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Response to Referee #1 

We thank Dr. Púčik for his helpful comments. In our reply below, referee comments are 

shown in black text whereas our corresponding responses are shown in red italics.  

Summary: 

Authors present an interesting research on one of the more challenging tasks for forecasters - how 

to recognize the potential for severe thunderstorms in weakly sheared / forced environments. They 

also use a novel approach trying to set thresholds of parameters to differentiate between nonsevere 

and severe events. Paper is well structured and after some minor revisions to the contents it should 

be ready for publication.  

Thank you reviewing our paper. We appreciate your feedback, and a revised manuscript will largely 

incorporate your comments. 

Introduction 

Line 53: I am pretty sure that the criterion for large hail is 2.56 and not 0.56 cm. 

 Thank you for catching this error. It will be corrected in a revision. 

See line 55 in revision. 

Line 59: Authors use "signal to noise ratio" throughout the paper. Introduction to the term is made 

here. I am wondering, has anyone used this term in forecasting before? Or are authors introducing 

it? If not, references should be made. 

This term is common in climate variability contexts; however, we have not identified any regular forecasting 

applications in contexts smaller than the seasonal scale. We will add references supporting its use in climate 

forecasting such as: 

Sutton, R. T., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the 
North Atlantic Ocean. J. Climate, 20, 891-907, doi:10.1175/JCLI4038.1. 

Hamlington, B. D., R. R. Leben, R. S. Nerem, and K. Y. Kim, 2010: The effect of signal-to-noise ratio on 
the study of sea level trends. J. Climate, 24, 1396-1408, doi:10.1175/2010JCLI3531.1. 

Trenberth, K. E., 1984: Signal versus noise in the Southern Oscillation. Mon. Wea. Rev., 112, 326-332, 
doi:10.1175/1520-0493(1984)112<0326:SVNITS>2.0.CO;2. 

 
See lines 62-65 in revision. 

 

Line 62: Should be represents instead of is represented? 

This will be corrected in a revision. 

See line 67 in revision. 

Line 95: SWEAT - Severe WEAther Threat (without and) 

This will be corrected in a revision. 

See line 101 in revision. 
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Methods 

Line 107: I understand that the dataset of weakly forced thunderstorms itself is now published 

somewhere else, but I strongly suggest that authors at least briefly introduce the definition of weakly 

forced environment. It would help the reader to better understand the paper. 

We will add the table below to help the reader better envision the kinematic and thermodynamic environments 

that were considered “weakly forced”. These convective parameters were computed by Miller and Mote (2017) 

from composite soundings in Atlanta, GA, on days when each morphological type is dominant. The reader 

does not necessarily need understand the exact meaning of the “morphological type” to compare the values 

between the WFT and non-WFT environments.  

Table 1. Kinematic and thermodynamic parameters of 1200-UTC composite sounding from 

Atlanta, Georgia, USA, for each radar-identified morphological type in Miller and Mote 

(2017). Morphological types classified as WFTs are bolded. All kinematic values are shown 

in m s-1 whereas the units of the thermodynamic parameters are provided in the table.  

Type 

0–6-

km 

_SHR  

0–8-

km 

_SHR  

0–12-

km Max 

Wind 

0–12-km 

Mean 

Wind 

ThE 

_LOW 

(K) 

MLCAPE 

(J kg-1) 

Forecast 

SBCAPE  

(J kg-1) 

1 4.3 5.1 7.2 3.0 343.0 562 1,585 

2 4.3 5.1 8.8 3.6 341.9 365 1,214 

3 4.7 6.2 9.4 3.7 340.5 289 1,176 

4 4.3 5.7 8.3 3.7 341.1 357 1,121 

5 3.2 5.1 9.6 3.2 341.7 283 1,006 
6 6 7.7 11.6 5.0 339.0 211 973 

7 8.2 10.8 16.5 6.1 336.6 66 723 

8 4.9 7.7 13.6 3.1 336.0 24 558 

9 5.4 8.7 15.4 3.0 330.6 0 32 

10 7.9 9.8 13.5 5.8 334.5 0 391 

 

See lines 120-124 and Table 1 in revision. 

Line 127: Are you sure you are always creating soundings of pre-storm environments and not 

soundings that may be contaminated by model simulated convection? While authors subsequently 

perform a check on the model vs observations performance, has there been any quality control of 

individual soundings? 

It is possible that some soundings experience contamination from convection within the model. However, 

because the soundings are based on the 0-hr RAP analysis fields any such influence is likely limited. Because 

the RAP assimilates radar reflectivity and lightning observations from the U.S. (Benjamin et al. 2016), 

areas of convection in the 0-hr analysis will typically mimic the radar-observed areas of convection. Further, 

any instances where convective overturning was a source of contamination would be smoothed out by 

aggregating all storms into SWS, SHS, and nonsevere days. Nonetheless, we will alert the reader to this 

possibility in Section 2.2 when we discuss the accuracy of the RAP soundings. 

See lines 196-206 in revision. 
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Line 194: How exactly are the results aggregated daily and by the radar sites? Does it mean that you 

take the average values of parameters for particular day and radar site? This description should be 

expanded so that reader understands exactly what are the implications of such aggregation. 

Yes, the convective parameters for all WFTs forming within a radar polygon (Fig. 1) on a single day were 

averaged (using the mean). This information will be added near line 194. 

See lines 223-224 in revision. 

Line 211: Should be precedence, not precedent? 

Yes, this will be corrected. 

 See line 241 in revision. 

In general, why are authors even looking at the measures of vertical wind shear when they consider 

only the weakly sheared environments? 

We wanted to test whether relative increases/decreases in wind shear (even within “weak shear” 

environments) may serve to enhanced/diminish severe weather potential. This possibility was not supported by 

the findings; however, it is still worth including. 

Results 

Authors spend a lot of time trying to find the best "threshold" value for each parameter. Have they 

considered looking at this problem from probabilistic point of view? 

Though we do spend considerable effort identifying valuable thresholds, the odds ratio (OR), the measure by 

which the effectiveness of the convective parameters is judged, is itself a probabilistic tool. Rather than solely 

considering our recommended thresholds, the reader/forecaster is free to directly interpret the relative odds of 

severe weather at any parameter value from Figures 6 and 8. 

Abbreviations and calculation of different parameters are stated in the Table 1 and then Appendix. 

However, I still advise authors to at least briefly introduce the mentioned, best discriminating, 

parameters (beyond their abbreviations) here. 

We will add brief descriptions of the vertical totals and total totals near line 270 when they are first 

mentioned as effective differentiating parameters. Meanwhile, MLCAPE and MLLCL are both employed 

with enough frequency in the atmospheric sciences to be interpreted without further explanation. Because 

DCAPE, TEI, WNDG, MICROB, PW, PEFF, HGT0, and ApWBZ do not accurately distinguish 

severe weather days, we are reluctant to dedicate new text to defining all eight in the Results. Interested readers 

can elect to consult Table 1 or the Appendix. 

See lines 303-305 in revision. 

Discussion 

Line 359: How would lower freezing level and drier lower troposphere promote more efficient 

growth of hailstones? The main point here is that melting of hailstones will be less of an issue, which 

is important particularly for smaller hail sizes. 
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We will augment this text to explain that the freezing level and dry layer are relevant to the melting process. 

See lines 389-391 in revision. 

Same as authors, I was also surprised to see that measures of lapse rates (such as Vertical Totals) 

perform better than CAPE itself. Apart from possible model errors, I suspect two other reasons for 

that: 

A/ CAPE is spatially variable, more so than the lapse rates. Could it be that the aggregation 

of soundings and events "smoothed" out CAPE too much? 

B/ I presume that in this region of United States, it is easy to get substantial CAPE values 

owing to the high lower tropospheric moisture content. Then indeed, shape of CAPE 

(skinny vs fat) that is regulated by lapse rates makes a big difference, with "fatter" CAPE 

profiles involving stronger updrafts. It would be interesting to see if Normalized CAPE 

(NCAPE), which is CAPE divided by the depth of convective cloud (EL - LFC) would 

outperform CAPE by a large margin. I suggest trying out this parameter as well as authors 

actually have everything they need to calculate it. 

We agree with both possibilities and will adapt the manuscript to include them. The possibility that CAPE 

(and perhaps other variables too) was smoothed out during the daily aggregation process will be mentioned 

near line 363. 

