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Abstract. A growing body of work suggests that the ex-
treme weather events that drive inland flooding are likely
to increase in frequency and magnitude in a warming cli-
mate, thus potentially increasing flood damages in the fu-
ture. We use hydrologic projections based on the Coupled
Model Intercomparison Project Phase 5 (CMIP5) to esti-
mate changes in the frequency of modeled 1 % annual ex-
ceedance probability (1 % AEP, or 100-year) flood events at
57 116 stream reaches across the contiguous United States
(CONUS). We link these flood projections to a database of
assets within mapped flood hazard zones to model changes
in inland flooding damages throughout the CONUS over the
remainder of the 21st century. Our model generates early
21st century flood damages that reasonably approximate the
range of historical observations and trajectories of future
damages that vary substantially depending on the greenhouse
gas (GHG) emissions pathway. The difference in modeled
flood damages between higher and lower emissions pathways
approaches USD 4 billion per year by 2100 (in undiscounted
2014 dollars), suggesting that aggressive GHG emissions re-
ductions could generate significant monetary benefits over
the long term in terms of reduced flood damages. Although
the downscaled hydrologic data we used have been applied
to flood impacts studies elsewhere, this research expands on
earlier work to quantify changes in flood risk by linking fu-
ture flood exposure to assets and damages on a national scale.
Our approach relies on a series of simplifications that could
ultimately affect damage estimates (e.g., use of statistical
downscaling, reliance on a nationwide hydrologic model, and

linking damage estimates only to 1 % AEP floods). Although
future work is needed to test the sensitivity of our results to
these methodological choices, our results indicate that mon-
etary damages from inland flooding could be significantly
reduced through substantial GHG mitigation.

1 Introduction

Inland floods are among the most costly natural disasters in
the United States (e.g., Pielke Jr. and Downton, 2000), with
annual damages ranging from hundreds of millions to many
tens of billions of dollars over the past century (Downton et
al., 2005; NOAA, 2016). In 2016, inland flooding events in
Louisiana and North Carolina alone caused over USD 10 bil-
lion of physical damages to homes, businesses, and other as-
sets (Fortune, 2016; LED, 2016). This follows on other re-
cent years with extreme flooding in Michigan (2014) and
Colorado (2013) and the mid-Atlantic floods caused by Su-
perstorm Sandy (Hurricane Sandy) in 2012 (NOAA, 2016).
With each occurrence of these damaging flood events, there
is renewed interest in determining whether climate change
may be partially responsible for changes in the magnitude
or frequency of these events (e.g., IPCC, 2012; Trenberth
et al., 2015). Although the science linking changes in cli-
mate extremes to human-caused warming is advancing (e.g.,
Trenberth et al., 2015; National Academies of Sciences, En-
gineering, and Medicine, 2016), there are still many chal-
lenges to attributing observed historical trends in flooding
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to human-caused climate change (e.g., Kundzewicz et al.,
2014; Berghuijs et al., 2016). As a complement to these at-
tribution studies, forward-modeling approaches using linked
climate-hydrologic models could help to characterize future
changes in flood risk and vulnerability (e.g., Das et al., 2013;
Hirabayashi et al., 2013; Arnell and Gosling, 2016).

This study evaluates 21st century flood risk and flood-
related damages across the contiguous United States
(CONUS) using downscaled hydrologic projections from 29
global climate models (GCMs) and two representative con-
centration pathways (RCPs) for greenhouse gas (GHG) forc-
ing. We cross-referenced spatially explicit hydrologic pro-
jections with a database of built assets within each of the
mapped 100-year floodplains in the CONUS. Using this
combined dataset, we generate regional estimates of how
cumulative damages from what are currently 1 % AEP (an-
nual exceedance probability) events might change through
the 21st century, due to changes in the frequency of these
events through time. We then compare how flood damages
might differ under a higher GHG emissions scenario (RCP
8.5) vs. a lower emissions scenario (RCP 4.5). We focused
on these two RCPs both for consistency with the forthcom-
ing Fourth National Climate Assessment (USGCRP, 2015)
and to help quantify changes in flood risk in response to re-
duced GHG emissions globally.

