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Supplemental Information File #1: VIC Model Parameters and Performance 5 

 

The modeled streamflow projections used here are based on 150-year daily VIC [Liang et al 

1994] simulations performed on a CONUS-wide one eighth degree grid, forced with selected 

realizations of downscaled CMIP5 climate model outputs. The VIC model configuration is 

similar to that used for a recent assessment of the climate change impacts on water resources 10 

over the contiguous United States (CONUS) [Reclamation, 2014], with the exception of the VIC 

model parameters. In the previous study, the VIC model relied on spatially inconsistent soil 

parameter fields, i.e., patchwork parameter fields resulting from the collation of individual basin 

calibrations of spatially constant, default parameter values [Wood and Mizukami, 2014 or Figure 

S1 top panel]. This patchwork of VIC parameters has many spatial discontinuities bounding 15 

large river basins, producing spatial discontinuities in simulated runoff fields. To develop a 

spatially consistent parameter set suitable for comparisons across continental domains, a CONUS 

wide VIC calibration was performed to remove these spatial artifacts while providing similar 

model performance [Mizukami et al 2017]. The calibration strategy used was based on the Multi-

scale Parameter Regionalization approach of Samaniego et al [2010].  In this approach, instead 20 

of calibrating the soil parameters directly, pedo-transfer parameters used to calculate the soil 

parameters based on mapped soil geophysical attributes (e.g. soil clay content) were calibrated 

using 500 unimpaired Hydro-Climatic Data Network (HCDN) basins [Newman et al 2014] 

across the CONUS.  These pedo-transfer parameters were then used to generate the required VIC 

soil parameters across the CONUS (Figure S1 bottom panel). The details on this calibration 25 

strategy and discussions on the results are beyond the scope of this document and are 

documented in a related publication [Mizukami et al 2017], but here we present a brief summary 

of performance of the newly calibrated parameter set compared to the CMIP5 patchwork 

parameters. 

We compare the Nash-Sutcliffe Efficiency (NSE) of two VIC simulations (using routed 30 

runoff at gauges), using the CMIP5 patchwork parameter set and the newly calibrated parameter 

set. In Figure S2, NSE values were computed using daily simulated flow during the period from 

October 1st, 1989 to September 30th 1999, which was not used for the model calibration. Both 

VIC simulations use retrospective meteorological observation grids (Maurer et al., 2002). As 
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shown in Figure S2, model performance is similar in terms of the spatial pattern and the 35 

magnitude of the NSE values because some of these basins are inherently hard to model due to 

errors in the forcing dataset (e.g. in the desert Southwest) and due to features of the landscape 

that are not represented in the VIC model (e.g. tile drains in the Northern mid-West).  Overall, 

NSE values are very slightly reduced in the new dataset because the calibration was more 

constrained, i.e. the VIC model parameters were not directly calibrated; however, the new 40 

calibration is likely to perform equally well in ungauged basins, while the default parameter set 

is likely to perform better in basins it was directly calibrated for.  Importantly, the artifacts in the 

spatial parameter distribution are removed in the newly calibrated parameters (Figure S1).  

 

  45 
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Supplemental Information File #2: Uncertainty Analysis for Baseline 1% AEP 

Estimates 

We used a bootstrapping method to estimate the uncertainty on the baseline 1% AEP event, 

based on a random sample of 1,000 nodes in the modeling domain. Our approach was as follows: 

1) At each randomly selected node, we first extracted the complete set of 580 annual 50 

maximum flow values from the baseline period (20 years x 29 models = 580 annual 

values). We calculated the 1% AEP event from this full set of annual maxima by fitting a 

GEV distribution to the events, using the maximum likelihood method for finding the 

GEV parameters. We then extracted the 1% AEP event by extracting the 99th percentile 

value from the GEV fit. This was the 1% AEP value utilized in the remainder of the 55 

analyses described in the manuscript.  

2) From these 580 annual maximum values, we then selected 500 random samples of 

300 values each. For each of these 500 random samples, we repeated the process of 

fitting the GEV and extracting the 99th percentile value. The result of this exercise is a 

set of 500 estimates of the 1% AEP event for that node (see Figure S3). 60 

3) From this distribution of 500 estimates for the 1% AEP event at each node, we calculated 

the 5th and 95th percentile values, and saved these values along with the value calculated 

from the full suite of 580 annual maxima.  