In regards to B, we agree with your logic, and indeed, our dataset already contains the necessary constituent 

values. We have mimicked Figures 6 and 8 below to compare basic MLCAPE to Normalized 

MLCAPE. NCAPE is a more effective differentiator at low values (<0.10), meaning WFTs rarely 

produce severe weather with NCAPEs below these values. Granted, a forecaster would have been unlikely to 

consider severe weather potential with NCAPEs this low in the first place. Ultimately, it suffers from the 

same deficiencies as many of the other parameters tested, so we choose not to add the figures below to the 

paper. Nonetheless, we will revise the manuscript (namely the Tables 1, 4, 5 and the Appendix) to alert the 

reader than Normalized MLCAPE was also analyzed in this project. 
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See lines 396-398 as well as Tables 2, 5, 6, and Appendix A in revision. 

 

 

Changes NOT in response to reviewers: 

 After submission, we learned it is more appropriate to describe the odds ratio (OR) as 

indicating that “the odds of an event are X times greater…” rather than “an event is X times more 

likely…” (e.g., line 223). The revised manuscript will standardize the language describing ORs to 

reflect the latter. 

 

See lines 30, 36-38, 252-253, 260, 296, 301-306, 320-321, and 446-447 in revision. 
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Response to Anonymous Referee #2 

We thank Referee #2 for their helpful comments. In our reply below, referee comments are 

reproduced in black text whereas our corresponding responses are shown in red italics.  

Summary: 

In this manuscript the challenge to characterize the severe weather potential in synoptically weakly 

forced convective environments is tackled. Various convective variables and indices are computed 

using proxy-soundings of hourly model analyses representing the environment. As observational 

data base for benign convection the authors’ own dataset of radar reflectivities is blended with 

‘subjective’ severe weather reports from Storm Data. The odds ratio is used to measure the 

conditional likelihood. In essence, the authors find the surprising result (their own wording) that 

only two convective parameters based on temperatures at two pressure levels (850 and 500 hPa) are 

able to differentiate between severe and nonsevere convection during such difficult to forecast 

weather regimes. It is suggested that prominent, heavily moisture-weighted parameters and indices 

broadly used in severe storm forecasting suffer from inaccuracies in the RAP analysis data. 

The manuscript is well-written and merits publication given that the comments below are taken into 

account. 

Thank you reviewing our paper, and providing valuable feedback. Please see our responses to your individual 

comments below. 

Major Points: 

1) My main criticism is the use of the RAP analyses providing proxy-soundings to calculate 

convective variables and indices. Subtle model inaccuracies (or errors) can impede the accurate 

calculation of convective parameters. The key question is the suitability of the RAP system with 

dx=13km using presumably a convective parameterization scheme for deep convection for such 

calculations. I suggest to use proxy-soundings from the convection permitting model HRRR 

analyses (at least for a subset) and confront your results with those. This extension would 

considerably broaden the relevance of the manuscript. 

At the outset of this project, we considered employing the HRRR analysis for the reasons you described. 

However, NCEI does not maintain a publicly accessible repository of historical HRRR output, likely to due 

to the enormous storage burden it would pose. The University of Utah does host an independent HRRR 

archive, but as an ad hoc effort, it does not support FTP downloads, and is designed for smaller-scale projects. 

Their nascent effort only overlaps with our study period for one year (2015), which is problematic because this 

may not be an appropriate year for comparison. Ideally, we would perform a subset comparison using a 

random sample of soundings across the 4-yr period (or at least more than a single year), which unfortunately 

is not possible given the current state of the HRRR archives. 

The HRRR is largely a higher-resolution nest of the RAP with the same physical parameterization 

configuration, except for deep convection (which, as you mentioned, is not parameterized). We would expect 

the HRRR to resolve similar temperature and moisture fields as the RAP, except near areas of convection 

(which the HRRR would depict with greater fidelity). Thus, proxy soundings from the HRRR would 

improve upon the RAP insofar as it reduces convective contamination, which relates to your Major Comment 
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#3. We will add text describing the potential of the HRRR to reduce convective contamination in the same 

addition proposed in our response to Major Comment #3. 

UPDATE: Shortly after offering the reply above during the discussion phase of the review, the University of 

Utah HRRR archive went offline for much of January. On 29 January 2018, the archive experienced a 

catastrophic failure, and all archive HRRR files as well as the Google Drive back-up archive were lost. More 

details can be found at 

http://home.chpc.utah.edu/~u0553130/Brian_Blaylock/Pando_archive/Pando_Failure.html. The 

revised manuscript maintains its new text describing the advantages that a convection-allowing model, such as 

the HRRR, can provide to this research. It also notes that at the time of preparation, no such archive is 

available. 

See lines 196-206 in revision. 

 

2) (line 117ff) More detail is needed describing the data assimilation of RAP. What data is how 

assimilated in RAP? Any radar reflectivities? 

We will supplement the current description of the RAP with more information about its data assimilation 

from Benjamin et al. (2016), particularly regarding the observational data sources that are assimilated 

(radar, lightning, aircraft, GOES cloud tops, etc).  

See lines 134-139 in revision. 

3) (line 128ff) Is the proxy-sounding representative for a storm environment if there is no storm in 

the model analysis? What happens if there is a shift in space or/and time between observation and 

model? 

The goal of the proxy sounding is to capture a snapshot of the pre-convective environment as close as possible 

to the time of convective initiation. It is possible that some soundings experience contamination from convection 

within the model. However, because the soundings are based on the 0-hr RAP analysis fields, any such 

influence is likely limited. Because the RAP assimilates radar reflectivity and lightning observations 

(Benjamin et al. 2016), areas of convection in the 0-hr analysis will typically mimic the radar-observed areas 

of convection. Further, any instances where convective overturning was a source of contamination would be 

smoothed out by aggregating all storms by day. Nonetheless, we will alert the reader to this possibility in 

Section 2.2 when we discuss the accuracy of the RAP soundings and the potential of the HRRR to improve 

upon this limitation. 

See lines 196-206 in revision. 

Minor Points: 

1) (line 59) The term signal-to-noise ratio is awkward in this respect. Is there any reference? Is model 

error a noise source, too? 

This term is common in climate variability contexts; however, we have not identified any regular forecasting 

applications in contexts smaller than the seasonal scale. Yes, model error does qualify as noise because it is 

not a process considered by the OR analysis (i.e., convective parameters are taken at face value). We will add 

references supporting its use in climate forecasting such as: 

http://home.chpc.utah.edu/~u0553130/Brian_Blaylock/Pando_archive/Pando_Failure.html
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Sutton, R. T., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the 
North Atlantic Ocean. J. Climate, 20, 891-907, doi:10.1175/JCLI4038.1. 

Hamlington, B. D., R. R. Leben, R. S. Nerem, and K. Y. Kim, 2010: The effect of signal-to-noise ratio on 
the study of sea level trends. J. Climate, 24, 1396-1408, doi:10.1175/2010JCLI3531.1. 

Trenberth, K. E., 1984: Signal versus noise in the Southern Oscillation. Mon. Wea. Rev., 112, 326-332, 
doi:10.1175/1520-0493(1984)112<0326:SVNITS>2.0.CO;2. 

 
See lines 62-65 in revision. 
 

2) (line95) Although a brief explanation of the indices used in this study are given in the appendix, 
key ’tools’ should be explained in the main text. What is SWEAT? 

 
We will add brief descriptions of the vertical totals and total totals near line 270 at first mention as effective 

differentiating parameters. Meanwhile, MLCAPE and MLLCL are both employed with enough frequency 

in the atmospheric sciences to be interpreted without further explanation.  

See lines 101, 303-305 in revision. 

3) (line 108) More detail is needed on the authors’ own dataset of radar reflectivities for benign 

convection that is still under review at the time of this review. 

 The Miller and Mote (2017) paper describing the development of the WFT dataset is now available in print 
(https://doi.org/10.1175/JAMC-D-17-0005.1). The current text will be supplemented with more detail 
describing the radar-based identification of storms; statistical clustering into morphologically similar groups; 
characterization each group’s composite convective environment; and the final designation of each group as 
WFT/non-WFT. In response to Reviewer #1, we will also be adding a new table better characterizing the 
convective environments that hosted WFTs. 

 
See lines 114-124 in revision. 

 
 

Changes NOT in response to reviewers: 

 After submission, we learned it is more appropriate to describe the odds ratio (OR) as 

indicating that “the odds of an event are X times greater…” rather than “an event is X times more 

likely…” (e.g., line 223). The revised manuscript will standardize the language describing ORs to 

reflect the latter. 