Because available hydrologic records tend to be short rela-
tive to the return interval of extreme flood events, simply de-
tecting trends in historical flooding can be challenging (e.g.,
Hirsch and Ryberg, 2012; Mallakpour and Villarini, 2015;
Archfield et al., 2016). Furthermore, even where hydrologic
changes can be detected, concurrent changes in land use and
population make it difficult to attribute changing flood dam-
ages to climate change (e.g., Pielke Jr. and Downton, 2000;
Kundzewicz et al., 2014; Liu et al., 2015). Thus, there may
be some advantages to using forward-modeling approaches
where the effects of climate change can be modeled in iso-
lation. Unfortunately, this is expensive computationally: at
present the most widely used strategy for assessing changes
in future flood risk requires downscaling GCM outputs to
hydrologically relevant spatial scales; estimating precipita-
tion, infiltration, and runoff within a hydrologic-modeling
framework; and routing the resulting flows through a model
river network (e.g., Reclamation, 2014). Although less com-
putationally demanding, studies attempting to link projected
changes in extreme precipitation directly to changes in flood-
ing (i.e., without a spatially explicit hydrologic model) tend
to have high uncertainties (e.g., Kundzewicz et al., 2014;
Wobus et al., 2014).

Recently, computational power has increased to the point
that studies using downscaled and routed GCM-derived pre-
cipitation have become more common (e.g., Gosling et al.,
2010; Hirabayashi et al., 2008; Reclamation, 2014). These
outputs have been used to project future flood risk on
scales ranging from local (e.g., Das et al., 2013) to global
(e.g., Hirabayashi et al., 2013; Arnell and Gosling, 2016).

However, to our knowledge there has not yet been a CONUS-
scale assessment of how changing inland flood hydrology
could translate into changing monetary damages.

2 Methods

We used simulated daily hydrographs at 57 116 stream
reaches across the CONUS between 2000 and 2100 to cal-
culate a CMIP5 modeled baseline (“current climate”) 1 %
AEP event and changes in the frequency of flows exceed-
ing this magnitude through the 21st century. We quantified
asset exposure and expected flood damage within mapped
floodplains using a combination of Federal Emergency Man-
agement Agency (FEMA) flood maps, US census block data,
and land cover data. Because only the 100-year floodplains
are consistently mapped and available on a national scale,
our model of flood damages is driven only by changes in
the frequency of what are currently 1 % AEP events through
the 21st century. We also do not project changes in popu-
lation growth, floodplain development, or flood protection
through time, since (1) such projections would require as-
sumptions that would be difficult to apply on a national
scale across multi-decadal timeframes (e.g., Elmer et al.,
2012) and (2) the impacts of those assumptions might ob-
scure the climate change signal we seek to characterize. Our
model projections should therefore be considered order-of-
magnitude estimates of how differences in emissions scenar-
ios might propagate into changes in flood damages through-
out the United States.

2.1 Hydrologic-modeling inputs

We used spatially and temporally disaggregated precipitation
and temperature at 1/8◦ resolution from 29 GCMs and two
emissions scenarios (RCP 4.5 and RCP 8.5), generated us-
ing the bias correction and spatial disaggregation (BCSD)
method (e.g., Wood et al., 2004). The BCSD method uses
a quantile mapping approach to match the distribution of
GCM-derived monthly outputs to the observed monthly data
at a 1◦ resolution in a historical period (1950–2000). It then
uses the spatial pattern of daily observations from an analog
month as a proxy for sub-grid-scale daily (temporal) variabil-
ity and it scales or shifts these daily observations to ensure
that the analog monthly average values match the rescaled
GCM output. During the bias correction process (which ap-
plies to monthly precipitation and temperature values at the
GCM scale), projected precipitation values exceeding the up-
per end of the climatological range are extrapolated follow-
ing an extreme value Type I distribution. Additional details
of the BCSD weather generation are given in Harding et
al. (2012) and Wood and Mizukami (2014).

