve as guidance. As greater values are selected as the
threshold, meteorologists can focus on a fewer number of
days. However, the OR decreases as more severe weather
events occur in environments not satisfying the threshold.
As for TT, the maximum 2-fold OR value is 47.3 ◦C, corre-
sponding to the 70.6th percentile, but demonstrates an OR of
5.16. This means that when TT meets or exceeds 47.3 ◦C, the
odds of a pulse thunderstorm severe-wind event are 5.16×
greater than when it does not.

3.2 Convective environments of pulse thunderstorm
hail events

Table 6 replicates Table 5 except for SHS days. Many of
the same parameters that are statistically significant differ-
entiators of SWS days also rank high for SHS days. How-
ever, fewer parameters in Table 6 are statistically significant
over two-thirds of the domain. Whereas 10 parameters in
Table 5 showed spatially expansive statistical skill on SWS
days, only three quantities do so on SHS days. We attribute
this result to the pattern in Table 4 and Fig. 4b and c whereby
there are fewer SHS days than SWS days, which increases
uncertainty related to the statistical tests and makes it harder
to confidently detect differences.

Nonetheless, VT and TT are once again skillful differen-
tiators and are now joined by their related parameter CT.
Additionally, several new convective variables demonstrate
statistical significance across roughly half of the domain on
SHS days that demonstrated little skill on SWS days: PW,
PEFF, HGT0, and ApWBZ. For comparison, Fig. 7a–d du-
plicate Fig. 5a–d, now comparing distributions between the
control and SHS days, while Fig. 7e–h display box plots
for the SHS-specific convective parameters listed above. The
distributions for MLCAPE and MLLCL are similar; how-
ever, there is a larger separation between control and SHS
days for VT and TT than was apparent on SWS days. This
observation is corroborated by the relative changes in VT
and TT on SHS days that are several percentage points larger
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Figure 7. Same as Fig. 5 except for SHS days. Panels (a–d) replicate the same variables shown in Fig. 5, whereas (e–h) are replaced with
four SHS-specific parameters from Table 6.

than for SWS days (Table 6). PW, PEFF, HGT0, and ApWBZ
demonstrate smaller differences.

Figure 8 replicates Fig. 6 except by representing SHS days
and substituting the four wind-specific parameters (DCAPE,
TEI, WNDG, MICROB) with the four hail parameters listed
above (PW, PEFF, HGT0, ApWBZ). The ORs for VT and
TT are large, greater than 10, throughout the entire range
of thresholds tested, and contain larger swathes of 2-fold
ORs. The maximum 2-fold OR for VT is 13.1 at 24.4 ◦C,
and the maximum VT threshold that achieves a 2-fold OR
is 26.0 ◦C with an OR of 9.61. These values relate to
the 53.4th and 86.0th percentiles of the VT distribution.
As for TT, the maximum 2-fold OR is 14.98 at 46.3 ◦C,
and the maximum 2-fold-OR threshold is 49.2 ◦C with an
OR of 11.79. These two TT cutoffs translate to the 55.7th
and 88.4th percentiles. Similar to SWS days, MLCAPE
and MLLCL show little skill with ORs generally between
1 and 2. PW, PEFF, HGT0, and ApWBZ perform more ca-
pably than MLCAPE and MLLCL; however, they do not
produce any 2-fold ORs. Values for these metrics are gen-
erally around 4 with several instances of higher ORs driven
by a small denominator with wide 95 % confidence intervals.

