Articles | Volume 17, issue 12
https://doi.org/10.5194/nhess-17-2321-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-17-2321-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Conceptualizing community resilience to natural hazards – the emBRACE framework
Sylvia Kruse
CORRESPONDING AUTHOR
Chair for Forest and Environmental Policy, University of Freiburg,
79106 Freiburg, Germany
Swiss Federal Institute for Forest Snow and Landscape Research,
8903 Birmensdorf, Switzerland
Thomas Abeling
Climate Impacts and Adaptation, Environment Agency, 06844
Dessau-Roßlau, Germany
Hugh Deeming
HD Research, Lane Head, Bentham, UK
Maureen Fordham
Department of Geography, Northumbria University, Ellison Place,
Newcastle upon Tyne NE1 8ST, UK
John Forrester
Stockholm Environment Institute & Environment Department, York
Centre for Complex Systems Analysis, University of York, YO10, UK
Sebastian Jülich
Swiss Federal Institute for Forest Snow and Landscape Research,
8903 Birmensdorf, Switzerland
A. Nuray Karanci
Psychology Department, Middle East Technical University, Ankara,
Turkey
Christian Kuhlicke
Helmholtz-Centre for Environmental Research – UFZ, 04318 Leipzig,
Germany
Mark Pelling
Department of Geography, King's College London, Strand, London WC2R 2LS,
UK
Lydia Pedoth
Eurac Research, 39100 Bolzano, Italy
Stefan Schneiderbauer
Eurac Research, 39100 Bolzano, Italy
Related authors
S. Kruse and I. Seidl
Nat. Hazards Earth Syst. Sci., 13, 3429–3441, https://doi.org/10.5194/nhess-13-3429-2013, https://doi.org/10.5194/nhess-13-3429-2013, 2013
Jess Delves, Kathrin Renner, Piero Campalani, Jesica Piñón, Stefan Schneiderbauer, Stefan Steger, Mateo Moreno, Maria Belen Benito Oterino, Eduardo Perez, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2024-3445, https://doi.org/10.5194/egusphere-2024-3445, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This scientific paper presents a multi-hazard risk assessment for Burundi, focusing on flooding, torrential rains, landslides, earthquakes, and strong winds. The study identifies key risk hotspots with estimated economic losses of 92 million USD (2.5 % of GDP). Climate change projections indicate increased precipitation. The paper highlights data limitations and stresses the need for improved hazard models and the consideration of compounding risks in future assessments.
Jan Sodoge, Christian Kuhlicke, Miguel D. Mahecha, and Mariana Madruga de Brito
Nat. Hazards Earth Syst. Sci., 24, 1757–1777, https://doi.org/10.5194/nhess-24-1757-2024, https://doi.org/10.5194/nhess-24-1757-2024, 2024
Short summary
Short summary
We delved into the socio-economic impacts of the 2018–2022 drought in Germany. We derived a dataset covering the impacts of droughts in Germany between 2000 and 2022 on sectors such as agriculture and forestry based on newspaper articles. Notably, our study illustrated that the longer drought had a wider reach and more varied effects. We show that dealing with longer droughts requires different plans compared to shorter ones, and it is crucial to be ready for the challenges they bring.
Lisa Köhler, Torsten Masson, Sabrina Köhler, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 23, 2787–2806, https://doi.org/10.5194/nhess-23-2787-2023, https://doi.org/10.5194/nhess-23-2787-2023, 2023
Short summary
Short summary
We analyzed the impact of flood experience on adaptive behavior and self-reported resilience. The outcomes draw a paradoxical picture: the most experienced people are the most adapted but the least resilient. We find evidence for non-linear relationships between the number of floods experienced and resilience. We contribute to existing knowledge by focusing specifically on the number of floods experienced and extending the rare scientific literature on the influence of experience on resilience.
Samuel Rufat, Mariana Madruga de Brito, Alexander Fekete, Emeline Comby, Peter J. Robinson, Iuliana Armaş, W. J. Wouter Botzen, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 22, 2655–2672, https://doi.org/10.5194/nhess-22-2655-2022, https://doi.org/10.5194/nhess-22-2655-2022, 2022
Short summary
Short summary
It remains unclear why people fail to act adaptively to reduce future losses, even when there is ever-richer information available. To improve the ability of researchers to build cumulative knowledge, we conducted an international survey – the Risk Perception and Behaviour Survey of Surveyors (Risk-SoS). We find that most studies are exploratory and often overlook theoretical efforts that would enable the accumulation of evidence. We offer several recommendations for future studies.
Stefano Terzi, Janez Sušnik, Stefan Schneiderbauer, Silvia Torresan, and Andrea Critto
Nat. Hazards Earth Syst. Sci., 21, 3519–3537, https://doi.org/10.5194/nhess-21-3519-2021, https://doi.org/10.5194/nhess-21-3519-2021, 2021
Short summary
Short summary
This study combines outputs from multiple models with statistical assessments of past and future water availability and demand for the Santa Giustina reservoir (Autonomous Province of Trento, Italy). Considering future climate change scenarios, results show high reductions for stored volume and turbined water, with increasing frequency, duration and severity. These results call for the need to adapt to reductions in water availability and effects on the Santa Giustina reservoir management.
Gunnar Dressler, Birgit Müller, Karin Frank, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 16, 2287–2301, https://doi.org/10.5194/nhess-16-2287-2016, https://doi.org/10.5194/nhess-16-2287-2016, 2016
Short summary
Short summary
Disaster management is a core feature to protect communities against floods. But what happens if a loss of resources or an increased flood frequency puts its performance at stake? We use a simulation model as a "virtual lab" to explore the impact of change processes on disaster management performance. Demographic change, causing a loss in manpower, has the most profound impact on the performance. Performance might be at risk in particular in rural, upstream regions with very short lead times.