Catchment hydrology was simulated using the variable
infiltration capacity (VIC) hydrologic model (Liang et al.,
1994) forced by the BCSD precipitation and temperature
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fields. The VIC model simulates the range of hydrologic
processes relevant to generating runoff, including intercep-
tion on the forest canopy, evapotranspiration, water storage
and melt from snowpack, infiltration, and direct runoff. The
runoff component of each model grid cell was remapped to
the hydrologic response units (HRUs) defined in the United
States Geological Survey (USGS) Geospatial Fabric (GF;
Viger and Block, 2014) and then routed through the GF river
network using the MizuRoute routing tool, which incorpo-
rates both hillslope and river channel processes (Mizukami
et al., 2016a). The GF dataset contains ∼ 57 000 river seg-
ments and∼ 108 000 HRUs (including the right and left bank
of most river segments), representing catchments approxi-
mately equivalent in area to 12-digit Hydrologic Unit Code
basins. The methods used for the downscaling and land sur-
face hydrology were identical to those used in previous stud-
ies (e.g., Das et al., 2013; Reclamation, 2014). However, for
this effort we used a multi-scale parameter regionalization
approach (Samaniego et al., 2010) to improve the spatial co-
herence of VIC model parameters across basin boundaries
(Mizukami et al., 2017). Nash–Sutcliffe efficiency coeffi-
cients indicate that the model adequately captures the mag-
nitude and variability of observed flows across most of the
CONUS, while the updated VIC parameters remove some of
the artifacts that were observed from the Reclamation (2014)
dataset (see Sect. S1). Full details of the downscaling, VIC
model parameters, and routing methodologies are described
in Reclamation (2014) and Mizukami et al. (2017) and are
summarized in Sect. S1.

2.2 Modeling flood probability

For each of the 58 GCM–RCP combinations in the hy-
drologic model output, we extracted the time series of an-
nual maximum flow between 1950 and 2099 at each of the
∼ 57 000 GF stream locations in the CONUS. Average an-
nual maximum flows in the modeled reaches range from < 5
to > 1000 m3 s−1 (Fig. 1). Prior to generating statistics of
peak flows from these events, we plotted the normalized an-
nual maximum time series across all segments and all mod-
els (Fig. 2). This plot revealed a step in the annual maximum
flow time series in the year 2000, which corresponds to the
end of the hindcast period used in the BCSD method. This
step is even more pronounced in the BCSD precipitation in-
puts (Fig. 3) and most likely reflects the change in how the
BCSD method constrains the distribution of events in the his-
torical period compared to in the future period.

In order to prevent this artifact from influencing our anal-
ysis of future flooding events, we used an early 21st cen-
tury ensemble average (2001–2020) to represent baseline
hydrologic conditions, rather than the more traditional late
20th century baseline. We calculated the magnitude of the
baseline modeled 1 % AEP flood event at each stream seg-
ment by fitting a generalized extreme value (GEV) distri-
bution to the full ensemble of annual maximum flow esti-

mates for each RCP over the 2001–2020 period (29 mod-
els× 20 years= 580 values) and extracting the 99th per-
centile value from this model fit. Although the emissions
pathways for RCP 4.5 and RCP 8.5 begin to diverge in 2006,
there were no systematic differences between GEV fits for
the two RCPs, justifying our treatment of this early 21st cen-
tury period as a baseline across the full ensemble.

Individual GCMs exhibit a degree of dependence due
to shared code, shared scientific literature, shared obser-
vations, etc. and as such are not statistically indepen-
dent (Abramowitz, 2010; Knutti et al., 2010b; Bishop and
Abramowitz, 2013). However, the consensus of the commu-
nity remains that it is best to average across many ensemble
members (Tebaldi and Knutti, 2007; Knutti et al., 2010a) as
we have done here. From this full ensemble, we evaluated
uncertainty in the 1 % annual probability event by bootstrap-
ping (see Sect. S2). Based on these analyses, we expect the
sample uncertainty on our 1 % AEP flood event to be in the
range of 5–20 %. As shown later, the variability in the mul-
timodel GCM ensemble is much larger than this uncertainty
in the GEV fits, so we did not propagate this source of uncer-
tainty through all of our calculations.