3.3 Separating marginal pulse thunderstorm days

Because the severe weather generated by pulse thunder-
storms is often near the lower limit used to define severe
weather in the United States, some pulse thunderstorm en-
vironments may closely resemble non-severe regimes. Con-
sequently, the influence of these “marginal” pulse thunder-

storm days on the OR analysis is further scrutinized. For
this purpose, “marginal” SWS and SHS days are defined as
those on which only one severe wind or hail report was re-
ceived. Marginal days constitute 48.7 % of the SWS days and
57.7 % of the SHS days in Table 4. Figure 9 replicates the
OR analysis for VT and TT, the two most promising envi-
ronmental parameters from Sects. 3.1 and 3.2, but with only
marginal SWS and SHS days being considered. Comparing
Figs. 6a and b and 8a and b to Fig. 9, marginal SWS and SHS
days resemble the OR patterns of the broader set of SWS
(Fig. 6a and b) and SHS (Fig. 8a and b) days. Though the
ORs for the marginal subset are slightly smaller than for the
broader group, they bear similar OR patterns as the thresh-
olds are increased. Overall, marginal SWS and SHS days are
generally characterized by similar VT and TT values as when
all SWS and SHS days were aggregated. Corroborating this
finding, an OR analysis comparing marginal SWS and SHS
days to those with> 1 severe event (not shown) revealed that
ORs generally remained near 1 regardless of the VT or TT
threshold selected. Thus, although marginal pulse thunder-
storm days are by no means easily distinguishable from non-
severe WFT days, they do not appear to be particularly more
challenging to differentiate than active pulse thunderstorm
days.

4 Discussion

The relative changes in the convective variables in Table 5 on
SWS days vs. control days correspond well to previous mi-
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Figure 8. Same as Fig. 6 except for SHS days. Panels (a–d) replicate the same variables shown in Fig. 6, whereas (e–h) are replaced with
four SHS-specific parameters from Table 6. At very low and very high threshold values, the variance of the OR may be undefined, and the
95 % OR confidence interval cannot be computed.

Figure 9. Same as Fig. 6a and b (a, b) and Fig. 8a and b (c, d) except that only marginal SWS and SHS days are used to calculate the OR. At
very low and very high threshold values, the variance of the OR may be undefined, and the 95 % OR confidence interval cannot be computed.

croburst research. Compared to the non-severe control days,
SWS days are characterized by a drier near-surface layer
(i.e., lower RH, higher LCLs). Simultaneously, steep mid-
level lapse rates (i.e., larger VT and TT) aid an increase in
CAPE which supports stronger updrafts. As the strong up-
draft transitions to a downdraft-dominant storm, the drier sur-

face layer supports evaporative cooling, downdraft accelera-
tion, and severe outflow winds. This same conceptual model
has been promoted by previous severe convective wind re-
search (e.g., Atkins and Wakimoto, 1991; Kingsmill and
Wakimoto, 1991; Wolfson, 1988).
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Table 6. Same as Table 5, except for SHS days.

Parameter Sites Percent change

VT 27 8.0
TT 27 7.5
CT 21 7.1
PEFF 16 −11.0
MLLCL 15 13.2
HGT0 14 2.4
ApWBZ 14 −6.0
RH_LOW 14 −5.3
DCAPE 13 23.3
MLCAPE 12 28.8
PW 12 −6.7
W_MID 11 −9.2
ThE_MID 10 −0.7
WNDG 10 27.4
RH_MID 9 −7.8
TEI 7 10.4
MICROB 7 21.6
SWEAT 7 10.1
W_LOW 6 −2.1
Tc 6 3.2
0–6 km_SHR 6 9.7
0–8 km_SHR 5 6.9
MLEL 4 3.8
K_IND 3 2.7
ThE_LOW 3 −0.1
0–3 km_SHR 3 5.3
NCAPE 1 27.0
MLCIN 1 17.7
MLLFC 1 4.1
MLBRN 1 −15.8
EBWD 1 9.5

The results of SHS days also support previous findings
(Johns and Doswell, 1992; Moore and Pino, 1990; Púčik
et al., 2015). The distributions in Fig. 7 (and relative changes
in Table 6) indicate that SHS days are characterized by rel-
ative decreases in PW, a lower freezing level, a lower wet-
bulb freezing level, and dry near-surface air. Smaller PWs re-
sult in less waterloading and greater parcel buoyancy (larger
VT, TT, and MLCAPE), which maximizes updraft strength.
Meanwhile, lower freezing levels and a dry layer between
1000 and 850 hPa support evaporative cooling which can to-
gether yield a lower wet-bulb zero height and limit hail stone
melting during its descent to the surface. Interestingly, these
two concepts are both represented in the PEFF calculation
(Appendix A), which was not developed as a hail indicator.
PEFF as defined by Noel and Dobur (2002) equals the prod-
uct of PW and the mean 1000–700 hPa RH. As both values
decrease, PEFF becomes smaller and hail is more likely for
the reasons stated above.