M. P. Hare, C. van Bers, P. van der Keur, H. J. Henriksen, J. Luther, C. Kuhlicke, F. Jaspers, C. Terwisscha van Scheltinga, J. Mysiak, E. Calliari, K. Warner, H. Daniel, J. Coppola, and P. F. McGrath
Nat. Hazards Earth Syst. Sci., 14, 2157–2163, https://doi.org/10.5194/nhess-14-2157-2014, https://doi.org/10.5194/nhess-14-2157-2014, 2014
S. Kruse and I. Seidl
Nat. Hazards Earth Syst. Sci., 13, 3429–3441, https://doi.org/10.5194/nhess-13-3429-2013, https://doi.org/10.5194/nhess-13-3429-2013, 2013
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Ready, Set & Go! An anticipatory action system against droughts
Between global risk reduction goals, scientific–technical capabilities and local realities: a modular approach for user-centric multi-risk assessment
Flood risk assessment through large-scale modeling under uncertainty
Migration as a hidden risk factor in seismic fatality: spatial modeling of the Chi-Chi earthquake and suburban syndrome
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Current status of water-related planning for climate change adaptation in the Spree river basin, Germany
Using a convection-permitting climate model to assess wine grape productivity: two case studies in Italy
Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Dynamic response of pile–slab retaining wall structure under rockfall impact
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Enhancement of state response capability and famine mitigation: A comparative analysis of two drought events in northern China during the Ming dynasty
Content Analysis of Multi-Annual Time Series of Flood-Related Twitter (X) Data
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Brief communication: Storm Daniel flood impact in Greece in 2023: mapping crop and livestock exposure from synthetic-aperture radar (SAR)
Flood exposure of environmental assets
Risk reduction through managed retreat? Investigating enabling conditions and assessing resettlement effects on community resilience in Metro Manila
Brief communication: Lessons learned and experiences gained from building up a global survey on societal resilience to changing droughts
Regional seismic risk assessment based on ground conditions in Uzbekistan
Unveiling transboundary challenges in river flood risk management: learning from the Ciliwung River basin
Quantitative study of storm surge risk assessment in an undeveloped coastal area of China based on deep learning and geographic information system techniques: a case study of Double Moon Bay
Mapping vulnerability to climate change for spatial planning in the region of Stuttgart
Adaptive Behavior of Over a Million Individual Farmers Under Consecutive Droughts: A Large-Scale Agent-Based Modeling Analysis in the Bhima Basin, India
Multisectoral analysis of drought impacts and management responses to the 2008–2015 record drought in the Colorado Basin, Texas
Simulating multi-hazard event sets for life cycle consequence analysis
Analysis of the effects of urban micro-scale vulnerabilities on tsunami evacuation using an agent-based model – case study in the city of Iquique, Chile
Factors of influence on flood risk perceptions related to Hurricane Dorian: an assessment of heuristics, time dynamics, and accuracy of risk perceptions
From insufficient rainfall to livelihoods: understanding the cascade of drought impacts and policy implications
Anticipating a risky future: long short-term memory (LSTM) models for spatiotemporal extrapolation of population data in areas prone to earthquakes and tsunamis in Lima, Peru
A new regionally consistent exposure database for Central Asia: population and residential buildings
Study on seismic risk assessment model of water supply systems in mainland China
Mapping current and future flood exposure using a 5 m flood model and climate change projections
A New Method for Calculating Highway Blocking due to High Impact Weather Conditions
Brief communication: On the environmental impacts of the 2023 floods in Emilia-Romagna (Italy)
A regional-scale approach to assessing non-residential building, transportation and cropland exposure in Central Asia
Towards a global impact-based forecasting model for tropical cyclones
Identifying vulnerable populations in urban society: a case study in a flood-prone district of Wuhan, China
An assessment of potential improvements in social capital, risk awareness, and preparedness from digital technologies
Spatial accessibility of emergency medical services under inclement weather: a case study in Beijing, China
Review article: Current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards
Estimating emergency costs for earthquakes and floods in Central Asia based on modelled losses
Compound flood impacts from Hurricane Sandy on New York City in climate-driven storylines
Regional-scale landslide risk assessment in Central Asia
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025, https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Short summary
Natural hazards like earthquakes often trigger other disasters, such as landslides, creating complex chains of impacts. We developed a risk model using a mathematical approach called hypergraphs to efficiently measure the impact of interconnected hazards. We showed that it can predict broad patterns of damage to buildings and roads from the 2015 Nepal earthquake. The model's efficiency allows it to generate multiple disaster scenarios, even at a national scale, to support preparedness plans.
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci., 25, 49–76, https://doi.org/10.5194/nhess-25-49-2025, https://doi.org/10.5194/nhess-25-49-2025, 2025
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history mean the data required for vulnerability evaluation by the insurance industry are scarce. A systematic literature review is conducted in this study to determine the suitability of current published literature for this purpose. Knowledge gaps are charted, and a representative asset–hazard taxonomy is proposed to guide future quantitative research.
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Manuel Lemos Pereira Bonifácio
Nat. Hazards Earth Syst. Sci., 24, 4661–4682, https://doi.org/10.5194/nhess-24-4661-2024, https://doi.org/10.5194/nhess-24-4661-2024, 2024
Short summary
Short summary
The
Ready, Set & Go!system, developed by the World Food Programme and partners, employs seasonal forecasts to tackle droughts in Mozambique. With the Maputo Declaration, efforts to expand early warning systems are aligning with global initiatives for universal protection by 2027. Through advanced forecasting and anticipatory action, it could cover 76 % of districts against severe droughts, reaching 87 % national coverage for the first months of the rainy season.
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024, https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Short summary
In this paper, we provide a brief introduction of the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructure to increase their capabilities.
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, https://doi.org/10.5194/nhess-24-4507-2024, https://doi.org/10.5194/nhess-24-4507-2024, 2024
Short summary
Short summary
Several sources of uncertainty affect flood risk estimation for reliable assessment for investment, insurance and risk management. Here, we consider the uncertainty of large-scale flood hazard modeling, providing a range of risk values that show significant variability depending on geomorphic factors and land use types. This allows for identifying the critical points where single-value estimates may underestimate the risk and the areas of vulnerability for prioritizing risk reduction efforts.
Tzu-Hsin Karen Chen, Kuan-Hui Elaine Lin, Thung-Hong Lin, Gee-Yu Liu, Chin-Hsun Yeh, and Diana Maria Ceballos
Nat. Hazards Earth Syst. Sci., 24, 4457–4471, https://doi.org/10.5194/nhess-24-4457-2024, https://doi.org/10.5194/nhess-24-4457-2024, 2024
Short summary
Short summary
This study shows migration patterns to be a critical factor in seismic fatalities. Analyzing the Chi-Chi earthquake in Taiwan, we find that lower income and a higher indigenous population at migrants' origins are correlated with higher fatalities at their destinations. This underscores the need for affordable and safe housing on the outskirts of megacities, where migrants from lower-income and historically marginalized groups are more likely to reside due to precarious employment conditions.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, W. J. Wouter Botzen, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 24, 4409–4429, https://doi.org/10.5194/nhess-24-4409-2024, https://doi.org/10.5194/nhess-24-4409-2024, 2024
Short summary
Short summary
As sea levels rise, coastal areas will experience more frequent flooding, and salt water will start seeping into the soil, which is a serious issue for farmers who rely on good soil quality for their crops. Here, we studied coastal Mozambique to understand the risks from sea level rise and flooding by looking at how salt intrusion affects farming and how floods damage buildings. We find that 15 %–21 % of coastal households will adapt and 13 %–20 % will migrate to inland areas in the future.
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci., 24, 4369–4383, https://doi.org/10.5194/nhess-24-4369-2024, https://doi.org/10.5194/nhess-24-4369-2024, 2024
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in plans for water management, spatial planning and landscape planning in the Spree river basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this gap, more frequent updates of plans, a stronger focus on multifunctional measures, and the adaptation of best-practice examples for systematic integration of climate change impacts and adaptation are needed.
Laura T. Massano, Giorgia Fosser, Marco Gaetani, and Cécile Caillaud
Nat. Hazards Earth Syst. Sci., 24, 4293–4315, https://doi.org/10.5194/nhess-24-4293-2024, https://doi.org/10.5194/nhess-24-4293-2024, 2024
Short summary
Short summary
Traditional wine-growing regions are threatened by expected climate change. Climate models and observations are used to calculate bioclimatic indices based on both temperature and precipitation. These indices are correlated with grape productivity in two wine-growing regions in Italy. This analysis paves the way for using climate models to study how climate change will affect wine production in the future.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024, https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Short summary
Central Asia is prone to earthquake losses, which can heavily impact different types of assets. This paper presents the details of a probabilistic earthquake risk model which made use of a regionally consistent approach to assess feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed at facilitating a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024, https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Short summary
To integrate resilience assessment into practical management, this study designs a step-by-step guide that enables managers of critical infrastructure (CI) to create specific indicator systems tailored to real cases. This guide considers the consequences of hazards to CI and the cost–benefit analysis and side effects of implementable actions. The assessment results assist managers, as they are based on a multi-criterion framework that addresses several factors valued in practical management.