To estimate future flood frequency and damages through
the 21st century, we compared the full transient of future an-
nual streamflow maxima for each GCM–RCP combination
to the baseline 1 % AEP event. In all of the summaries that
follow, we define a flood at a given stream segment as an
annual maximum flow value that exceeds the baseline 1 %
AEP event at that segment. The comparison between future
flows and the 1 % AEP threshold yields a time series of floods
at each segment, as well as an estimate of the total number
of flood events nationwide in each year. At each segment,
we also calculated an ensemble average probability of ex-
ceeding the 1 % AEP event in each year by tabulating the
fraction of models experiencing a flood and smoothing these
probabilities over a 20-year moving window. These time- and
ensemble-averaged flood probabilities by segment were then
linked to the assets exposed within each floodplain to calcu-
late projected annual damages, as summarized below.

2.3 Asset exposure and damages

We estimated asset damages resulting from current 1 % AEP
flood events using data from an experimental tool under de-
velopment for the US Army Corps of Engineers (USACE)
Institute for Water Resources (IWR, 2014). For this tool,
we compiled all of the 1 % AEP floodplains as mapped by
FEMA and included in the National Flood Hazard Layer
(NFHL). We then used a series of steps to calculate the depth
of flooding and resulting damages from 1 % AEP events
and merged this information with the flood probabilities de-
scribed in Sect. 2.2. A brief summary of the flood damage
calculations follows. Section S2 provides more complete de-
tails of the flood damage calculations.
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Figure 1. Locations of the 57 116 stream segment with hydrologic projections used in our analysis. Color corresponds to the baseline average
annual maximum flow for each segment, in m3 s−1.

Figure 2. Trends in annual maximum flow across all stream segments in the CONUS. The thin grey lines represent annual maximum flow
normalized to the 2001–2020 mean and averaged across all segments for each individual model. The thick black line represents the ensemble
average. The step increase in the year 2000 for both RCPs (black arrow) is an artifact of the BCSD method. Accordingly, the baseline 1 %
AEP event was calculated from an early 21st century ensemble (see text).
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Figure 3. Number of BCSD grid cells in the CONUS experiencing
their maximum daily precipitation in each year between 1950 and
2100 per model. The box and whisker plots represent spread across
all of the individual models used in the flow simulations. The step in
the year 2000 is an artifact of the BCSD method (p value < 0.001).
The baseline 1 % AEP event was calculated using the years 2001–
2020.

2.3.1 Cataloging damages by flood zone

To catalog damages by flood zone, we intersected 1 % AEP
flood boundaries with census blocks to create a set of
flood zone polygons subdivided by census block boundaries.
Within each of these flood zone and census block units, we
calculated the distribution of flood depths for the 1 % AEP
event using the National Elevation Dataset (NED; USGS,
2016). We then merged this information with land cover data
from the National Land Cover Dataset (Homer et al., 2015) to
determine the distribution of flood depths within “developed”
portions of each census block and estimated exposure of built
assets using FEMA’s Hazus-MH general building stock in-
ventory (FEMA, 2009). The general building stock inventory
provides estimates of the number and aggregate dollar value
of multiple types of residential, commercial, and industrial
buildings for each census block.

For the developed portion of each census-block–flood-
zone intersection, we created damage estimates using depth-
damage functions from USACE and FEMA (FEMA, 2009;
USACE, 2000, 2003). A separate depth-damage function
was used for each of the 28 different categories of buildings
(e.g., residential one-story homes without a basement). Each
depth-damage function describes the percent loss as a func-
tion of depth. The depth-damage functions were applied to
the aggregate value for each building category within each
NFHL–census-block intersection, using the depth exposure
results described above.

