Articles | Volume 17, issue 2
https://doi.org/10.5194/nhess-17-243-2017
https://doi.org/10.5194/nhess-17-243-2017
Research article
 | 
22 Feb 2017
Research article |  | 22 Feb 2017

A method to estimate freezing rain climatology from ERA-Interim reanalysis over Europe

Matti Kämäräinen, Otto Hyvärinen, Kirsti Jylhä, Andrea Vajda, Simo Neiglick, Jaakko Nuottokari, and Hilppa Gregow

Related authors

Simulating sea level extremes from synthetic low-pressure systems
Jani Särkkä, Jani Räihä, Mika Rantanen, and Matti Kämäräinen
Nat. Hazards Earth Syst. Sci., 24, 1835–1842, https://doi.org/10.5194/nhess-24-1835-2024,https://doi.org/10.5194/nhess-24-1835-2024, 2024
Short summary
Spatiotemporal lagging of predictors improves machine learning estimates of atmosphere–forest CO2 exchange
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023,https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Adding value to extended-range forecasts in northern Europe by statistical post-processing using stratospheric observations
Natalia Korhonen, Otto Hyvärinen, Matti Kämäräinen, David S. Richardson, Heikki Järvinen, and Hilppa Gregow
Atmos. Chem. Phys., 20, 8441–8451, https://doi.org/10.5194/acp-20-8441-2020,https://doi.org/10.5194/acp-20-8441-2020, 2020
Short summary
Projected decrease in wintertime bearing capacity on different forest and soil types in Finland under a warming climate
Ilari Lehtonen, Ari Venäläinen, Matti Kämäräinen, Antti Asikainen, Juha Laitila, Perttu Anttila, and Heli Peltola
Hydrol. Earth Syst. Sci., 23, 1611–1631, https://doi.org/10.5194/hess-23-1611-2019,https://doi.org/10.5194/hess-23-1611-2019, 2019
Short summary
Long-range forecasts for the energy market – a case study
Otto Hyvärinen, Antti Mäkelä, Matti Kämäräinen, and Hilppa Gregow
Adv. Sci. Res., 14, 89–93, https://doi.org/10.5194/asr-14-89-2017,https://doi.org/10.5194/asr-14-89-2017, 2017
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024,https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024,https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Intense rains in Israel associated with the train effect
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024,https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024,https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024,https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary

Cited articles

Bernstein, B. C.: Regional and Local Influences on Freezing Drizzle, Freezing Rain,and Ice Pellet Events, Weather Forecast., 15, 485–508, https://doi.org/10.1175/1520-0434(2000)015<0485:RALIOF>2.0.CO;2, 2000.
Bernstein, B. C. and Le Bot, C.: An Inferred Climatology of Icing Conditions Aloft, Including Supercooled Large Drops. Part II: Europe, Asia, and the Globe, J. Appl. Meteorol. Clim., 48, 1503–1526, 2009.
Bernstein, B. C., Makkonen, L., and Järvinen, E.: European Icing Frequency Derived From Surface Observations, IWAIS XIII, Andermatt, 8–11 September, 2009.
Bezrukova, N. A., Jeck, R. K., Khalili, M. F., Minina, L. S., Naumov, A. Y., and Stulov, E. A.: Some statistics of freezing precipitation and rime for the territory of the former USSR from ground-based weather observations, Atmos. Res., 82, 203–221, https://doi.org/10.1016/j.atmosres.2005.10.011, 2006.
Bocchieri, J. R.: The Objective Use of Upper Air Soundings to Specify Precipitation Type, Mon. Weather Rev., 108, 596–603, https://doi.org/10.1175/1520-0493(1980)108<0596:TOUOUA>2.0.CO;2, 1980.
Download
Short summary
Freezing rain is a high-impact wintertime weather phenomenon. The direct damage it causes to critical infrastructure (transportation, communication and energy) and forestry can be substantial. In this work a method for estimating the occurrence of freezing rain was evaluated and used to derive the climatology. The method was able to accurately reproduce the observed, spatially aggregated annual variability. The highest frequencies of freezing rain were found in eastern and central Europe.
Altmetrics
Final-revised paper
Preprint