 
See lines 30, 36-38, 252-253, 260, 296, 301-306, 320-321, and 446-447 in revision.  

https://doi.org/10.1175/JAMC-D-17-0005.1
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Abstract 22 

Weakly forced thunderstorms (WFTs), short-lived convection forming in synoptically 23 

quiescent regimes, are a contemporary forecasting challenge. The convective environments that 24 

support severe WFTs are often similar to those that yield only nonsevere WFTs, and additionally, 25 

only a small proportion of individual WFTs will ultimately produce severe weather. The purpose 26 

of this study is to better characterize the relative severe weather potential in these settings as a 27 

function of the convective environment. Thirty-one near-storm convective parameters for 28 

>200,000 WFTs in the Southeast United States are calculated from a high-resolution numerical 29 

forecasting model, the Rapid Refresh (RAP). For each parameter, the relative likelihood odds of 30 

WFT days with at least one severe weather event is assessed along a moving threshold. Parameters 31 

(and the values of them) that reliably separate severe-weather-supporting from nonsevere WFT 32 

days are highlighted.  33 

Only two convective parameters, vertical totals (VT) and total totals (TT), appreciably 34 

differentiate severe-wind-supporting and severe-hail-supporting days from nonsevere WFT days. 35 

When VTs exceeded values between 24.6–25.1°C or TTs between 46.5–47.3°C, odds of severe-36 

wind days were roughly 5x more likelygreater. Meanwhile, odds of severe-hail days became 37 

roughly 10x more likelygreater when VTs exceeded 24.4–26.0°C or TTs exceeded 46.3–49.2°C. 38 

The stronger performance of VT and TT is partly attributed to the more accurate representation of 39 

these parameters in the numerical model. Under-reporting of severe weather and model error are 40 

posited to exacerbate the forecasting challenge by obscuring the subtle convective environmental 41 

differences enhancing storm severity.  42 

 43 
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Keywords: weakly forced thunderstorms, pulse thunderstorms, storm environments, severe 44 

weather  45 
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1. Introduction 46 

Weakly forced thunderstorms (WFTs), convection forming in synoptically benign, weakly 47 

sheared environments, are a dual forecasting challenge. Not only is the exact location and time of 48 

convective initiation difficult to predict, but once present, the successful differentiation of severe 49 

WFTs from their benign counterparts is equally demanding. Consequently, severe weather 50 

warnings issued on WFTs in the U.S. are less accurate than more organized storm modes, such as 51 

squall lines and supercells (Guillot et al., 2008). American operational meteorologists have coined 52 

these severe WFTs “pulse thunderstorms” because the surge of the updraft that produces the severe 53 

weather occurs in a brief “pulse” (Miller and Mote, 2017). The United States National Weather 54 

Service defines “severe weather” as any of the following: winds ≥ 26 m s-1, hail ≥ 20.546 cm in 55 

diameter, or a tornado.  56 

Environments thought to support pulse thunderstorms are typically characterized by weak 57 

vertical wind shear and strong convective available potential energy (CAPE). However, not all 58 

weak-shear, high-CAPE environments facilitate pulse thunderstorms, nor are all pulse 59 

thunderstorms confined to environments with the weakest shear and/or strongest instability. The 60 

result is a low signal-to-noise ratio (SNR) which obstructs the reliable discernment of pulse-61 

supporting environments. The SNR is common discussion point in climate variability research 62 

where it often describes the relative magnitudes of a climate change trend (i.e., the signal) versus 63 

inter-annual variability (i.e., the noise) (e.g., Hamlington et al., 2010; Sutton and Hodson, 2007; 64 

Trenberth, 1984). In ourthis context, the “signal” refers to the true difference between the large-65 

scale convective environments that support severe weather and those that do not. Meanwhile, the 66 

“noise” is representsed the many processes than might cause storms to produce (not produce) 67 

severe weather in an environment where it was not expected (expected). Cell interactions, 68 
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stabilization from prior convection, surface convergence, locally enhanced shear, model error, etc, 69 

can act as noise in the operational setting.  70 

Prior research directed at pulse thunderstorms is limited, and work has not typically 71 

included a representative proportion of nonsevere WFTs in their samples (Atkins and Wakimoto, 72 

1991; Cerniglia and Snyder, 2002). If the sample contains too many pulse thunderstorms, the SNR 73 

may be artificially bolstered, results overstated, and the potential reliability in an operational 74 

setting diminished. For instance, in a meta-analysis of studies pertaining to new lightning-based 75 

storm warning techniques, Murphy (2017) found that the studies’ reported false alarms ratios 76 

(FAR)s were directly proportional to the fraction of nonsevere storms contained in the sample. 77 

Samples that included a realistic ratio of severe-to-nonsevere storms demonstrated the weakest 78 

skill scores. 79 

Most research considering pulse thunderstorms in the Southeast U.S. has typically focused 80 

on one of its primary severe weather mechanisms: the wet microburst. Severe wet microbursts 81 

generally occur in atmospheres characterized by a deep moist layer extending from the surface to 82 

4–5 km above ground level (Johns and Doswell, 1992). Above the moist layer lies a mid-level dry 83 

layer with lower equivalent potential temperature values (θe). In wet microburst environments, the 84 

difference between the maximum θe observed just above the surface and the minimum θe aloft 85 

exceeded 20 K, whereas non-microburst-producing thunderstorm days had differences less than 86 

13 K (Atkins and Wakimoto, 1991; Roberts and Wilson, 1989; Stewart, 1991; Wheeler and Spratt, 87 

1995). However, Atkins and Wakimoto (1991) examined only 14 microburst days versus three 88 

non-microburst days. Adding to the uncertainty, James and Markowski (2010) challenged the role 89 

of mid-level dry air in severe weather production. The results of their cloud-scale modeling 90 
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experiment indicated that, for all but the highest instabilities tested, drier mid-level air did not 91 

correspond to increased downdraft and cold pool intensity. 92 

Building on these findings, several severe weather forecasting parameters have been 93 

developed to distill the atmosphere’s vertical thermodynamic profile into a single value 94 

representing the damaging wind potential. McCann (1994) developed a microburst-predicting 95 

“wind index” (WINDEX) to be used in the forecasting of wet downburst potential. However, 96 

although WINDEX performed well when tested in known microburst environments, no null cases 97 

were presented (McCann, 1994). Additional severe wind potential indices include the wind 98 

damage parameter and the microburst index described by the United States Storm Prediction 99 

Center (SPC; http://www.spc.noaa.gov/exper/soundings/help/index.html). Tools such as total 100 

totals, k-index, the Ssevere WEAweather and Tthreat (SWEAT) index, etc, are also commonly 101 

used to forecast convective potential as well as the severity of thunderstorms. 102 

However, the comparative utility of these environmental parameters within weakly forced 103 

regimes is unclear, particularly when they are tested with a realistic proportion of severe storms. 104 

Many of the results above were obtained by analyzing relatively small datasets, and they have not 105 

been tested against each other in a weakly forced environment. Therefore, this study seeks to 106 

compare the relative skill of convective parameters using a large WFT dataset to determine which 107 

are most appropriate for detecting environments supportive of pulse-thunderstorm-related severe 108 

weather.  109 

 110 

 111 

 112 

 113 
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2. Data and Methods 114 

2.1 WFT selection and environmental characterization 115 

This study uses the 15-yr WFT dataset developed by Miller and Mote (2017) for the 116 

Southeast U.S. (Fig. 1). Their catalogue detection method first identifies thunderstorms as regions 117 

of spatiotemporally contiguous composite reflectivities meeting or exceeding 40 dBZ using 118 

connected neighborhoods labeling. Each thunderstorm is then assigned five morphological 119 

attributes describing it shape, duration, intensity, etc, and all thunderstorms are clustered into ten 120 

morphologically similar groups using Ward’s clustering (Ward, 1963). The composite convective 121 

environments associated with each morphological group were characterized using radiosonde 122 

observations from three launch sites in the Southeast U.S. WFTs were designated as with WFTs 123 

representing the subset of generally morphological groups with small, short-lived, diurnally driven 124 

thunderstorms that also formed in weak-shear, strong-instability composite environments. Table 1 125 

provides the composite kinematic and thermodynamic environmental characteristics for the ten 126 

morphological groups from Miller and Mote (2017). The WFTs are spatially referenced according 127 

to their first-detection location, the centroid of the composite reflectivities constituting the first 128 

appearance on radar. The storms were then paired with severe weather reports from Storm Data, a 129 

storm event database maintained by the United States National Centers of Environmental 130 