2.3.2 Aggregating damages to national scale

Once the damage estimates were generated for each census-
block–floodplain intersection, we aggregated this informa-
tion up to the same HRUs that were used in the hydrologic
analysis. We then linked each stream segment at which flood
statistics were calculated back to the total asset damages re-
sulting from a 1 % AEP event at that location. Figure 4 shows
the total damages expected from 1 % AEP events at each of
the HRUs across the CONUS.

For each GCM, we combined the time series of floods at
each stream segment with the assets exposed in that HRU to
compute a time series of monetary damages. When averaged
across all nodes in the CONUS, this approach yielded a rela-
tively smooth curve of the CONUS-wide monetary damages
through the 21st century. However, this approach treats the
hydrologic time series from each GCM as a deterministic,
rather than a probabilistic, projection of future conditions.
In order to use the full ensemble of GCMs in a more prob-
abilistic framework, we used a Monte Carlo approach. We
simulated 1000 100-year time series of flood damages in the
CONUS using the ensemble average probability of exceed-
ing the 1 % AEP event at each segment in each year. This
yielded a distribution of flood damages in each year, from
which we extracted a minimum, maximum, and ensemble
average for each of the RCPs.

2.4 Uncertainties

Each of the methodological steps outlined above introduces
uncertainties into our analysis. While it may not be possible
to quantify all of these uncertainties, we summarize each of
them here along with our best judgement on the magnitude
and directionality of their impacts.

First, GCMs have historically not resolved precipitation
well (e.g., Flato et al., 2013), such that downscaling is re-
quired to simulate catchment hydrology on a physically
meaningful scale. Although the BCSD method has been used
in the past to account for precipitation changes in hydrologic-
modeling applications (e.g., Das et al., 2013; Shrestha et al.,
2014; Ning et al., 2015), downscaling methods are them-
selves imperfect. While BCSD has been shown to have
fewer artifacts in historical climate compared to other com-
monly used methods (e.g., Gutmann et al., 2014), our anal-
ysis shows that the BCSD method does introduce an artifact
into the precipitation time series between historical and fu-
ture projections, which is not well understood (see Figs. 2–3).
Our use of an early 21st century baseline to circumvent this
artifact is likely to be conservative, since it reduces the mag-
nitude of climate changes since the mid-20th century. Fur-
thermore, since precipitation extremes are likely to increase
more quickly than averages in the future (e.g., Kendon et al.,
2014; Prein et al., 2016), our reliance on BCSD downscaling
to drive future hydrologic changes is likely to underestimate
changes in hydrologic extremes through time.

www.nat-hazards-earth-syst-sci.net/17/2199/2017/ Nat. Hazards Earth Syst. Sci., 17, 2199–2211, 2017



2204 C. Wobus et al.: Climate change impacts on flood risk and asset damages

Figure 4. Total asset damages from a 1 % AEP flood event in each of the HRUs in the CONUS. Values are in 2014 dollars.

Second, the choice of hydrologic model will introduce un-
certainty into our analysis (e.g., Mendoza et al., 2015, 2016;
Mizukami et al., 2016). The comparison of hydrologic results
from different VIC parameter sets indicates that the choice
of hydrologic model parameters within the VIC-modeling
framework does not substantially change the model’s abil-
ity to simulate natural flows (see Sect. S1), though it may
alter model performance at specific locations or times. How-
ever, because our method includes spatially explicit estimates
in flooding and damages, the direction and magnitude of im-
pact from the selection of a different hydrologic model would
depend on how differently an alternative hydrologic model
simulates relevant hydrologic processes in different regions
and is therefore difficult to estimate a priori.

Third, because the 1 % AEP (100-year return interval)
floodplains are the only flood risk zones consistently mapped
on a national scale, our model tabulates damages only within
these mapped floodplains. The consideration of a wider range
of flood magnitudes would increase modeled damages under
both baseline and future scenarios, since floods smaller and
larger than 1 % AEP events will also generate monetary dam-
ages. The relative change in future vs. baseline flood dam-
ages across a full range of flood magnitudes would depend on
the spatial distribution of built assets in each modeled reach
and on how the relative change in smaller (e.g., 25-year) vs.
larger (e.g., 500-year) events interact with this distribution of
built assets. In addition, because the calculations of the base-
line 1 % AEP event and future exceedances are each based on
an annual maximum time series, we did not consider the pos-

sibility of multiple flood events in any one year. Although the
occurrence of multiple 1 % AEP events in 1 year is unlikely,
this choice will make our future damage estimates conser-
vative, since the frequency of flooding generally increases
through the 21st century, as summarized below.