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024, https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Short summary
Natural disturbances are projected to intensify in the future, threatening our forests and their functions such as wood production, protection against natural hazards, and carbon sequestration. By assessing risks to forests from wind and fire damage, alongside the vulnerability of carbon, it is possible to prioritize forest stands at high risk. In this study, we propose a novel methodological approach to support climate-smart forest management and inform better decision-making.
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024, https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Short summary
The pile–slab retaining wall, an innovative rockfall shield, is widely used in China's western mountains. However, its dynamic impact response and resistance remain unclear due to structural complexity. A comprehensive dynamic analysis of the structure, under various impacts, was done using the finite-element method. The maximum impact energy that the structure can withstand is 905 kJ, and various indexes were obtained.
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-159, https://doi.org/10.5194/nhess-2024-159, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study developed a model of extreme drought-induced famine processes and response mechanisms in ancient China. Spatial distribution of drought and famine during the Chenghua Drought and the Wanli Drought was constructed. By categorizing drought-affected counties into three types, a comparative analysis of the differences in famine severity and response effectiveness between the Chenghua and Wanli droughts was conducted.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
EGUsphere, https://doi.org/10.5194/egusphere-2024-2556, https://doi.org/10.5194/egusphere-2024-2556, 2024
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024, https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Short summary
Iranian insurers have been offering earthquake coverage since the 1990s. However, despite international best practices, they still do not use modern methods for risk pricing and management. As such, they seem to be accumulating seismic risk over time. This paper examines the viability of this market in Iran by comparing the local market practices with international best practices in earthquake risk pricing (catastrophe modeling) and insurance risk management (European Solvency II regime).
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024, https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Short summary
Micro-businesses, often overlooked in adaptation research, show surprising willingness to contribute to collective adaptation despite limited finances and local support. Based on a study in Ho Chi Minh City in Vietnam, approximately 70 % are ready for awareness campaigns, and 39 % would provide financial support if costs were shared. These findings underscore the need for increased involvement of micro-businesses in local adaptation plans to enhance collective adaptive capacity.
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-105, https://doi.org/10.5194/nhess-2024-105, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Environmental assets are crucial to sustain and fulfil life on Earth through ecosystem services. Assessing their flood risk is thus seminal, besides required by several norms. Even though, this field is not yet sufficiently developed. We explored the exposure component of the flood risk, and developed an evaluating methodology based on the ecosystem services provided by the environmental assets, to discern assets and areas more important than others with metrics suitable to large scale studies.
Hannes Lauer, Carmeli Marie C. Chaves, Evelyn Lorenzo, Sonia Islam, and Jörn Birkmann
Nat. Hazards Earth Syst. Sci., 24, 2243–2261, https://doi.org/10.5194/nhess-24-2243-2024, https://doi.org/10.5194/nhess-24-2243-2024, 2024
Short summary
Short summary
In many urban areas, people face high exposure to hazards. Resettling them to safer locations becomes a major strategy, not least because of climate change. This paper dives into the success factors of government-led resettlement in Manila and finds surprising results which challenge the usual narrative and fuel the conversation on resettlement as an adaptation strategy. Contrary to expectations, the location – whether urban or rural – of the new home is less important than safety from floods.
Marina Batalini de Macedo, Marcos Roberto Benso, Karina Simone Sass, Eduardo Mario Mendiondo, Greicelene Jesus da Silva, Pedro Gustavo Câmara da Silva, Elisabeth Shrimpton, Tanaya Sarmah, Da Huo, Michael Jacobson, Abdullah Konak, Nazmiye Balta-Ozkan, and Adelaide Cassia Nardocci
Nat. Hazards Earth Syst. Sci., 24, 2165–2173, https://doi.org/10.5194/nhess-24-2165-2024, https://doi.org/10.5194/nhess-24-2165-2024, 2024
Short summary
Short summary
With climate change, societies increasingly need to adapt to deal with more severe droughts and the impacts they can have on food production. To make better adaptation decisions, drought resilience indicators can be used. To build these indicators, surveys with experts can be done. However, designing surveys is a costly process that can influence how experts respond. In this communication, we aim to deal with the challenges encountered in the development of surveys to help further research.
Vakhitkhan Alikhanovich Ismailov, Sharofiddin Ismatullayevich Yodgorov, Akhror Sabriddinovich Khusomiddinov, Eldor Makhmadiyorovich Yadigarov, Bekzod Uktamovich Aktamov, and Shuhrat Bakhtiyorovich Avazov
Nat. Hazards Earth Syst. Sci., 24, 2133–2146, https://doi.org/10.5194/nhess-24-2133-2024, https://doi.org/10.5194/nhess-24-2133-2024, 2024
Short summary
Short summary
For the basis of seismic risk assessment, maps of seismic intensity increment and an improved map of seismic hazard have been developed, taking into account the engineering-geological conditions of the territory of Uzbekistan and the seismic characteristics of soils. For seismic risk map development, databases were created based on geographic information system platforms, allowing us to systematize and evaluate the regional distribution of information.
Harkunti Pertiwi Rahayu, Khonsa Indana Zulfa, Dewi Nurhasanah, Richard Haigh, Dilanthi Amaratunga, and In In Wahdiny
Nat. Hazards Earth Syst. Sci., 24, 2045–2064, https://doi.org/10.5194/nhess-24-2045-2024, https://doi.org/10.5194/nhess-24-2045-2024, 2024
Short summary
Short summary
Transboundary flood risk management in the Ciliwung River basin is placed in a broader context of disaster management, environmental science, and governance. This is particularly relevant for areas of research involving the management of shared water resources, the impact of regional development on flood risk, and strategies to reduce economic losses from flooding.
Lichen Yu, Hao Qin, Shining Huang, Wei Wei, Haoyu Jiang, and Lin Mu
Nat. Hazards Earth Syst. Sci., 24, 2003–2024, https://doi.org/10.5194/nhess-24-2003-2024, https://doi.org/10.5194/nhess-24-2003-2024, 2024
Short summary
Short summary
This paper proposes a quantitative storm surge risk assessment method for data-deficient regions. A coupled model is used to simulate five storm surge scenarios. Deep learning is used to extract building footprints. Economic losses are calculated by combining adjusted depth–damage functions with inundation simulation results. Zoning maps illustrate risk levels based on economic losses, aiding in disaster prevention measures to reduce losses in coastal areas.
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
EGUsphere, https://doi.org/10.5194/egusphere-2024-1407, https://doi.org/10.5194/egusphere-2024-1407, 2024
Short summary
Short summary
Adapting to climate extremes is a challenge for spatial planning. Risk maps that include not just a consideration of hazards but also social vulnerability can help. We develop social vulnerability maps for the Stuttgart region, Germany. We show the maps, describe how and why we developed them, and provide an analysis of practitioners’ needs and their feedback. Insights presented in this paper can help to improve map usability and to better link research and planning practice.