Information, to differentiate benign WFTs from pulse thunderstorms. The entire 15-yr dataset 131 

contains 885,496 WFTs including 5316 pulse thunderstorms. 132 

Meanwhile, the thermodynamic and kinematic environment of each WFT was 133 

characterized using the 0-hr Rapid Refresh (RAP) (RAP; Benjamin et al., 2016) analysis. The 134 

RAP, implemented on 9 May 2012, is a 13-km non-hydrostatic weather model initialized hourly 135 

for the purpose of near-term mesoscale forecasting which is operated by the United States National 136 
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Center for Environmental Prediction. The RAP uses the National Oceanic and Atmospheric 137 

Administration (NOAA) Gridpoint Statistical Interpolation (GSI) system to assimilate radar 138 

reflectivity, lightning flashes (added in version 3), radiosonde observations, GOES cloud analysis, 139 

wind profiler datas, surface station observations, etc. Lateral boundary conditions are provided by 140 

the Global Forecast System (GFS). Additional information regarding the RAP assimilation system 141 

and model physics can be found in Lateral boundary conditions are provided by the Global 142 

Forecast System (GFS). Additional information regarding the RAP assimilation system and model 143 

physics can be found in (Benjamin et al., 2016). The model has output available at 37 vertical 144 

levels spaced at 25-hPa intervals between 1000 and 100 hPa and 10-hPa intervals above 100 hPa. 145 

Several previous studies have relied upon the RAP’s predecessor, the Rapid Update Cycle (RUC; 146 

Benjamin et al., 2004), to effectively characterize near-storm environments differentiating 147 

supercellular versus non-supercellular and tornadic versus non-tornadic thunderstorms (Thompson 148 

et al., 2007; Thompson et al., 2014).  149 

For the grid cell containing each WFT’s first-detection location, a RAP proxy sounding 150 

was created using the SHARPpy software package (Blumberg et al., 2017). Thus, each proxy 151 

sounding represents the model-derived storm environment for a point no more than 13 -km and 30 152 

min distant from the WFT first-detection location. The proxy soundings were used to calculate 153 

3031 near-storm environmental variables and indices, a complete list of which is provided in Table 154 

21 with more thorough descriptions in Appendix A. The 3031 variables were largely selected by 155 

virtue of their accessibility in SHARPpy. Four warm seasons of the Miller and Mote (2017) 156 

dataset, containing 228,363 WFTs and 1481 pulse thunderstorms, overlapped with the RAP’s 157 

operational archive period allowing >6 million near-storm parameters to contribute to the analysis. 158 

 159 
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2.2 RAP error assessment 160 

 Thompson et al. (2003) demonstrated the suitability of the RUC, version 2 (RUC-2), to 161 

represent storm environments as evaluated using co-located radiosonde observations, and the 162 

Benjamin et al. (2016) RAP validation statistics show that the RAP is more accurate than its 163 

predecessor. Figure 2a shows the results of an error evaluation specific to the purposes of this 164 

study. Vertical error profiles were calculated for 3562 co-located RAP predictions and observed 165 

radiosonde profiles in the Southeast U.S. The comparisons contain 0000 and 1200 UTC soundings 166 

during the warm season (May–September) between 2012 and 2015 at three launch sites along a 167 

north-south trajectory through the Miller and Mote (2017) domain: Nashville, Tenn., Peachtree 168 

City, Ga., and Tampa, Fla., corresponding to U.S. radar identification codes KOHX, KFFC, and 169 

KTBW in Fig. 1. The synoptic station codes for these three sites are the same as their U.S. radar 170 

identifications with the exception of Nashville, Tenn., whose synoptic code is KBNA. 171 

Similar to the Thompson RUC-2 analysis, the greatest, albeit small, temperature and 172 

moisture biases (mean errors) from the RAP reside near the surface and the upper atmosphere (Fig. 173 

2a). Aided by the large sample of comparison soundings, the 95% confidence intervals indicate 174 

that the true bias of the selected RAP output variables at these sites can be estimated with 175 

reasonable confidence. The 95% mixing ratio confidence interval captures zero at all altitudes 176 

except 500 hPa, where the RAP predicted drier-than-observed values by 0.08 g kg-1. Temperatures 177 

are warmer than observed throughout most of the troposphere with a maximum bias of 0.26°C at 178 

850 hPa. In contrast, the RAP underestimated wind speeds on average throughout the depth of the 179 

troposphere. The largest bias, 0.46 m s-1, was found at 925 hPa with similar errors above 500 hPa. 180 

The 95% confidence interval for wind speed error is largest near the tropopause, and demonstrates 181 

larger uncertainty than for temperature and mixing ratio. These results generally agree with the 182 
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error statistics provided by Benjamin et al. (2016), and the reader should reference that paper for 183 

additional information, including validation statistics, about the RAP.  184 

Although the RAP appears to resolve temperature, mixing ratios, and wind speeds more 185 

accurately than the RUC-2, the transmission of these errors onto the derived convective parameters 186 

can be large. Table 2Table 3 expresses error measures for surface-based (SBCAPE) and mean-187 

layer CAPE (MLCAPE), 0–3-km and 0–6-km wind shear, total totals, and the theta-e index. 188 

Because the focus of this study is surface-based convection, only days when the observed surface-189 

based CAPE was greater than zero were used to calculate the derived quantity error metrics. 190 

Similar to previous work (e.g., Lee, 2002), parameters calculated via the vertical integration of a 191 

parcel trajectory, such as CAPE, are sensitive to errors in low-level temperature and moisture. The 192 

RAP’s low-level temperature and moisture biases influence the lifted condensation level (LCL) 193 

calculation (negative MLLCL bias; Table 2Table 3) yielding a premature transition to the pseudo-194 

adiabatic lapse rate and an overestimate of parcel instability (positive SBCAPE and MLCAPE 195 

biases; Table 2Table 3)1. Thompson et al. (2003) identified smaller CAPE errors generated by the 196 

RUC-2; however, the nature of the thermodynamic environments being examined is significantly 197 

different in this study. Similar to the RUC-2, the RAP is more adept at representing MLCAPE than 198 

SBCAPE with Fig. 2b, and consequently, the mean-layer parcel trajectory will be used for all 199 

parcel-related calculations. 200 

In some cases, RAP proxy soundings may have been contaminated by premature 201 

convective overturning within the model. However, because the RAP assimilates radar reflectivity 202 

from the U.S. (Benjamin et al., 2016), the 0-hr RAP analysis fields should generally mirror the 203 

                                                 
1 The near-surface temperature and moisture errors in Fig. 2a are more pronounced following the upgrade to RAPv2 

in February 2014. However, because the RAP is an operational tool and this work has operational relevance, no attempt 

was made to correct for this change. 
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radar-observed areas of convection. Additionally, any such instances will be dampened by the 204 

methodological design decision to aggregate all proxy soundings on a daily level as will be 205 

described in Sect. 2.3. The accuracy of the proxy soundings could be improved by employing a 206 

convection-permitting numerical model, such as the 3-km High-Resolution Rapid Refresh 207 

(HRRR). By explicitly modeling deep convection, the HRRR would limit convective 208 

contamination by more closely representing areas of thunderstorm activity. At the time of 209 

publication, the absence of a publicly accessible HRRR archive prevented its application in this 210 

research.  211 

Figures 2b-d demonstrate that although large outliers certainly occur, the majority of RAP-212 

derived thermodynamic and kinematic parameters are concentrated within a narrower range of 213 

error. Figure 3 provides an example skewT-logP diagram for a large MLCAPE error shown in 214 

Figure 2d. Though the difference in this case exceeded 1000 J kg-1, the discrepancy can largely be 215 

attributed to the RAP’s minor mischaracterization of low-level moisture. Otherwise, the depiction 216 

of the vertical profile is reasonably accurate. The advantage of the RAP to represent the near-storm 217 

environment is underscored when compared to results from coarser-scale models. For instance, 218 

the coefficients of determination (R2) for RAP-derived SBCAPE and MLCAPE are appreciably 219 

larger than those calculated from the 32-km horizontal and 3-hr temporal resolution North 220 

American Regional Reanalysis (NARR; Mesinger et al., 2006) in Gensini et al. (2014).  221 

 222 

2.3 Assessing convective parameter skill  223 

The quality of severe weather reports is a significant impediment to severe storm research 224 

(e.g., Miller et al., 2016; Weiss et al., 2002), particularly regarding the certainty with which 225 

nonsevere storms can be declared nonsevere. These storms may only appear benign because their 226 
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associated severe weather was not reported. Consequently, the results of the proxy soundings are 227 

subdivided by nearest radar site (Fig. 1) and aggregated daily (1200–1200 UTC) by computing the 228 

mean parameter value associated with all WFTs forming within each polygon on a given day. with 229 