Finally, we did not propagate projected changes in popu-
lation, floodplain development, or flood protection through
our analysis. We also restricted our analysis to a single set
of damage functions (FEMA, 2009) and did not incorporate
sensitivities to different types of damage functions into our
analysis (e.g., Bubeck et al., 2011). We made these simplify-
ing assumptions so that we could isolate the effects of hydro-
logic changes, which are themselves uncertain, from the ef-
fects of socioeconomic changes or engineering investments,
which may be impossible to predict. For example, while in-
creased development in flood-prone areas could increase ex-
posure of built assets to increased flooding (e.g., Liu et al.,
2015), flood protection investments that decrease exposure
may be equally likely. Because the uncertainties in socioeco-
nomic projections and future changes to floodplain manage-
ment could potentially overwhelm the uncertainties in our
hydrologic model outputs, our results rely on the simplifying
assumption that the built environment remains static through
the 21st century. Over the past century, development appears
to have contributed to increased flood damage costs (e.g.,
Pielke Jr. and Downton, 2000), so, to the extent that human
behavior remains unchanged, it is likely that our assumption
underestimates future costs.
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Figure 5. Number of floods throughout the CONUS in each year of the 21st century across all 29 GCMs in (a) RCP 4.5 and (b) RCP 8.5.
In each plot, black dots are the median value across all 29 GCMs, thick blue bars are the middle 50 % of models, whiskers extend to the
95th percentile of values, and dots represent outliers. The thick grey line is the 5-year moving mean across all models. Light grey shading in
the background shows the period used to calculate the baseline 1 % AEP event.

Despite these uncertainties, the CONUS-wide annual in-
land flooding damages estimated using our approach are very
similar to inland flooding damages observed over the 20th
and early 21st century, as summarized below. Based on this
observation and the caveats summarized above, we expect
that our nationwide projections represent at least order-of-
magnitude estimates of historical and future flood damages.

3 Results

3.1 Flood frequency projections

Since the hydrographs generated by the downscaled hydrol-
ogy outputs are unique to each GCM–RCP combination,
each model also produces its own time series of flooding
at each stream segment. As one way of summarizing these
data, we calculated the total number of flood events across
the CONUS in each year of each model simulation. We then

www.nat-hazards-earth-syst-sci.net/17/2199/2017/ Nat. Hazards Earth Syst. Sci., 17, 2199–2211, 2017



2206 C. Wobus et al.: Climate change impacts on flood risk and asset damages

Figure 6. Change in frequency of historical 1 % AEP events based on ensemble averages for specified RCPs and time periods. Calculations
are based on individual stream segments over 20-year periods centered on (a) 2050 for RCP 4.5, (b) 2050 for RCP 8.5, (c) 2090 for RCP 4.5,
and (d) 2090 for RCP 8.5. Values are expressed as ratios (e.g., a value of 2 corresponds to a doubling in frequency of the historical 1 % AEP
event).

summarized the distribution of the total number of flood
events across all 29 GCMs for each RCP (Fig. 5). As ex-
pected based on our method, the annual number of 1 % AEP
floods across the CONUS across all models averages approx-
imately 500 events between 2000 and 2020 (∼ 1 % of the
∼ 57 000 segments in the CONUS). This average number of
floods increases to approximately 750 events by 2100 under
RCP 4.5 and up to approximately 1250 events under RCP
8.5.

