Articles | Volume 17, issue 12
Nat. Hazards Earth Syst. Sci., 17, 2199–2211, 2017
https://doi.org/10.5194/nhess-17-2199-2017
Nat. Hazards Earth Syst. Sci., 17, 2199–2211, 2017
https://doi.org/10.5194/nhess-17-2199-2017

Research article 08 Dec 2017

Research article | 08 Dec 2017

Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States

Cameron Wobus et al.

Related authors

Revisiting parameter sensitivities in the Variable Infiltration Capacity model
Ulises Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-550,https://doi.org/10.5194/hess-2021-550, 2021
Preprint under review for HESS
Short summary
Snowpack dynamics in the Lebanese mountains from quasi-dynamically downscaled ERA5 reanalysis updated by assimilating remotely sensed fractional snow-covered area
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021,https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
EMDNA: an Ensemble Meteorological Dataset for North America
Guoqiang Tang, Martyn P. Clark, Simon Michael Papalexiou, Andrew J. Newman, Andrew W. Wood, Dominique Brunet, and Paul H. Whitfield
Earth Syst. Sci. Data, 13, 3337–3362, https://doi.org/10.5194/essd-13-3337-2021,https://doi.org/10.5194/essd-13-3337-2021, 2021
Short summary
Space–time dependence of compound hot–dry events in the United States: assessment using a multi-site multi-variable weather generator
Manuela I. Brunner, Eric Gilleland, and Andrew W. Wood
Earth Syst. Dynam., 12, 621–634, https://doi.org/10.5194/esd-12-621-2021,https://doi.org/10.5194/esd-12-621-2021, 2021
Short summary
A process-based evaluation of the Intermediate Complexity Atmospheric Research Model (ICAR) 1.0.1
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021,https://doi.org/10.5194/gmd-14-1657-2021, 2021
Short summary

Related subject area

Hydrological Hazards
Improving flood damage assessments in data-scarce areas by retrieval of building characteristics through UAV image segmentation and machine learning – a case study of the 2019 floods in southern Malawi
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021,https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Assessment of direct economic losses of flood disasters based on spatial valuation of land use and quantification of vulnerabilities: a case study on the 2014 flood in Lishui city of China
Haixia Zhang, Weihua Fang, Hua Zhang, and Lu Yu
Nat. Hazards Earth Syst. Sci., 21, 3161–3174, https://doi.org/10.5194/nhess-21-3161-2021,https://doi.org/10.5194/nhess-21-3161-2021, 2021
Short summary
Evaluating integrated water management strategies to inform hydrological drought mitigation
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021,https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Global riverine flood risk – how do hydrogeomorphic floodplain maps compare to flood hazard maps?
Sara Lindersson, Luigia Brandimarte, Johanna Mård, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-2021,https://doi.org/10.5194/nhess-21-2921-2021, 2021
Short summary
Global flood exposure from different sized rivers
Mark V. Bernhofen, Mark A. Trigg, P. Andrew Sleigh, Christopher C. Sampson, and Andrew M. Smith
Nat. Hazards Earth Syst. Sci., 21, 2829–2847, https://doi.org/10.5194/nhess-21-2829-2021,https://doi.org/10.5194/nhess-21-2829-2021, 2021
Short summary

Cited articles

Abramowitz, G.: Model independence in multi-model ensemble prediction, Aust. Meteorol. Ocean., 59, 3–6, 2010.
Archfield, S. A., Hirsch, R. M., Viglione, A., and Blöschl, G.: Fragmented patterns of flood change across the United States, Geophys. Res. Lett., 43, 10232–10239, https://doi.org/10.1002/2016GL070590, 2016.
Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river flood risk at the global scale, Climatic Change, 134, 387–401, 2016.
Berghuijs, W. R., Woods, R. A., Hutton, C. J., and Sivapalan, M.: Dominant flood generating mechanisms across the United States, Geophys. Res. Lett., 43, 4382–4390, 2016.
Bishop, C. H. and Abramowitz, G.: Climate model dependence and the replicate Earth paradigm, Clim. Dynam., 41, 885–900, https://doi.org/10.1007/s00382-012-1610-y, 2013.
Download
Short summary
We linked modeled changes in the frequency of historical 100-year flood events to a national inventory of built assets within mapped floodplains of the United States. This allowed us to project changes in inland flooding damages nationwide under two alternative greenhouse gas (GHG) emissions scenarios. Our results suggest that more aggressive GHG reductions could reduce the projected monetary damages from inland flooding, potentially saving billions of dollars annually by the end of the century.
Altmetrics
Final-revised paper
Preprint