Ddays containing at least one severe weather report are considered supportive of severe weather 230 

whereas days with no severe weather reports will serve as the control. This approach is similar to 231 

the methods the Hurlbut and Cohen (2013) study of severe thunderstorm environments in the 232 

Northeast U.S. Severe-wind-supporting (SWS) days and severe-hail-supporting (SHS) days are 233 

treated separately because their thermodynamic environments have been shown to contain unique 234 

elements related to downdraft and hailstone production (Johns and Doswell, 1992). Table 3Table 235 

4 provides the specific subdivision details of the frequency of WFT days, SWS days, SHS days, 236 

and their respective control days. Figure 4 shows the annual average of WFT days for each radar 237 

site within the study area during the 2012–2015 warm seasons. As expected, WFT days are most 238 

frequent along coastlines and the Appalachian Mountains (Miller and Mote, 2017).  239 

Given the low SNR in WFT environments, t-tests are deceiving. Statistically significant 240 

differences in the mean values of parameters on severe versus nonsevere days are routinely 241 

reported, but the considerable overlap between the distributions (e.g., Craven and Brooks, 2004; 242 

Taszarek et al., 2017) can remove much practical value. This study explores the relationship 243 

between convective parameters and pulse thunderstorm environments by means of an odds ratio 244 

(OR; e.g., Fleiss et al., 2003). The OR is a common measure of conditional likelihood in human 245 

health and risk literature (e.g., Bland and Altman, 2000) with precedencet in the atmospheric 246 

sciences (e.g., Black and Mote, 2015; Black et al., 2017). The OR looks past the descriptive 247 

statistics of the severe versus nonsevere distributions and more directly compares differences in 248 

where the data areis concentrated within the distributions. 249 
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Equation 1 shows the standard definition of the OR, essentially the ratio of two ratios,  250 

𝑂𝑅 =
𝐴/𝐶

𝐵/𝐷
 (1) 

where the numerator represents the ratio of events (A) to non-events (C) when a condition is met 251 

whereas the denominator is the ratio of events (B) to non-events (D) when the same condition is 252 

not satisfied. In this context, “events” are SWS or SHS days whereas “non-events” would be the 253 

respective control days. Higher ORs indicate that events are more frequent (relative to non-events) 254 

when the condition is met, or conversely, that events are less frequent when the condition is not 255 

met. For this study, a condition might be a convective parameter exceeding a specified threshold. 256 

For instance, if the SWS OR equals 4 for the condition MLCAPE > 1000 J kg-1, then the odds of 257 

an SWS day areis 4x more likelygreater when MLCAPE is greater than 1000 J kg-1 than when it 258 

is less than 1000 J kg-1.  259 

We employ a modified form of the OR in which both the numerator and denominator are 260 

standardized by the climatological ratio of events to non-events (Eq. 2), allowing the components 261 

of the OR to be separated and interpreted independently by comparison to climatology. 262 

𝑂𝑅 =

𝐴/𝐶
(𝐴 + 𝐵)/(𝐶 + 𝐷)

𝐵/𝐷
(𝐴 + 𝐵)/(𝐶 + 𝐷)

 (2) 

The modification does not change the value of the quotient OR, but it does improve the 263 

interpretability of the numerator and denominator. When the numerator or denominator is near 264 

zero (one), then the likelihood odds of SWS or SHS days areis much lower than (nearly equal to) 265 

climatology. The climatological odds ratio was 0.069 for SWS days and 0.025 for SHS days. A 266 

95% confidence interval for the OR was calculated using the four-step method presented in Black 267 

et al. (2017). 268 
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3. Results 269 

3.1 Convective environments of pulse thunderstorm wind events  270 

During the four-year study period, pulse thunderstorm wind events were documented 271 

somewhere in the study area on 49% of WFT days, although the average frequency within any 272 

single subdivision was 6.7% (Table 3Table 4). Table 4Table 5 shows the 3031 convective 273 

parameters analyzed from the proxy soundings as well as the number of subdivisions for which 274 

each parameter is a statistically significant differentiator of SWS days. A significance threshold of 275 

p < 0.10 guided the selection of potentially useful parameters which would be examined in more 276 

detail. Nine of the 3031 variables are statistically significant across at least two-thirds of the study 277 

area: VT, TT, MLCAPE, MLLCL, MICROB, DCAPE, TEI, RH_LOW, and ThE_LOW. 278 

Figure 5a-h depicts the distributions for several parameters from Table 4Table 5 for control 279 

versus SWS days. These eight parameters are either significant across much of the domain (VT 280 

and TT), demonstrate larger relative changes on SWS days (MLCAPE and MLLCL), and/or are 281 

traditional operational severe wind forecasting tools (DCAPE, TEI, WNDG, MICROB). However, 282 

as the distributions clearly illustrate, any difference in the mean values between the control days 283 

and SWS days is small compared to the spread about their means. This results in the 284 

characteristically low SNR described in the Sect. 1. Any attempt to establish a forecasting value 285 

indicative of pulse-wind potential will yield many missed events occurring beneath the threshold 286 

and/or false alarms associated with control days above it.  287 

Thus, Fig. 6 employs the OR to characterize the relative skill that some knowledge of the 288 

convective environment can contribute to a severe versus nonsevere designation. For each variable 289 

in Fig. 5, a progressively larger value is selected, and the OR is calculated at each step. Figure 6 290 

displays the OR as well as both the numerator and denominator terms for each iteration. Often 291 
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Hhigh ORs can often result when a near-zero number of severe events exist below the threshold 292 

inflating the OR calculation. In these situations, the OR is indicating that severe weather is very 293 

unlikely, rather than that the severe weather risk is enhanced. These results are not particularly 294 

useful because forecasters would not have needed a decision-support tool in these environments 295 

in the first place. Ideally, large ORs will result when the numerator indicates an appreciable 296 

increase against the climatology while the denominator simultaneously indicates an appreciable 297 

decrease below climatology. Further, these ORs would ideally occur in a range where the severe 298 

weather risk may be uncertain. In Fig. 6, the OR is shown in a gray line, but the line is drawn in 299 

black whenever the OR results from a numerator ≥2 and a denominator ≤0.5. ORs resulting from 300 

this combination indicate that the threshold yields a simultaneous two-fold increase (decrease) in 301 

the likelihood odds of SWS days above (below) the specified value. These ORs will be hereon 302 

referenced as “two-fold” ORs, and represent a goal scenario. 303 

Figures 6a-h show ORs for the same eight parameters in Fig. 5. Of all eight parameters, 304 

only VT and TT achieve two-fold ORs for any range of thresholds, as indicated by the black 305 

segments in Fig. 6a-b. The maximum two-fold OR for VT is 5.16 at 24.6°C, meaning that the odds 306 

of an SWS days are 5.16x more likely greater when this threshold is met. TT offers slightly more 307 

skill with a maximum two-fold OR of 5.70 at 46.5°C. As described in Appendix A, VT (vertical 308 

totals) and TT (total totals) are relatively primitive indices. VT is purely a temperature lapse rate 309 

whereas TT is predominantly a measure of lapse rate with an additional dewpoint term included. 310 

Meanwhile, MLCAPE and MLLCL demonstrate consistently lower ORs between 2 and 4. 311 

Surprisingly, tThe four wind-specific variables in Fig. 6e-h are relatively poor differentiators of 312 

SWS days in the WFT regime. The maximum OR achieved by any of these parameters is 313 
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approximately 10 driven by very low values of DCAPE with corresponding wide confidence 314 

intervals.  315 

Though ORs are greater at lower VT and TT thresholds, these values are also somewhat 316 

common. Placing the aforementioned values (24.6°C and 46.5°C, respectively) in the context of 317 

the 12,759 WFT environments included in this study, they represent the 58.8th and 58.9th 318 

percentiles of their distributions. Alternatively, the maximum VT threshold that yields a two-fold 319 

OR is 25.1°C, which corresponds to the 70.9th percentile of all VTs in the dataset; however, the 320 