Because a flood as defined here is threshold dependent, un-
certainty in the magnitude of the 1 % AEP event will affect
the exact time series of floods at each node for each model.
We explored the effects of this threshold dependence on the
number of floods occurring in each year by introducing a ran-
dom error of±20 % into the magnitude of the 1 % AEP event
at each node (based on our bootstrapping analysis) and re-
calculating the time series of flooding at each node. On a na-
tional scale, the effect of this error analysis on the time series
of flooding is overwhelmed by the inter-model variability in
peak flows (see Sect. S2). As a result, we did not conduct

further uncertainty analysis related to the calculation of the
1 % AEP flood event.

Using the time series of flooding for each segment and
combining these values across all models, we calculated an
average flood frequency by segment for 20-year intervals
in the baseline (2001–2020), mid-century (2040–2059), and
late century (2080–2099). This allowed us to calculate an
ensemble-averaged change in flood frequency for each seg-
ment to evaluate where there may be spatially coherent pat-
terns of increased flood risk. As shown in Fig. 6, the largest
fractional changes in flood frequency across the CONUS oc-
cur in the southern Appalachians and Ohio River valley, the
northern and central Rocky Mountains, and the Northwest.
In each of these regions, the ensemble average across models
suggests that historical 1 % AEP events could become 2–5
times more frequent by the end of the century.

In some regions of the United States (e.g., the southern
Appalachians and northern Rocky Mountains), the spatial
patterns of increased flood frequency can be explained by
the increased occurrence of extreme precipitation events pro-
jected by the GCM-derived precipitation outputs. In other re-
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Figure 7. (a) Projected national flood damages within 100-year
flood zones, in 2014 dollars. The thin grey lines are 1000 simula-
tions of damages for RCP 4.5 (dark grey) and RCP 8.5 (light grey).
Blue and red lines are means of simulations for the two RCPs. The
box and whisker plot on the left is the range of historical observed
flooding in the CONUS between 1903 and 2014 (10 outliers not
shown). (b) Difference between mean annual flood damages be-
tween RCP 4.5 and RCP 8.5 (billions of 2014 US dollars).

gions such as the Sierra Nevada and the Cascades, increases
in the frequency of flood events are not as easily explained
by changes in precipitation alone. In these locations, the in-
crease in frequency of extreme floods more likely reflects
changes in the nature of winter precipitation (rain vs. snow)
compared to baseline conditions (e.g., Das et al., 2013).

3.2 Flood damage projections

By combining the changes in frequency of flooding at each
segment with the asset exposure and damage associated with
each floodplain, we generated a full time series of projected
changes in flood damages across the CONUS through the
21st century. Figure 7 shows the results from 1000 individual
simulations of nationwide flood damages using the probabil-
ity of flooding at each segment, as described in Sect. 2.3.2.
Since we assume no changes in built assets or flood protec-
tion within mapped floodplains, changes in flood damages
broadly mimic changes in flood frequency on a national scale
(Fig. 7; compare to Fig. 5), with minor differences between
these trends reflecting the way that regional trends in flood
frequency interact with asset exposure within 1 % AEP flood-
plains (see Fig 4). Expected annual flood damages under the
RCP 4.5 scenario increase from approximately USD 3 bil-
lion between 2000 and 2020 to approximately USD 4 billion

Figure 8. Average annual flooding damages by region for (a) RCP
4.5 and (b) RCP 8.5. (c) Difference in annual flood damages be-
tween RCP 4.5 and RCP 8.5 by region (billions of 2014 US dollars).
See Fig. 4 for delineation of regions.

by the end of the century. Under the RCP 8.5 scenario, ex-
pected annual flood damages increase from approximately
USD 3 billion in the early 21st century to over USD 7 billion
by 2100. The modeled damage distribution in the early part
of the 21st century also closely approximates the distribution
of observed annual damages over the late 20th century (e.g.,
NOAA, 2016).

Figure 7 also highlights how different GHG emissions
pathways generate different trajectories of flood damages
through the remainder of the 21st century. While the RCP
4.5 and RCP 8.5 pathways are generally similar through mid-
century, the damage trajectories under the two emissions sce-
narios begin to diverge in the latter half of the 21st century.
By 2075, the average annual difference between flood dam-
ages under the RCP 4.5 and RCP 8.5 emissions pathways
is approximately USD 2 billion, and by 2100 this difference
grows to almost USD 4 billion.