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-1588, https://doi.org/10.5194/egusphere-2024-1588, 2024
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated all farmers' individual choices—like changing crops or digging wells—and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damages. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrology models in shaping policies to lessen drought impacts.
Stephen B. Ferencz, Ning Sun, Sean W. D. Turner, Brian A. Smith, and Jennie S. Rice
Nat. Hazards Earth Syst. Sci., 24, 1871–1896, https://doi.org/10.5194/nhess-24-1871-2024, https://doi.org/10.5194/nhess-24-1871-2024, 2024
Short summary
Short summary
Drought has long posed an existential threat to society. Population growth, economic development, and the potential for more extreme and prolonged droughts due to climate change pose significant water security challenges. Better understanding the impacts and adaptive responses resulting from extreme drought can aid adaptive planning. The 2008–2015 record drought in the Colorado Basin, Texas, United States, is used as a case study to assess impacts and responses to severe drought.
Leandro Iannacone, Kenneth Otárola, Roberto Gentile, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/nhess-24-1721-2024, https://doi.org/10.5194/nhess-24-1721-2024, 2024
Short summary
Short summary
The paper presents a review of the available classifications for hazard interactions in a multi-hazard context, and it incorporates such classifications from a modeling perspective. The outcome is a sequential Monte Carlo approach enabling efficient simulation of multi-hazard event sets (i.e., sequences of events throughout the life cycle). These event sets can then be integrated into frameworks for the quantification of consequences for the purposes of life cycle consequence (LCCon) analysis.
Rodrigo Cienfuegos, Gonzalo Álvarez, Jorge León, Alejandro Urrutia, and Sebastián Castro
Nat. Hazards Earth Syst. Sci., 24, 1485–1500, https://doi.org/10.5194/nhess-24-1485-2024, https://doi.org/10.5194/nhess-24-1485-2024, 2024
Short summary
Short summary
This study carries out a detailed analysis of possible tsunami evacuation scenarios in the city of Iquique in Chile. Evacuation modeling and tsunami modeling are integrated, allowing for an estimation of the potential number of people that the inundation may reach under different scenarios by emulating the dynamics and behavior of the population and their decision-making regarding the starting time of the evacuation.
Laurine A. de Wolf, Peter J. Robinson, W. J. Wouter Botzen, Toon Haer, Jantsje M. Mol, and Jeffrey Czajkowski
Nat. Hazards Earth Syst. Sci., 24, 1303–1318, https://doi.org/10.5194/nhess-24-1303-2024, https://doi.org/10.5194/nhess-24-1303-2024, 2024
Short summary
Short summary
An understanding of flood risk perceptions may aid in improving flood risk communication. We conducted a survey among 871 coastal residents in Florida who were threatened to be flooded by Hurricane Dorian. Part of the original sample was resurveyed after Dorian failed to make landfall to investigate changes in risk perception. We find a strong influence of previous flood experience and social norms on flood risk perceptions. Furthermore, flood risk perceptions declined after the near-miss event.
Louise Cavalcante, David W. Walker, Sarra Kchouk, Germano Ribeiro Neto, Taís Maria Nunes Carvalho, Mariana Madruga de Brito, Wieke Pot, Art Dewulf, and Pieter van Oel
EGUsphere, https://doi.org/10.5194/egusphere-2024-650, https://doi.org/10.5194/egusphere-2024-650, 2024
Short summary
Short summary
The research aimed to understand the role of society in mitigating drought impacts through policy responses in the context of northeast Brazil. Results revealed that socio-environmental-economic impacts of drought are less frequently reported, while hydrological impacts of drought were the most reported. It emphasized that public policies addressing the impacts of drought need to focus not only on increasing water availability, but also on strengthening the local economy.
Christian Geiß, Jana Maier, Emily So, Elisabeth Schoepfer, Sven Harig, Juan Camilo Gómez Zapata, and Yue Zhu
Nat. Hazards Earth Syst. Sci., 24, 1051–1064, https://doi.org/10.5194/nhess-24-1051-2024, https://doi.org/10.5194/nhess-24-1051-2024, 2024
Short summary
Short summary
We establish a model of future geospatial population distributions to quantify the number of people living in earthquake-prone and tsunami-prone areas of Lima and Callao, Peru, for the year 2035. Areas of high earthquake intensity will experience a population growth of almost 30 %. The population in the tsunami inundation area is estimated to grow by more than 60 %. Uncovering those relations can help urban planners and policymakers to develop effective risk mitigation strategies.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Vakhitkhan Ismailov, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Faga
Nat. Hazards Earth Syst. Sci., 24, 929–945, https://doi.org/10.5194/nhess-24-929-2024, https://doi.org/10.5194/nhess-24-929-2024, 2024
Short summary
Short summary
Central Asia is highly exposed to multiple hazards, including earthquakes, floods and landslides, for which risk reduction strategies are currently under development. We provide a regional-scale database of assets at risk, including population and residential buildings, based on existing information and recent data collected for each Central Asian country. The population and number of buildings are also estimated for the year 2080 to support the definition of disaster risk reduction strategies.
Tianyang Yu, Banghua Lu, Hui Jiang, and Zhi Liu
Nat. Hazards Earth Syst. Sci., 24, 803–822, https://doi.org/10.5194/nhess-24-803-2024, https://doi.org/10.5194/nhess-24-803-2024, 2024
Short summary
Short summary
A basic database for seismic risk assessment of 720 urban water supply systems in mainland China is established. The parameters of the seismic risk curves of 720 cities are calculated. The seismic fragility curves of various facilities in the water supply system are given based on the logarithmic normal distribution model. The expected seismic loss and the expected loss rate index of 720 urban water supply systems in mainland China in the medium and long term are given.
Connor Darlington, Jonathan Raikes, Daniel Henstra, Jason Thistlethwaite, and Emma K. Raven
Nat. Hazards Earth Syst. Sci., 24, 699–714, https://doi.org/10.5194/nhess-24-699-2024, https://doi.org/10.5194/nhess-24-699-2024, 2024
Short summary
Short summary
The impacts of climate change on local floods require precise maps that clearly demarcate changes to flood exposure; however, most maps lack important considerations that reduce their utility in policy and decision-making. This article presents a new approach to identifying current and projected flood exposure using a 5 m model. The results highlight advancements in the mapping of flood exposure with implications for flood risk management.
Duanyang Liu, Tian Jing, Mingyue Yan, Ismail Gultepe, Yunxuan Bao, Hongbin Wang, and Fan Zu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-230, https://doi.org/10.5194/nhess-2023-230, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The highway-blocking events are characterized by diurnal variation. A classification method of severity levels of highway blocking is developed into five levels. The severity levels of highway blocking due to high-impact weather are evaluated. A method for calculating the degree of highway load in China is proposed. A quantitative assessment of the losses of highway blocking due to dense fog is conducted. The highway losses caused by dense fog are concentrated in North, East and Southwest China.