OR for this value is smaller, 4.77. This result illustrates the trade-off involved by seeking 321 

climatologically exceptional values to serve as guidance. As greater values are selected as the 322 

threshold, meteorologists can focus on a fewer number of days. However, the OR decreases as 323 

more severe weather events occur in environments not satisfying the threshold. As for TT, the 324 

maximum two-fold OR value is 47.3°C, corresponding to the 70.6th percentile, but demonstrates 325 

an OR of 5.16. This means that when TT meets or exceeds 47.3°C, the odds of a pulse thunderstorm 326 

severe wind events are 5.16x more likelygreater than when it does not. 327 

 328 

3.2 Convective environments of pulse thunderstorm hail events  329 

Table 5Table 6 replicates Table 4Table 5 except for SHS days. Many of the same 330 

parameters that are statistically significant differentiators of SWS days also rank high for SHS 331 

days. However, fewer parameters in Table 5Table 6 are statistically significant over two-thirds of 332 

the domain. Whereas 10 parameters in Table 4Table 5 showed spatially expansive statistical skill 333 

on SWS days, only three quantities do so on SHS days. We attribute this result to the pattern in 334 

Table 3Table 4 and Fig. 4b-c whereby there are fewer SHS days than SWS days, which increases 335 

uncertainty related to the statistical tests and makes it harder to confidently detect differences.  336 
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Nonetheless, VT and TT are once again skillful differentiators, and are now joined by their 337 

related parameter CT. Additionally, several new convective variables demonstrate statistical 338 

significance across roughly half of the domain on SHS days that demonstrated little skill on SWS 339 

days: PW, PEFF, HGT0, and ApWBZ. For comparison, Fig. 7a-d duplicates Fig. 5a-d now 340 

comparing distributions between the control and SHS days while Fig. 7e-h displays boxplots for 341 

the SHS-specific convective parameters listed above. The distributions for MLCAPE and MLLCL 342 

are similar; however, there is a larger separation between control and SHS days for VT and TT 343 

than was apparent on SWS days. This observation is corroborated by the relative changes in VT 344 

and TT on SHS days that are several percentage points larger than for SWS days (Table 5Table 345 

6). PW, PEFF, HGT0, and ApWBZ demonstrate smaller differences. 346 

Figure 8 replicates Fig. 6 except by representing SHS days and substituting the four wind-347 

specific parameters (DCAPE, TEI, WNDG, MICROB) with the four hail parameters listed above 348 

(PW, PEFF, HGT0, ApWBZ). The ORs for VT and TT are large, greater than 10, throughout the 349 

entire range of thresholds tested, and contain larger swathes of two-fold ORs. The maximum two-350 

fold OR for VT is 13.1 at 24.4°C, and the maximum two-fold-OR-achieving VT threshold that 351 

achieves a two-fold OR is 26.0°C with an OR of 9.61. These values relate to the 53.4th and 86.0th 352 

percentiles of the VT distribution. As for TT, the maximum two-fold OR is 14.98 at 46.3°C, and 353 

the maximum two-fold-OR threshold is 49.2°C with an OR of 11.79. These two TT cut-offs 354 

translate to the 55.7th and 88.4th percentiles. Similar to SWS days, MLCAPE and MLLCL show 355 

little skill with ORs generally between 1–2. PW, PEFF, HGT0, and ApWBZ perform more capably 356 

than MLCAPE and MLLCL; however, they do not produce any two-fold ORs. Values for these 357 

metrics are generally around 4 with several instances of higher ORs driven by a small denominator 358 

with wide 95% confidence intervals.  359 
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3.3 Separating marginal pulse thunderstorm days  360 

 Because the severe weather generated by pulse thunderstorms is often near the lower limit 361 

used to define severe weather in the United States, some pulse thunderstorm environments may 362 

closely resemble nonsevere regimes. Consequently, the influence of these “marginal” pulse 363 

thunderstorm days on the OR analysis is further scrutinized. For this purpose, “marginal” SWS 364 

and SHS days are defined as those on which only one severe wind or hail report was received. 365 

Marginal days constitute 48.7% of the SWS days and 57.7% of the SHS days in Table 3Table 4. 366 

Figure 9 replicates the OR analysis for VT and TT, the two most promising environmental 367 

parameters from Sects. 3.1 and 3.2, but with only marginal SWS and SHS days being considered. 368 

Comparing Figs. 6a-b and 8a-b to Fig. 9, marginal SWS and SHS days resemble the OR patterns 369 

of the broader set of SWS (Fig. 6a-b) and SHS (Fig. 8a-b) days. Though the ORs for the marginal 370 

subset are slightly smaller than for the broader group, they bear similar OR patterns as the 371 

thresholds are increased. Overall, marginal SWS and SHS days are generally characterized by 372 

similar VT and TT values as when all SWS and SHS days were aggregated. Corroborating this 373 

finding, an OR analysis comparing marginal SWS and SHS days to those with >1 severe event 374 

(not shown) revealed that ORs generally remained near 1 regardless of the VT or TT threshold 375 

selected. Thus, although marginal pulse thunderstorm days are by no means easily distinguishable 376 

from non-severe WFT days, they do not appear to be particularly more challenging to differentiate 377 

than active pulse thunderstorm days. 378 

 379 

4. Discussion 380 

The relative changes in the convective variables in Table 4Table 5 on SWS days versus 381 

control days correspond well to previous microburst research. Compared to the nonsevere control 382 
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days, SWS days are characterized by a drier near surface layer (i.e., lower RH, higher LCLs). 383 

Simultaneously, steep mid-level lapse rates (i.e., larger VT and TT) aid an increase in CAPE which 384 

supports stronger updrafts. As the strong updraft transitions to a downdraft-dominant storm, the 385 

drier surface layer supports evaporative cooling, downdraft acceleration, and severe outflow 386 

winds. This same conceptual model has been promoted by previous severe convective wind 387 

research (e.g., Atkins and Wakimoto, 1991; Kingsmill and Wakimoto, 1991; Wolfson, 1988).  388 

The results of SHS days also support previous findings (Johns and Doswell, 1992; Moore 389 

and Pino, 1990; Púčik et al., 2015). The distributions in Fig. 7 (and relative changes in Table 390 

5Table 6) indicate that SHS days are characterized by relative decreases in PW, a lower freezing 391 

level, a lower wet-bulb freezing level, and dry near-surface air. Smaller PWs result in less 392 

waterloading and greater parcel buoyancy (larger VT, TT, and MLCAPE) which maximizes 393 

updraft strength. Meanwhile, lower freezing levels and a dry layer between 1000–850 hPa support 394 

evaporative cooling which can together yield a lower wet-bulb zero height, and more efficient 395 

growth of hailstoneslimit hail stone melting during its descent to the surface. Interestingly, these 396 

two concepts are both represented in the PEFF calculation (Appendix A) which was not developed 397 

as a hail indicator. PEFF as defined by Noel and Dobur (2002), equals the product of PW and the 398 

mean 1000–700-hPa RH. As both values decrease, PEFF becomes smaller and hail is more likely 399 

for the reasons stated above. 400 

The poor performance of MLLCLs and MLCAPEs in differentiating SWS and SHS days 401 

from their controls is surprising given their prominence in severe storm forecasting. One 402 

possibility is that the daily aggregation of MLCAPEs may have smoothed out locally higher values 403 

near the WFTs that were responsible for severe weather production. In contrastAlternatively, VT 404 

and TT were among the strongest indicators of both SWS and SHS days. Recalling from Sect. 2.2, 405 
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VT and TT are also very well represented by the RAP. TTs were replicated by the model with a 406 

<1°C bias and a MAE representing only 3% of the average value (Table 2Table 3). Additionally, 407 

mid-level temperatures, from which VT is computed, also compared very well to the observed 408 

soundings (Fig. 2a). Thus, tThe strong performance of VT and TT compared to other more heavily 409 

moisture-weighted metrics may be due to their more accurate representation in the proxy 410 

soundings.  411 

Regardless, because the severe weather SNR is already low in WFT environments, any 412 

systematic error introduced by the data source (in this case the RAP) may significantly dampen, 413 

or even remove, whatever environmental differences exist. As Sect. 2.2 indicated and previous 414 

work has also concluded, low-level moisture biases can impede the accurate calculation of 415 

convective parameters relying on those terms (e.g., Gensini et al., 2014; Thompson et al., 2003). 416 

In this study, MLCAPE, MLLCL, PW, PEFF, and others were vulnerable to such errors. The 417 

poorer performance of these variables’ ORs (relative to the lapse-rate-based parameters) and the 418 

sensitivity of PW, PEFF, and ApWBZ to simulated RAP errors suggests that model inaccuracies 419 

may be obscuring their potential skill to detect weakly forced severe weather environments. The 420 

perception of the WFT environment as a difficult-to-forecast regime may partly be driven by model 421 

inconsistency exacerbating an already small SNR.   422 

Another confounding factor is the quality of the Storm Data severe weather reports. Section 423 