The poor performance of MLLCLs and MLCAPEs in dif-
ferentiating SWS and SHS days from their controls is sur-

prising given their prominence in severe storm forecasting.
One possibility is that the daily aggregation of MLCAPEs
may have smoothed out locally higher values near the WFTs
that were responsible for severe weather production. Alter-
natively, VT and TT were among the strongest indicators
of both SWS and SHS days. Recalling from Sect. 2.2, VT
and TT are also very well represented by the RAP. TTs were
replicated by the model with a< 1 ◦C bias and a MAE repre-
senting only 3 % of the average value (Table 3). Additionally,
mid-level temperatures, from which VT is computed, also
compared very well to the observed soundings (Fig. 2a). The
strong performance of VT and TT compared to other more
heavily moisture-weighted metrics may be due to their more
accurate representation in the proxy soundings.

Regardless, because the severe weather SNR is already
low in WFT environments, any systematic error introduced
by the data source (in this case the RAP) may significantly
dampen, or even remove, whatever environmental differ-
ences exist. As Sect. 2.2 indicated and previous work has
also concluded, low-level moisture biases can impede the ac-
curate calculation of convective parameters relying on those
terms (e.g., Gensini et al., 2014; Thompson et al., 2003). In
this study, MLCAPE, MLLCL, PW, PEFF, and others were
vulnerable to such errors. The poorer performance of these
variables’ ORs (relative to the lapse-rate-based parameters)
and the sensitivity of PW, PEFF, and ApWBZ to simulated
RAP errors suggests that model inaccuracies may be ob-
scuring their potential skill to detect weakly forced severe
weather environments. The perception of the WFT environ-
ment as a difficult-to-forecast regime may partly be driven by
model inconsistency exacerbating an already small SNR.

Another confounding factor is the quality of the Storm
Data severe weather reports. Section 3.3 discussed that
marginal SWS and SHS days are more similar to days
with> 1 report than days with no reports. Thus, the basis for
the similarity may be that severe weather was simply under-
reported on “marginal” days. Extending this logic, the pulse
regime’s low SNR may also be partially attributed to under-
reporting of severe weather on “non-severe” days. Given
that the severe weather generated by pulse convection is of-
ten short-lived, isolated, and narrowly exceeds severe crite-
ria, the notion that some pulse-related severe weather events
go undetected is likely. If some “non-severe” days existing
above the tested parameter thresholds in Figs. 6 and 8 did
in fact host severe weather, then the ORs would have been
larger than those found in Sects. 3.1 and 3.2.

5 Conclusions

Hazardous weather within WFT environments is character-
ized by a lower SNR than other severe thunderstorm regimes.
Though past research has developed promising tools for
forecasting pulse thunderstorm environments, their relatively
small samples sizes may have understated the SNR and, by
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corollary, overstated the reliability of their tools. With re-
cent research suggesting that the performance of new severe
weather forecasting tools is closely tied to the proportion of
non-severe thunderstorms in the sample (Murphy, 2017), this
study sought to test the relative skill of 31 convective fore-
casting parameters using realistic proportions of severe and
non-severe WFT environments (severe: 7.9 %; non-severe:
92.1 %). Future research may consider broadening the meth-
ods of Murphy (2017) to standardize the skill values across
previous studies of severe convective environments.