Chiara Arrighi and Alessio Domeneghetti
Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, https://doi.org/10.5194/nhess-24-673-2024, 2024
Short summary
Short summary
In this communication, we reflect on environmental flood impacts by analysing the reported environmental consequences of the 2023 Emilia-Romagna floods. The most frequently reported damage involves water resources and water-related ecosystems. Indirect effects in time and space, intrinsic recovery capacity, cascade impacts on socio-economic systems, and the lack of established monitoring activities appear to be the most challenging aspects for future research.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Zukhritdin Ergashev, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Fagà
Nat. Hazards Earth Syst. Sci., 24, 355–373, https://doi.org/10.5194/nhess-24-355-2024, https://doi.org/10.5194/nhess-24-355-2024, 2024
Short summary
Short summary
Central Asia is prone to multiple hazards such as floods, landslides and earthquakes, which can affect a wide range of assets at risk. We develop the first regionally consistent database of assets at risk for non-residential buildings, transportation and croplands in Central Asia. The database combines global and regional data sources and country-based information and supports the development of regional-scale disaster risk reduction strategies for the Central Asia region.
Mersedeh Kooshki Forooshani, Marc van den Homberg, Kyriaki Kalimeri, Andreas Kaltenbrunner, Yelena Mejova, Leonardo Milano, Pauline Ndirangu, Daniela Paolotti, Aklilu Teklesadik, and Monica L. Turner
Nat. Hazards Earth Syst. Sci., 24, 309–329, https://doi.org/10.5194/nhess-24-309-2024, https://doi.org/10.5194/nhess-24-309-2024, 2024
Short summary
Short summary
We improve an existing impact forecasting model for the Philippines by transforming the target variable (percentage of damaged houses) to a fine grid, using only features which are globally available. We show that our two-stage model conserves the performance of the original and even has the potential to introduce savings in anticipatory action resources. Such model generalizability is important in increasing the applicability of such tools around the world.
Jia Xu, Makoto Takahashi, and Weifu Li
Nat. Hazards Earth Syst. Sci., 24, 179–197, https://doi.org/10.5194/nhess-24-179-2024, https://doi.org/10.5194/nhess-24-179-2024, 2024
Short summary
Short summary
Through the development of micro-individual social vulnerability indicators and cluster analysis, this study assessed the level of social vulnerability of 599 residents from 11 communities in the Hongshan District of Wuhan. The findings reveal three levels of social vulnerability: high, medium, and low. Quantitative assessments offer specific comparisons between distinct units, and the results indicate that different types of communities have significant differences in social vulnerability.
Tommaso Piseddu, Mathilda Englund, and Karina Barquet
Nat. Hazards Earth Syst. Sci., 24, 145–161, https://doi.org/10.5194/nhess-24-145-2024, https://doi.org/10.5194/nhess-24-145-2024, 2024
Short summary
Short summary
Contributions to social capital, risk awareness, and preparedness constitute the parameters to test applications in disaster risk management. We propose an evaluation of four of these: mobile positioning data, social media crowdsourcing, drones, and satellite imaging. The analysis grants the opportunity to investigate how different methods to evaluate surveys' results may influence final preferences. We find that the different assumptions on which these methods rely deliver diverging results.
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci., 24, 63–77, https://doi.org/10.5194/nhess-24-63-2024, https://doi.org/10.5194/nhess-24-63-2024, 2024
Short summary
Short summary
This article is aimed at developing a method to quantify the influence of inclement weather on the accessibility of emergency medical services (EMSs) in Beijing, China, and identifying the vulnerable areas that could not get timely EMSs under inclement weather. We found that inclement weather could reduce the accessibility of EMSs by up to 40%. Furthermore, towns with lower baseline EMSs accessibility are more vulnerable when inclement weather occurs.
Soheil Mohammadi, Silvia De Angeli, Giorgio Boni, Francesca Pirlone, and Serena Cattari
Nat. Hazards Earth Syst. Sci., 24, 79–107, https://doi.org/10.5194/nhess-24-79-2024, https://doi.org/10.5194/nhess-24-79-2024, 2024
Short summary
Short summary
This paper critically reviews disaster recovery literature from a multi-risk perspective. Identified key challenges encompass the lack of approaches integrating physical reconstruction and socio-economic recovery, the neglect of multi-risk interactions, the limited exploration of recovery from a pre-disaster planning perspective, and the low consideration of disaster recovery as a non-linear process in which communities need change over time.
Emilio Berny, Carlos Avelar, Mario A. Salgado-Gálvez, and Mario Ordaz
Nat. Hazards Earth Syst. Sci., 24, 53–62, https://doi.org/10.5194/nhess-24-53-2024, https://doi.org/10.5194/nhess-24-53-2024, 2024
Short summary
Short summary
This paper presents a methodology to estimate the total emergency costs based on modelled damages for earthquakes and floods, together with the demographic and building characteristics of the study area. The methodology has been applied in five countries in central Asia, the first time that these estimates are made available for the study area and are intended to be useful for regional and local stakeholders and decision makers.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 13–27, https://doi.org/10.5194/nhess-24-13-2024, https://doi.org/10.5194/nhess-24-13-2024, 2024
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows us to identify where physical and economic losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for central Asia, and it represents an advanced step in the field of risk analysis for very large areas. Our findings show, per square kilometer, a total risk of about USD 3.9 billion and a mean risk of USD 0.6 million.
Cited articles
Abeling, T.: According to plan?: Disaster risk knowledge and organizational responses to heat wave risk in London, UK, Ecosystem Health and Sustainability, 1, 1–8, https://doi.org/10.1890/EHS14-0022.1, 2015a.
Abeling, T.: Can we learn to be resilient? Institutional constraints for social learning in heatwave risk management in London, UK, Unpublished doctoral dissertation, King's College London, University of London, London, United Kingdom, 2015b.
Abeling, T., Huq, N., Chang-Seng, D., Birkmann, J., Wolfertz, J., Renaud, F., and Garschagen, M.: Understanding community disaster resilience, in: Framing Community Disaster Resilience: resources, capacities, learning and action, edited by: Deeming, H., Fordham, M., Kuhlicke, C., Pedoth, L., Schneiderbauer, S., and Shreve, C., Wiley Blackwell, Chichester, West Sussex, United Kingdom, in press, 2018.
Alexander, D.: Towards the development of a standard in emergency planning, Disaster Prev. Manag., 14, 158–175, https://doi.org/10.1108/09653560510595164, 2005.
Alexander, D. E.: Resilience and disaster risk reduction: an etymological journey, Nat. Hazards Earth Syst. Sci., 13, 2707–2716, https://doi.org/10.5194/nhess-13-2707-2013, 2013.
Allen, A.: Rethinking Power, Hypatia, 13, 21–40, https://doi.org/10.1111/j.1527-2001.1998.tb01350.x, 1998.
Almedom, A. M.: Resilience: Outcome, Process, Emergence, Narrative (OPEN) theory, On the Horizon, 21, 15–23, https://doi.org/10.1108/10748121311297030, 2013.
Armitage, D., Béné, C., Charles, A. T., Johnson, D., and Allison, E. H.: The Interplay of Well-being and Resilience in Applying a Social-Ecological Perspective, Ecol. Soc., 17, https://doi.org/10.5751/ES-04940-170415, 2012.