3.3 discussed that marginal SWS and SHS days are more similar to days with >1 report than days 424 

with no reports. Thus, the basis for the similarity may be that severe weather was simply under-425 

reported on “marginal” days. Extending this logic, the pulse regime’s low SNR may also be 426 

partially attributed to under-reporting of severe weather on “nonsevere” days. Given that the severe 427 

weather generated by pulse convection is often short-lived, isolated, and narrowly exceeds severe 428 
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criteria, the notion that some pulse-related severe weather events go undetected is likely. If some 429 

“nonsevere” days existing above the tested parameter thresholds in Figs. 6 and 8 did in fact host 430 

severe weather, then the ORs would have been larger than those found in Sects. 3.1 and 3.2. 431 

 432 

5. Conclusions 433 

Hazardous weather within WFT environments is characterized by a lower SNR than other 434 

severe thunderstorm regimes. Though past research has developed promising tools for forecasting 435 

pulse thunderstorm environments, their relatively small samples sizes may have understated the 436 

SNR, and by corollary overstated the reliability of their tools. With recent research suggesting that 437 

the performance of new severe weather forecasting tools is closely tied to the proportion of 438 

nonsevere thunderstorms in the sample (Murphy, 2017), this study sought to test the relative skill 439 

of 3031 convective forecasting parameters using realistic proportions of severe and nonsevere 440 

WFT environments (severe: 7.9%; nonsevere: 92.1%). Future research may consider broadening 441 

the methods of Murphy (2017) to standardize the skill values across previous studies of severe 442 

convective environments. 443 

Only 13 (5) of the 3031 convective parameters tested were statistically significant (p < 444 

0.10) differentiators of SWS (SHS) days across at least half of the domain. Though the distinctive 445 

variables for SWS and SHS days were consistent with previous theories of severe microburst and 446 

hail formation, considerable overlap between the distribution of values on severe and nonsevere 447 

days is problematic. Similarities between the SWS, SHS, and their corresponding control 448 

distributions inhibit consistent identification of pulse thunderstorm potential based on the value of 449 

any individual parameter. Nonetheless, VT and TT did perform more skillfully than the others. 450 

When VTs exceed values between 24.6–25.1°C or TTs between 46.5–47.3°C, the relative 451 
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likelihood odds of a wind event increases roughly 5x. Meanwhile, the odds of a hail events become 452 

roughly 10x more likelygreater when VTs exceed values between 24.4–26.0°C or TTs between 453 

46.3–49.2°C. 454 

The noteworthy performance of VT and TT, two quantities calculated from the more 455 

reliable RAP output fields, is unlikely a coincidence. Our findings suggest that the already weak 456 

severe weather SNR in WFT environments is exacerbated by model limitations in the low-level 457 

moisture and temperature fields. Meteorologists may perhaps alleviate the challenges of the WFT 458 

environment by examining convective parameters that are well-represented by models, such as 459 

VT, TT, and other measures of lapse rate. Future research might seek to track the transmission of 460 

the model errors through calculation of forecast skill statistics, and more concretely ascertain the 461 

contribution of model error to the SNR.  462 
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Appendix A.  571 

Table A1. Additional detail describing the convective parameters in Table 21.  572 

Parameter Comments 

MLCAPE 

Mean-layer parcel mixed over  

the lowest 100 hPa 

MLCIN 

MLLCL 

MLLFC 

MLEL 

NCAPE MLCAPE / MLEL 

K_IND T850 – T500 + Td850 – (T700 – Td700)  

TT CT + VT 

CT Td850 – T500 

VT T850 – T500 

PW Depth of liquid water if all water 

vapor were condensed from the 

sounding 

HGT0 Pressure level of the 0°C isotherm 

ApWBZ Height above ground level of the 

RAP pressure level with the wet 

bulb temperature nearest to 0°C 

W_LOW Mean mixing ratio between 1000–

850 hPa 

W_MID Mean mixing ratio between 850–

500 hPa 

RH_LOW Mean RH between 1000–850 hPa 

RH_MID Mean RH between 850–500 hPa 

ThE_LOW Mean theta-e from 1000–850 hPa 

ThE_MID Mean theta-e from 850–500 hPa 

ML_BRN Bulk Richard Number of the 

mean-layer parcel 

Tc Temperature of parcel lowered 

dry adiabatically from the 

convective condensation level 

PEFF As defined by Noel and Dobur 

(2002). PEFF equals the product 

of PW and the mean 1000–700-

hPa RH.  

Parameter Comments 

DCAPE Downdraft CAPE with respect to 

parcel with the minimum 100 hPa 

layer-averaged theta-e found in 

the lowest 400 hPa of the 

sounding. 

WNDG (MLCAPE)/2000*(0–3-km lapse 

rate)/9*(1–3.5-km mean 

wind)/15*[(MLCIN + 50)/40)]. 

Values larger than 1 indicate an 

increased risk for strong outflow 

gusts.  

TEI Difference between the surface 

theta-e and the minimum theta-e 

value in the lowest 400 hPa AGL 

MICROB Weighted sum of the following 

individual parameters: surface 

theta-e, SBCAPE, surface-based 

lifted index, 0–3-km lapse rate, 

VT, DCAPE, TEI, and PW. 

Values exceeding 9 indicate that 

microbursts are likely. 

SWEAT 12(Td850) + 20(TT – 49) + 2(U850) 

+ (U500) + 125[sin(Udir500 – Udir850) 

+ 0.2] 

0-3-

km_SHR 

Magnitude of vector shear 

between surface and 3 km AGL 

0-6-

km_SHR 

Magnitude of vector shear 

between surface and 6 km AGL 

0-8-

km_SHR 

Magnitude of vector shear 

between surface and 8 km AGL 

EBWD Magnitude of vector shear 

between effective inflow base and 

one half of the MU equilibrium 

level height 

573 

574 

575 
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Tables 577 

Table 1. Kinematic and thermodynamic parameters of 1200-UTC composite soundings from 578 

Atlanta, Ga., USA, for each radar-identified morphological type in Miller and Mote (2017). 579 

Morphological types classified as WFTs are bolded. All kinematic values are shown in m s-1 580 

whereas the units of the thermodynamic parameters are provided in the table. Explanations for the 581 

variable abbreviations can be found in Table 1 and Appendix A. 582 

Type 

0–6-

km 

_SHR  

0–8-

km 

_SHR  

0–12-

km Max 

Wind 

0–12-km 

Mean 

Wind 

ThE 

_LOW 

(K) 

MLCAPE 

(J kg-1) 

Forecast 

SBCAPE  

(J kg-1) 

1 4.3 5.1 7.2 3.0 343.0 562 1585 

2 4.3 5.1 8.8 3.6 341.9 365 1214 

3 4.7 6.2 9.4 3.7 340.5 289 1176 

4 4.3 5.7 8.3 3.7 341.1 357 1121 

5 3.2 5.1 9.6 3.2 341.7 283 1006 
6 6 7.7 11.6 5.0 339.0 211 973 

7 8.2 10.8 16.5 6.1 336.6 66 723 

8 4.9 7.7 13.6 3.1 336.0 24 558 

9 5.4 8.7 15.4 3.0 330.6 0 32 

10 7.9 9.8 13.5 5.8 334.5 0 391 

  583 



 30 

Table 21. List of the 3031 convective parameters computed from the proxy soundings where 584 

CAPE, CIN, LCL, LFC, and EL and correspond to convective available potential energy, 585 

convective inhibition, lifted condensation level, level of free convection, and equilibrium level, 586 

respectively. 587 

Abbrev. Full Name Units 

MLCAPE Mean-layer CAPE J kg-1 

MLCIN Mean-layer CIN J kg-1 

MLLCL Mean-layer LCL m 

MLLFC Mean-layer LFC m 

MLEL Mean-layer EL m 

NCAPE Normalized MLCAPE m s-2 

K_IND K index °C 

TT Total totals °C 

CT Cross totals °C 

VT Vertical Totals °C 

PW Precipitable Water mm 

HGT0 Height of 0°C temperature isotherm hPa 

ApWBZ 
Approximate height of 0°C wet bulb 

temperature 
m 

W_LOW Mean low-level mixing ratio g kg-1 

W_MID Mean mid-level mixing ratio g kg-1 

RH_LOW Mean low-level relative humidity -- 

RH_MID Mean mid-level relative humidity -- 

ThE_LOW Mean low-level theta-e K 

ThE_MID Mean mid-level theta-e K 

ML_BRN Mean layer bulk Richardson number -- 

Tc Convective temperature °C 

PEFF Precipitation efficiency -- 

DCAPE Downdraft CAPE J kg-1 

WNDG Wind damage parameter -- 

TEI Theta-e index °C 

MICROB Microburst composite index -- 

SWEAT Severe weather and threat index -- 

0-3-km_SHR 0–3-km vertical wind shear m s-1 

0-6-km_SHR 0–6-km vertical wind shear m s-1 

0-8-km_SHR 0–8-km vertical wind shear m s-1 

EBWD Effective layer vertical wind shear m s-1 

  588 



 31 

Table 32. RAP error statistics for surface-based CAPE (SBCAPE) and several of the variables 589 

listed in Table 21. The statistics are presented similarly to Thompson et al. (2003) by providing 590 

the mean RAP-derived value, the mean arithmetic error (bias), and the mean absolute error (MAE). 591 