Only 13 (5) of the 31 convective parameters tested were
statistically significant (p< 0.10) differentiators of SWS
(SHS) days across at least half of the domain. Though the
distinctive variables for SWS and SHS days were consistent
with previous theories of severe microburst and hail forma-
tion, considerable overlap between the distribution of values
on severe and non-severe days is problematic. Similarities
between the SWS, SHS, and their corresponding control dis-
tributions inhibit consistent identification of pulse thunder-
storm potential based on the value of any individual param-
eter. Nonetheless, VT and TT did perform more skillfully
than the others. When VTs exceed values between 24.6 and
25.1 ◦C or TTs between 46.5 and 47.3 ◦C, the relative odds
of a wind event increases roughly 5×. Meanwhile, the odds
of a hail event become roughly 10× greater when VTs ex-
ceed values between 24.4 and 26.0 ◦C or TTs between 46.3
and 49.2 ◦C.

The noteworthy performance of VT and TT, two quanti-
ties calculated from the more reliable RAP output fields, is
unlikely a coincidence. Our findings suggest that the already
weak severe weather SNR in WFT environments is exac-
erbated by model limitations in the low-level moisture and
temperature fields. Meteorologists may perhaps alleviate the
challenges of the WFT environment by examining convective
parameters that are well-represented by models, such as VT,
TT, and other measures of lapse rate. Future research might
seek to track the transmission of the model errors through
calculation of forecast skill statistics and more concretely as-
certain the contribution of model error to the SNR.

Data availability. The radar archive used to identify thunderstorm
activity over the Southeastern US is maintained by the United
States National Centers for Environmental Information (NCEI), and
can be accessed via the following publicly available URL: https:
//www.ncdc.noaa.gov/nexradinv/ (NCEI, 2018). The NCEI also
hosts a publicly accessible database of Rapid Refresh analyses (ftp:
//nomads.ncdc.noaa.gov/RUC/analysis_only/, NCEP, 2018), which
were used to construct the proxy soundings.
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Appendix A:

Table A1. Additional detail describing the convective parameters in
Table 2.

Parameter Comments

MLCAPE
MLCIN
MLLCL Mean-layer parcel mixed over the lowest 100 hPa
MLLFC
MLEL
NCAPE MLCAPE/MLEL
K_IND T850− T500+ Td850− (T700− Td700)
TT CT+VT
CT Td850− T500
VT T850− T500
PW Depth of liquid water if all water vapor were condensed from the sounding
HGT0 Pressure level of the 0 ◦C isotherm
ApWBZ Height above ground level of the RAP pressure level with the wet bulb temperature nearest to 0 ◦C
W_LOW Mean mixing ratio between 1000 and 850 hPa
W_MID Mean mixing ratio between 850 and 500 hPa
RH_LOW Mean RH between 1000 and 850 hPa
RH_MID Mean RH between 850 and 500 hPa
ThE_LOW Mean θe from 1000 to 850 hPa
ThE_MID Mean θe from 850 to 500 hPa
ML_BRN Bulk Richard number of the mean-layer parcel
Tc Temperature of parcel lowered dry adiabatically from the convective condensation level
PEFF As defined by Noel and Dobur (2002). PEFF equals the product of PW and the mean 1000–700 hPa RH.
DCAPE Downdraft CAPE with respect to parcel with the minimum 100 hPa layer-averaged θe found in the lowest

400 hPa of the sounding.
WNDG (MLCAPE)/2000·(0–3 km lapse rate)/9·(1–3.5 km mean wind)/15·[(MLCIN +50)/40]. Values larger than 1

indicate an increased risk for strong outflow gusts.

TEI Difference between the surface θe and the minimum θe value in the lowest 400 hPaa.g.l.
MICROB Weighted sum of the following individual parameters: surface θe, SBCAPE, surface-based lifted index, 0–3 km

lapse rate, VT, DCAPE, TEI, and PW. Values exceeding 9 indicate that microbursts are likely.
SWEAT 12(Td850)+ 20(T T − 49)+ 2(U850)+ (U500)+ 125[sin(Udir500−Udir850)+ 0.2]
0–3 km_SHR Magnitude of vector shear between surface and 3 kma.g.l.
0–6 km_SHR Magnitude of vector shear between surface and 6 kma.g.l.
0–8 km_SHR Magnitude of vector shear between surface and 8 kma.g.l.
EBWD Magnitude of vector shear between effective inflow base and one half of the MU equilibrium level height
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