The increasing flood damages under RCP 8.5 relative to
RCP 4.5 are not evenly distributed throughout the United
States. Figure 8 shows the time series of average annual dam-
ages in each region of the CONUS. As shown in Fig. 8, the
most significant differences between projected flood dam-
ages under the two emissions scenarios are in the Southeast,
where the difference between the two trajectories approaches
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USD 1.5 billion per year by the end of the century; and in
the Northeast and Midwest, where the difference between the
two scenarios is close to USD 750 million per year by 2100.
Although there are also differences in damages between the
two emissions scenarios in other regions, these differences
are generally small relative to those three regions of the coun-
try. The increasing flood damages projected for the South-
east, Northeast, and Midwest are consistent with increases in
modeled changes in annual maximum precipitation through-
out the eastern United States, as described in the Third Na-
tional Climate Assessment (e.g., Walsh et al., 2014), com-
bined with the high value of built assets within floodplains in
these regions relative to the rest of the nation (see Fig. 4).

4 Discussion and conclusions

Based on our model, we find that if future GHG emissions re-
main unchecked, monetary damages from flooding through-
out the CONUS are likely to increase through the 21st cen-
tury. Global GHG reductions, represented by RCP 4.5, could
limit these increasing flood damages, potentially saving bil-
lions of dollars per year (in undiscounted 2014 dollars) by
the end of the century. To our knowledge, this study is the
first to link spatially explicit hydrologic projections from a
full ensemble of climate model projections to mapped assets
in order to estimate future flood damages on a national scale.

Although this study represents a significant methodologi-
cal advance in projecting future inland flooding damages na-
tionwide, there are a number of avenues for future work. As
summarized in Sect. 2.4, these avenues include the further
exploration of different downscaling methods, consideration
of different hydrological models, and simulation of a wider
range of flood magnitudes and the intersection of these flood
zones with built assets.

Preliminary analysis of precipitation outputs from the
newer localized constructed analogue downscaling method
(LOCA, Pierce et al., 2014) suggests that artifacts introduced
by the BCSD method are likely to exist in other products as
well. Ideally, future hydrologic projections could be driven
by a dynamically downscaled climate model to avoid the ar-
tifacts introduced from statistical downscaling. However, full
dynamical downscaling through the 21st century on the scale
of the CONUS may remain computationally prohibitive for a
number of years to come (see for example Liu et al., 2016). In
the interim, future work could replicate the method described
here using quasi-dynamical downscaling methods (e.g., Gut-
mann et al., 2016).

With the exception of limited mapping of 500-year flood-
plains, there are no national data available to evaluate how
damages might increase with increasing flood magnitude
above or below the 1 % AEP event. However, there are some
locations in the United States where floodplains are mapped
at a range of magnitudes both above and below the 1 % AEP
event (FEMA, 2014). Case studies from these locations could

allow us to explicitly model the damages encompassed by
these smaller and larger events and evaluate local changes in
flood damages driven by a wider range of flood events.

Finally, we stress that even if global GHG emissions are
substantially reduced, there is no a priori way to predict how
humans will adapt to future flood risk under any emissions
scenario. As summarized in Sect. 2.4, future demographic
and infrastructure changes could either increase or decrease
damages from flooding in the future: increased flood protec-
tion measures could decrease damages, while increases in de-
velopment in flood-prone areas could increase them. While
our modeling indicates that nationwide exposure to flooding
will increase through the 21st century, the overall damages
incurred will depend both on how we alter our emissions and
how we adapt to changing risks of future flooding.

Data availability. Hydrologic projections used in this study are
publicly available through the following URL: https://gdo-dcp.
ucllnl.org/downscaled_cmip_projections/. Flood hazard datasets
used for delineating 100-year floodplains are available through the
following URL: https://msc.fema.gov/portal/advanceSearch. Cen-
sus block data are available through the following URL: ftp://ftp2.
census.gov/geo/tiger/TIGER2010BLKPOPHU/.
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