Ashley, C. and Carney, D.: Sustainable livelihoods: Lessons from early experience, Department for International Development, London, 1999.
Bahadur, A. and Tanner, T.: Transformational resilience thinking: Putting people, power and politics at the heart of urban climate resilience, Environ. Urban, 26, 200–214, https://doi.org/10.1177/0956247814522154, 2014.
Bahadur, A. V., Ibrahim, M., and Tanner, T.: Characterising resilience: unpacking the concept for tackling climate change and development, Clim. Dev., 5, 55–65, https://doi.org/10.1080/17565529.2012.762334, 2013.
Balamir, M.: Painful steps of progress from crisis planning to contingency planning: Changes for disaster preparedness in Turkey, J. Conting. Crisis Man., 10, 39–49, 2002.
Baumann, P. and Sinha, S.: Linking Development with Democratic Processes in India: Political Capital and Sustainable Livelihoods Analysis, Natural Resource Perspectives, 8, 2–5, 2001.
Becker, D., Schneiderbauer, S., Forrester, J., and Pedoth, L.: Guidelines for development of indicators, indicator systems and provider challenges, Deliverable 3.5 emBRACE project, available at: http://www.embrace-eu.org/outputs (last access: December 2017), 2015.
Becker, D., Schneiderbauer, S., Forrester, J., and Pedoth, L.: Combining Quantitative and Qualitative Indicators for Assessing Community Resilience to Natural Hazards, in: Framing Community Disaster Resilience: resources, capacities, learning and action, edited by: Deeming, H., Fordham, M., Kuhlicke, C., Pedoth, L., Schneiderbauer, S., and Shreve, C., Wiley Blackwell, Chichester, West Sussex, United Kingdom, in press, 2018.
Begg, C., Walker, G., and Kuhlicke, C.: Localism and flood risk management in England: The creation of new inequalities?, Environ. Plann. C, 33, 685–702, https://doi.org/10.1068/c12216, 2015.
Begg, C., Ueberham, M., Masson, T., and Kuhlicke, C.: Interactions between citizen responsibilization, flood experience and household resilience: insights from the 2013 flood in Germany, Int. J. Water Resour. D, 33, 1–18, https://doi.org/10.1080/07900627.2016.1200961, 2016.
Berkes, F. and Ross, H.: Community Resilience: Toward an Integrated Approach, Soc. Natur. Resour., 26, 5–20, https://doi.org/10.1080/08941920.2012.736605, 2013.
Berkes, F., Folke, C., and Colding, J. (Eds.): Linking social and ecological systems: Management practices and social mechanisms for building resilience, Cambridge Univ. Press, Cambridge, United Kingdom, 459 pp., 1998.
Birkmann, J., Buckle, P., Jaeger, J., Pelling, M., Setiadi, N., Garschagen, M., Fernando, N., and Kropp, J.: Extreme events and disasters: A window of opportunity for change? Analysis of organizational, institutional and political changes, formal and informal responses after mega-disasters, Nat. Hazards, 55, 637–655, https://doi.org/10.1007/s11069-008-9319-2, 2010.
Brand, F. S. and Jax, F. K.: Focusing the Meaning(s) of Resilience: Resilience as a Descriptive Concept and a Boundary Object, Ecol. Soc., 12, 23, 2007.
Brown, K.: Global environmental change: A social turn for resilience?, Prog. Hum. Geog., 38, 107–117, https://doi.org/10.1177/0309132513498837, 2014.
Carpenter, S., Walker, B., Anderies, J. M., and Abel, N.: From Metaphor to Measurement: Resilience of What to What?, Ecosystems, 4, 765–781, https://doi.org/10.1007/s10021-001-0045-9, 2001.
Chambers, R. and Conway, G. R.: Sustainable rural livelihoods: Practical concepts for the 21st century, Discussion paper 296, Institute of Development Studies, Brighton, United Kingdom, 42 pp., 1992.
Cote, M. and Nightingale, A. J.: Resilience thinking meets social theory: Situating social change in socio-ecological systems (SES) research, Prog. Hum. Geog., 36, 475–489, https://doi.org/10.1177/0309132511425708, 2012.
Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., and Webb, J.: A place-based model for understanding community resilience to natural disasters, Global Environ. Chang., 18, 598–606, https://doi.org/10.1016/j.gloenvcha.2008.07.013, 2008.
Cutter, S. L., Ash, K. D., and Emrich, C. T.: The geographies of community disaster resilience, Global Environ. Chang., 29, 65–77, https://doi.org/10.1016/j.gloenvcha.2014.08.005, 2014.
Davies, M., Guenther, B., Leavy, J., Mitchell, T., and Tanner, T.: `Adaptive Social Protection': Synergies for Poverty Reduction, Ids. Bull.-I Dev. Stud., 39, 105–112, https://doi.org/10.1111/j.1759-5436.2008.tb00483.x, 2008.
Davies, M., Bene, C., Arnall, A., Tanner, T., Newsham, A., and Coirolo, C.: Promoting Resilient Livelihoods through Adaptive Social Protection: Lessons from 124 programmes in South Asia, Dev. Policy Rev., 31, 27–58, https://doi.org/10.1111/j.1467-7679.2013.00600.x, 2013.
Davoudi, S.: Resilience: A Bridging Concept or a Dead End?, Planning Theory & Practice, 13, 299–333, https://doi.org/10.1080/14649357.2012.677124, 2012.
Deeming, H., Fordham, M., and Swartling, Å. G.: Resilience and Adaptation to Hydrometeorological Hazards, in: Hydrometeorological hazards: Interfacing science and policy, edited by: Quevauviller, P., Wiley Blackwell, Chichester, West Sussex, United Kingdom, 291–316, 2014.
Deeming, H., Davis, B., Fordham, M., and Taylor, S.: River and surface water flooding in Northern England: the civil protection-social protection nexus, in: Framing Community Disaster Resilience: resources, capacities, learning and action, edited by: Deeming, H., Fordham, M., Kuhlicke, C., Pedoth, L., Schneiderbauer, S., and Shreve, C., Wiley Blackwell, Chichester, West Sussex, United Kingdom, in press, 2018a.
Deeming, H., Fordham, M., Kuhlicke, C., Pedoth, L., Schneiderbauer, S., and Shreve, C.: Framing Community Disaster Resilience: resources, capacities, learning and action, Wiley Blackwell, Chichester, West Sussex, United Kingdom, in press, 2018b.
Department for Environment, Food and Rural Affairs: Understanding the risks, empowering communities, building resilience: the national flood and coastal erosion risk management strategy for England: Session: 2010–2012, Unnumbered Act paper, Laid before Parliament 23/05/11, London, 2011.
Doğulu, C., Karanci, A. N., and Ikizer, G.: How do survivors perceive community resilience?: The case of the 2011 earthquakes in Van, Turkey, Int. J. Disast. Risk. Re., 16, 108–114, https://doi.org/10.1016/j.ijdrr.2016.02.006, 2016.
Dynes, R. R.: Community Social Capital as the Primary Basis for Resilience: Updated Version of Preliminary Paper #327, Disaster Research Center, University of Delaware, USA, 2005.