Parameter Mean Bias MAE R2 

SBCAPE 1354.3 141.3 530.4 0.59 
MLCAPE 943.4 112.6 338.0 0.64 
MLLCL 1077.4 -32.9 151.8 0.82 

Total Totals 44.8 0.51 1.54 0.74 
TEI 21.1 -2.30 3.80 0.69 

0–3-km Shear 6.33 -0.48 1.38 0.82 
0–6-km Shear 8.39 -0.28 1.40 0.88 
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Table 43. WFT, SWS, and SHS day frequency by radar site. 593 

Site 
WFT 

Days 

Wind 

Control 

SWS 

Days 
% SWS 

Hail 

Control 

SHS 

Days 
% SHS 

KAKQ 376 351 25 6.6 363 13 3.5 

KAMX 581 569 12 2.1 575 6 1.0 

KBMX 376 364 12 3.2 372 4 1.1 

KCAE 401 339 62 15.5 377 24 6.0 

KCLX 450 407 43 9.6 440 10 2.2 

KDGX 426 403 23 5.4 416 10 2.3 

KEOX 384 366 18 4.7 382 2 0.5 

KEVX 467 449 18 3.9 463 4 0.9 

KFCX 408 318 90 22.1 370 38 9.3 

KFFC 400 358 42 10.5 387 13 3.3 

KGSP 417 334 83 19.9 383 34 8.2 

KGWX 362 349 13 3.6 354 8 2.2 

KHPX 299 282 17 5.7 294 5 1.7 

KHTX 373 343 30 8.0 369 4 1.1 

KJAX 555 520 35 6.3 546 9 1.6 

KJGX 384 356 28 7.3 377 7 1.8 

KLIX 504 492 12 2.4 501 3 0.6 

KLTX 452 439 13 2.9 444 8 1.8 

KMHX 497 496 1 0.2 495 2 0.4 

KMLB 540 532 8 1.5 532 8 1.5 

KMOB 451 444 7 1.6 446 5 1.1 

KMRX 415 349 66 15.9 384 31 7.5 

KMXX 357 346 8 2.2 350 4 1.1 

KNQA 356 336 20 5.6 345 11 3.1 

KOHX 349 336 13 3.7 345 4 1.1 

KPAH 330 305 25 7.6 318 12 3.6 

KRAX 367 337 30 8.2 355 12 3.3 

KTBW 546 525 21 3.8 535 11 2.0 

KTLH 482 461 21 4.4 479 3 0.6 

KVAX 457 430 27 5.9 452 5 1.1 

Mean 425 398 27 6.7 415 10 2.5 
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Table 54. Summary of convective parameters on SWS days. The “Sites” column indicates the 595 

number of spatial subdivisions within which the difference between the SWS mean and the control 596 

mean was accompanied by p < 0.10; the “percent change” column shows the relative increase or 597 

decrease of the mean on SWS days. 598 

Parameter Sites 
Percent 

change 

VT 28 5.1 

TT 27 4.2 

MLCAPE 25 31.2 

MICROB 23 44.0 

DCAPE 22 17.3 

TEI 22 13.1 

MLLCL 21 12.9 

ThE_LOW 21 0.9 

RH_LOW 20 -5.5 

WNDG 19 41.2 

CT 19 3.2 

Tc 19 5.8 

MLEL 18 8.0 

SWEAT 14 7.8 

W_LOW 10 3.0 

K_IND 8 3.8 

RH_MID 7 -3.2 

ThE_MID 6 0.1 

PEFF 6 -3.8 

0-6-km_SHR 6 -4.5 

0-8-km_SHR 6 -6.5 

ApWBZ 5 -0.5 

HGT0 4 0.1 

W_MID 3 0.0 

MLBRN 3 -0.7 

NCAPE 2 23.9 

PW 2 0.9 

0-3-km_SHR 2 -1.2 

MLCIN 0 6.6 

MLLFC 0 0.9 

EBWD 0 -1.9 
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Table 65. Same as Table 54, except for SHS days.  600 

Parameter Sites 
Percent 

change 

VT 27 8.0 

TT 27 7.5 

CT 21 7.1 

PEFF 16 -11.0 

MLLCL 15 13.2 

HGT0 14 2.4 

ApWBZ 14 -6.0 

RH_LOW 14 -5.3 

DCAPE 13 23.3 

MLCAPE 12 28.8 

PW 12 -6.7 

W_MID 11 -9.2 

ThE_MID 10 -0.7 

WNDG 10 27.4 

RH_MID 9 -7.8 

TEI 7 10.4 

MICROB 7 21.6 

SWEAT 7 10.1 

W_LOW 6 -2.1 

Tc 6 3.2 

0-6-km_SHR 6 9.7 

0-8-km_SHR 5 6.9 

MLEL 4 3.8 

K_IND 3 2.7 

ThE_LOW 3 -0.1 

0-3-km_SHR 3 5.3 

NCAPE 1 27.0 

MLCIN 1 17.7 

MLLFC 1 4.1 

MLBRN 1 -15.8 

EBWD 1 9.5 
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Figures 602 

 603 

Figure 1. WSR-88D sites contributing to the Miller and Mote (2017) WFT climatology.   604 



 36 

 605 

Figure 2. Vertical profiles of RAP output errors measured by co-located radiosonde observations 606 

(a).  Errors were calculated at 1000, 925, 850, 700, 500, 300, and 200 hPa. The 95% confidence 607 

interval for the mean error (solid lines) is shaded. Boxplots of the resulting error for six derived 608 

quantities is shown in (b)-(d). The interquartile range (IQR), representing the middle 50% of 609 

values, is depicted by the gray box. Values lying more than 1.5*IQR from the median (red line) 610 

are marked with dots.  611 
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 612 

Figure 3. Comparison of observed (a) versus RAP-derived (b) soundings for a case when the 613 

MLCAPE discrepancy exceeded 1000 J kg-1 (observed: 1028 J kg-1; RAP: 2051 J kg-1). Minor 614 

mischaracterizations of low-level moisture contributed to a large response in MLCAPE during the 615 

vertical integration of the parcel trajectory.  616 
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 617 

Figure 4. Average number of WFT days during the four-year study period (a) compared to the 618 

proportion of WFT days affiliated with severe wind (b) and severe hail (c) events.   619 
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 620 

Figure 5. Boxplots of selected convective parameters that demonstrated skill in differentiating 621 

between the control days and SWS days.   622 



 40 

 623 

Figure 6. ORs for the same eight convective parameters shown in Fig. 5. Whenever the OR, 624 

defined by Eq. (2), results from a numerator (red) ≥2 and a denominator (blue) ≤0.5, then the OR 625 

is drawn in black. The left y-axis expresses values corresponding to the OR’s numerator and 626 

denominator (red and blue lines), and the right y-axis corresponds to the OR value (gray line). At 627 

very low and very high threshold values, the variance of the OR may be undefined, and the 95% 628 

OR confidence interval cannot be computed. 629 
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 630 

Figure 7. Same as Fig. 5 except for SHS days. Panes (a)-(d) replicate the same variables shown in 631 

Fig. 5 whereas (e)-(h) are replaced with four SHS-specific parameters from Table 5Table 6.  632 
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633 

Figure 8. Same as Fig. 6 except for SHS days. Panes (a)-(d) replicate the same variables shown in 634 

Fig. 6 whereas (e)-(h) are replaced with four SHS-specific parameters from Table 5Table 6.  At 635 

very low and very high threshold values, the variance of the OR may be undefined, and the 95% 636 

OR confidence interval cannot be computed.  637 

638 
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639 

Figure 9. Same as Fig. 6a-b (a-b) and Fig. 8a-b (c-d) except that only marginal SWS and SHS 640 

days are used to calculate the OR. At very low and very high threshold values, the variance of the 641 

OR may be undefined, and the 95% OR confidence interval cannot be computed. 642 