Edwards, V. M. and Steins, N. A.: Special issue introduction: The importance of context in common pool resource research, J. Environ. Policy Plann., 1, 195–204, https://doi.org/10.1002/(SICI)1522-7200(199911)1:3<195:AID-JEPP23>3.0.CO;2-U, 1999.
Ensor, J. and Harvey, B.: Social learning and climate change adaptation: Evidence for international development practice, WIREs Clim. Change, 6, 509–522, https://doi.org/10.1002/wcc.348, 2015.
Fainstein, S.: Resilience and Justice: Debates and Developments, Int. J. Urban Regional, 39, 157–167, https://doi.org/10.1111/1468-2427.12186, 2015.
Fekete, A., Hufschmidt, G., and Kruse, S.: Benefits and Challenges of Resilience and Vulnerability for Disaster Risk Management, Int. J. Disaster Risk. Sci., 5, 3–20, https://doi.org/10.1007/s13753-014-0008-3, 2014.
Hayward, B. M.: Rethinking Resilience: Reflections on the Earthquakes in Christchurch, New Zealand, 2010 and 2011, Ecol. Soc., 18, 37, https://doi.org/10.5751/ES-05947-180437, 2013.
Heltberg, R., Siegel, P. B., and Jorgensen, S. L.: Addressing human vulnerability to climate change: Toward a `no-regrets' approach, Global Environ. Chang., 19, 89–99, https://doi.org/10.1016/j.gloenvcha.2008.11.003, 2009.
Holling, C. S.: Resilience and Stability of Ecological Systems, Annu. Rev. Ecol. Syst., 4, 1–23, https://doi.org/10.1146/annurev.es.04.110173.000245, 1973.
Holling, C. S.: Engineering resileince versus ecological resilience, edited by: Schulze, P. C. and National Academy of Engineering: Engineering within ecological constraints, National Academy Press, Washington, D.C., 31–44, 1996.
Ikizer, G.: Factors related to psychological resilience among survivors of the earthquakes in Van, Turkey, Unpublished doctoral dissertation, Middle East Technical University, Ankara, Turkey, 2014.
Ikizer, G., Karanci, A. N., and Doğulu, C.: Exploring Factors Associated with Psychological Resilience Among Earthquake Survivors from Turkey, Journal of Loss and Trauma, 21, 384–398, https://doi.org/10.1080/15325024.2015.1108794, 2015.
Jacobs, K. and Malpas, J.: The Language of Resilience: Ideas and Action in Contemporary Policy-making, Housing, Theory and Society, 1–16, https://doi.org/10.1080/14036096.2017.1308435, 2017.
Jerneck, A. and Olsson, L.: Adaptation and the poor: development, resilience and transition, Climate Policy, 8, 170–182, https://doi.org/10.3763/cpol.2007.0434, 2008.
Jülich, S.: Towards a local level resilience composite index – Introducing different degrees of indicator quantification, Int. J. Disaster Risk. Sci., 8, 91–99, https://doi.org/10.1007/s13753-017-0114-0, 2017.
Jülich, S.: Development of quantitative resilience indicators for measuring resilience at the local level, in: Framing Community Disaster Resilience: resources, capacities, learning and action, edited by: Deeming, H., Fordham, M., Kuhlicke, C., Pedoth, L., Schneiderbauer, S., and Shreve, C., Wiley Blackwell, Chichester, West Sussex, United Kingdom, in press, 2018.
Karanci, A. N., Ikizer, G., Doğulu, C., and Özceylan-Aubrecht, D.: Perceptions of Individual and Community Resilience to Earthquakes: A Case Study from Turkey, in: Framing Community Disaster Resilience: resources, capacities, learning and action, edited by: Deeming, H., Fordham, M., Kuhlicke, C., Pedoth, L., Schneiderbauer, S., and Shreve, C., Wiley Blackwell, Chichester, West Sussex, United Kingdom, in press, 2018.
Kates, R. W.: Natural Hazard in Human Ecological Perspective: Hypotheses and Models, Econ. Geogr., 47, 438, https://doi.org/10.2307/142820, 1971.
Kelman, I., Gaillard, J. C., and Mercer, J.: Climate Change's Role in Disaster Risk Reduction's Future: Beyond Vulnerability and Resilience, Int. J. Disaster Risk Sci., 6, 21–27, https://doi.org/10.1007/s13753-015-0038-5, 2015.
Kelman, I., Gaillard, J. C., Lewis, J., and Mercer, J.: Learning from the history of disaster vulnerability and resilience research and practice for climate change, Natural Hazards, 82, 129–143, https://doi.org/10.1007/s11069-016-2294-0, 2016.
Klein, R. J. T., Nicholls, R. J., and Thomalla, F.: Resilience to natural hazards: How useful is this concept?, Environ. Hazards, 5, 35–45, https://doi.org/10.1016/j.hazards.2004.02.001, 2003.
Kuhlicke, C., Callsen, I., and Begg, C.: Reputational risks and participation in flood risk management and the public debate about the 2013 flood in Germany, Environ. Sci. Policy, 55, 318–325, https://doi.org/10.1016/j.envsci.2015.06.011, 2016.
Longstaff, P. H. and Yang, S. U.: Communication management and trust: Their role in building resilience to “surprises” such as natural disasters, pandemic flu, and terrorism, Ecol. Soc., 13, https://doi.org/10.5751/ES-02232-130103, 2008.
MacKinnon, D. and Derickson, K. D.: From resilience to resourcefulness: A critique of resilience policy and activism, Prog. Hum. Geog., 37, 253–270, https://doi.org/10.1177/0309132512454775, 2013.
Matyas, D. and Pelling, M.: Positioning resilience for 2015: the role of resistance, incremental adjustment and transformation in disaster risk management policy, Disasters, 39, 1–18, https://doi.org/10.1111/disa.12107, 2015.
McCarthy, D. D. P., Crandall, D. D., Whitelaw, G. S., General, Z., and Tsuji, L. J. S.: A Critical Systems Approach to Social Learning: Building Adaptive Capacity in Social, Ecological, Epistemological (SEE) Systems, Ecol. Soc., 16, 18, https://doi.org/10.5751/ES-04255-160318, 2011.
McEntire, D. A., Fuller, C., Johnston, C. W., and Weber, R.: A Comparison of Disaster Paradigms: The Search for a Holistic Policy Guide, Public Administration Review, 62, 267–281, https://doi.org/10.1111/1540-6210.00178, 2002.
Moser, C. O. N. and McIlwaine, C.: Violence in a post-conflict context- Urban poor perceptions from Guatemala: Conflict prevention and post-conflict reconstruction series, 1. print, Worldbank, Washington, D.C., USA, 163 pp., 2001.
Mulligan, M., Steele, W., Rickards, L., and Fünfgeld, H.: Keywords in planning: What do we mean by `community resilience'?, Int. Plan. Stud., 21, 348–361, https://doi.org/10.1080/13563475.2016.1155974, 2016.
Muro, M. and Jeffrey, P.: A critical review of the theory and application of social learning in participatory natural resource management processes, J. Environ. Plann. Man., 51, 325–344, https://doi.org/10.1080/09640560801977190, 2008.
National Acadamies: Disaster Resilience, National Academies Press, Washington, D.C., USA, 2012.
Neal, D.: Reconsidering the Phases of Disaster, International Journal of Mass Emergencies and Disasters, 15, 239–264, 1997.
Nelson, D. R., Adger, W. N., and Brown, K.: Adaptation to Environmental Change: Contributions of a Resilience Framework, Annu. Rev. Environ. Resour., 32, 395–419, https://doi.org/10.1146/annurev.energy.32.051807.090348, 2007.
Norris, F. H., Stevens, S. P., Pfefferbaum, B., Wyche, K. F., and Pfefferbaum, R. L.: Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness, Am. J. Commun. Psychol., 41, 127–150, https://doi.org/10.1007/s10464-007-9156-6, 2008.
Olsson, P., Galaz, V., and Boonstra, W. J.: Sustainability transformations: A resilience perspective, Ecol. Soc., 19, 1, https://doi.org/10.5751/ES-06799-190401, 2014.
Orach, K. and Schlüter, M.: Uncovering the political dimension of social-ecological systems: Contributions from policy process frameworks, Global Environ. Chang., 40, 13–25, https://doi.org/10.1016/j.gloenvcha.2016.06.002, 2016.
Ostrom, E.: Understanding institutional diversity, Princeton University Press, Princeton, USA, 2005.
Partzsch, L.: `Power with' and `power to' in environmental politics and the transition to sustainability, Environ. Pol., 26, 193–211, https://doi.org/10.1080/09644016.2016.1256961, 2017.
Patel, S. S., Rogers, M. B., Amlôt, R., and Rubin, G. J.: What Do We Mean by `Community Resilience'? A Systematic Literature Review of How It Is Defined in the Literature, PLOS Currents Disasters, http://currents.plos.org/disasters/article/what-do-we-mean-by-community-resilience-a-systematic-literature-review-of-how-it-is-defined-in-the-literature, 2017.
Paton, D. F.: Community Resilience: Integrating Hazard Management and Community Engagement, in: Proceedings of the International Conference on Engaging Communities, edited by: United Nations & Queensland State Government, International Conference on Engaging Communities, Brisbane, Queensland, Australia, 14–17 August 2005, 2005.
Pedoth, L., Taylor, R., Kofler, C., Stawinoga, A. E., Matin, N., Forrester, J., and Schneiderbauer, S.: The role of risk perception and community networks in preparing for and responding to landslides: a Dolomite case study, in: Framing Community Disaster Resilience: resources, capacities, learning and action, edited by: Deeming, H., Fordham, M., Kuhlicke, C., Pedoth, L., Schneiderbauer, S., and Shreve, C., Wiley Blackwell, Chichester, West Sussex, United Kingdom, in press, 2018.
Pelling, M.: Adaptation to climate change: From resilience to transformation, Routledge, London, United Kingdom, 203 pp., 2011.
Reed, M. S., Evely, A. C., Cundill, G., Fazey, I., Glass, J., Laing, A., Newig, J., Parrish, B., Prell, C., Raymond, C., and Stringer, L. C.: What is Social Learning?, Ecol. Soc., 15, https://doi.org/10.5751/ES-03564-1504r01, 2010.
Ross, H. and Berkes, F.: Research Approaches for Understanding, Enhancing, and Monitoring Community Resilience, Soc. Natur. Resour., 27, 787–804, https://doi.org/10.1080/08941920.2014.905668, 2014.
Schneiderbauer, S. and Ehrlich, D.: Social levels and hazard (in)dependence in determining vulnerability, in: Measuring vulnerability to natural hazards: Towards disaster resilient societies, edited by: Birkmann, J., United Nations Univ. Press, Tokyo, Japan, 78–102, 2006.
Scoones, I.: Sustainable Rural Livelihoods. A Framework for Analysis, IDS Working Paper, 72, 1998.
Shaw, K.: The Rise of the Resilient Local Authority?, Local Gov. Stud., 38, 281–300, https://doi.org/10.1080/03003930.2011.642869, 2012.
Sherrieb, K., Norris, F. H., and Galea, S.: Measuring Capacities for Community Resilience, Soc. Indic Res., 99, 227–247, https://doi.org/10.1007/s11205-010-9576-9, 2010.
Sjöstedt, M.: Resilience revisited: taking institutional theory seriously, Ecol. Soc., 20, https://doi.org/10.5751/ES-08034-200423, 2015.
Smith, A. and Stirling, A.: The Politics of Social-ecological Resilience and Sustainable Socio-technical Transitions, Ecol. Soc., 15, 11, 2010.
Strunz, S.: Is conceptual vagueness an asset?: Arguments from philosophy of science applied to the concept of resilience, Ecol. Econ., 76, 112–118, https://doi.org/10.1016/j.ecolecon.2012.02.012, 2012.
Sudmeier-Rieux, K.: Resilience – an emerging paradigm of danger or of hope?, Disaster Prevention and Management: An International Journal, 23, 67–80, https://doi.org/10.1108/DPM-12-2012-0143, 2014.
Szerszynski, B.: Risk and Trust: The Performative Dimension, Environ. Value, 8, 239–252, https://doi.org/10.3197/096327199129341815, 1999.
Taylor, R., Forrester, J., Pedoth, L., and Matin, N.: Methods for Integrative Research on Community Resilience to Multiple Hazards, with Examples from Italy and England, Proc. Econ. Financ., 18, 255–262, https://doi.org/10.1016/S2212-5671(14)00938-1, 2014.
Tobin, G.: Sustainability and community resilience: The holy grail of hazards planning?, Global Environ. Chang., Part B: Environmental Hazards, 1, 13–25, https://doi.org/10.1016/S1464-2867(99)00002-9, 1999.
United Nations Office for Disaster Risk Reduction: Sendai Framework for Disaster Risk Reduction 2015–2030, United Nations International Strategy for Disaster Reduction, 2015.
United Nations Office for Disaster Risk Reduction: Hyogo Framework for Action 2005–2015: Building the Resilience of Nations and Communities to Disasters, United Nations International Strategy for Disaster Reduction, 2007.
Walker, B. and Westley, F.: Perspectives on resilience to disasters across sectors and cultures, Ecol. Soc., 16, https://doi.org/10.5751/ES-04070-160204, 2011.
Weichselgartner, J. and Kelman, I.: Geographies of resilience: Challenges and opportunities of a descriptive concept, Prog. Hum. Geog., 39, 249–267, https://doi.org/10.1177/0309132513518834, 2015.
Whaley, L. and Weatherhead, E. K.: An Integrated Approach to Analyzing (Adaptive) Comanagement Using the “Politicized” IAD Framework, Ecol. Soc., 19, 10, https://doi.org/10.5751/ES-06177-190110, 2014.
Wilson, G. A.: Community resilience: Path dependency, lock-in effects and transitional ruptures, J. Environ. Plann. Man., 57, 1–26, https://doi.org/10.1080/09640568.2012.741519, 2013.
Short summary
The emBRACE framework of community resilience conceptualizes resilience across three core domains: resources and capacities, actions, and learning. These are influenced by extra community forces, i.e. risk governance, societal context, disturbances and system change over time. It was developed by building on existing scholarly debates, on empirical case study work in five countries and on participatory consultation with community stakeholders where the framework was applied and ground-tested.
The emBRACE framework of community resilience conceptualizes resilience across three core...
Altmetrics
Final-revised paper
Preprint