4) We used the 5th and 95th percentile values to estimate the uncertainty in the 1% AEP 

event, as a percent of the estimate from the full set of 580 values. The result is a 65 

distribution of uncertainties in the 1% AEP event, expressed as a percent (Figure S4).  

5) Using the modal value of uncertainty on the 1% AEP event of approximately 10% 

(Figure S4), we propagated this uncertainty through our estimate of the number of floods 

occurring in each year of our simulation, as follows  

a. We generated a normal distribution of error values ranging from approximately    70 

-20% to +20% 
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b. At each node, we randomly selected a value from this distribution and multiplied 

the estimated 1% AEP flood value by this random number 

c. We then calculated the timeseries of flooding at each node based on this 

“perturbed” 1% AEP event, and assembled a new version of Figure 5 based on 75 

this perturbed timeseries (Figure S5) 

Based on this qualitative comparison, as shown in Figure S5, the intermodel variability in the 

timeseries of flooding overwhelms the uncertainty introduced by propagating the error in the 1% 

AEP event through all of the calculations. 

 80 
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Supplemental Information File #3: Estimating flood depth and Asset Damages from 

1% annual exceedance probability events 
 

For each of the mapped floodplains in CONUS, we estimated flood damages using an 85 

experimental tool developed for the U.S. Army Corps of Engineers, referred to as the National 

Flood Risk Characterization Tool (NFRCT)1. The NFRCT includes asset exposure and damage 

estimates for the 1% (“100-year”) and 0.2 % (“500-year”) annual exceedance probability flood 

events, as determined by FEMA and compiled in the National Flood Hazard Layer (NFHL) 2. 

Because the 100-year floodplain maps are substantially more comprehensive than the 500-year 90 

floodplain maps across the United States, we focused our analysis of damages on the assets 

within the 1% annual chance floodplains. 

 

All of the steps we took to calculate asset damages were conducted in a spatially explicit 

framework, utilizing publicly available data on topography, floodplain extent, and assets. 95 

Damages from a 1% AEP flood were calculated for each of the mapped 1% annual probability 

floodplains in the NFHL as follows: 

 

1. Intersect NFHL polygons and Census blocks3 to create a new set of flood zone polygons 

subdivided by census block boundaries. 100 

2. Query the National Elevation Dataset (NED) 4 along the perimeter of each flood polygon 

to determine the elevation of the 1% annual probability flood level along that perimeter.   

                                                           

 

 

1 Developed by Abt Associates, Inc. for the Institute for Water Resources of the U.S. Army Corps of Engineers. 
More information can be found at: 

http://www.iwr.usace.army.mil/Portals/70/docs/frmp/Flood_Risk_Char/NFRCT_Slides_FRM_wkshp_v1.pdf. 
2 FEMA (2015). National Flood Hazard Layer (NFHL).  Federal Emergency Management Agency. Washington, 

D.C. Available at: https://www.fema.gov/national-flood-hazard-layer-nfhl 
3 Census Bureau (2010). 2010 Topologically Integrated Geographic Encoding and Referencing (TIGER)/Line 

Shapefiles. Released beginning November 30, 2010. Last update March 26, 2012. U.S. Census Bureau. Suitland, 

MD. ftp://ftp2.census.gov/geo/tiger/TIGER2010/ 
4 USGS: National Elevation Dataset (NED), U.S. Department of the Interior, U.S. Geological Survey, Available: 

https://lta.cr.usgs.gov/NED, 2016. 

 

http://www.iwr.usace.army.mil/Portals/70/docs/frmp/Flood_Risk_Char/NFRCT_Slides_FRM_wkshp_v1.pdf
ftp://ftp2.census.gov/geo/tiger/TIGER2010/
https://lta.cr.usgs.gov/NED
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3. Randomly sample points within the interior of each of flood zone polygon to estimate the 

distribution of flood water depths within each polygon (sample consists of hundreds to 

thousands of points, depending on the size of the intersection area in (1)).  105 

a. First, at each randomly selected point, query the NED to find the ground level 

elevation at that location. 

b. Second, calculate the elevation of the flood surface using a nearest neighbor 

sampling method. The interior flood water elevation is calculated as a weighted 

average of sampled perimeter points around each randomly selected point. 110 

c. Compute the difference between the elevation of the estimated water surface and 

the ground level elevation. This value approximates the depth of a 1% annual 

exceedance probability flood event at this point.   

4. For the sampled interior points, use the National Land Cover Dataset5 to determine 

whether each point is categorized as “Developed” or not; track depth estimates separately 115 

for developed and undeveloped points within each polygon. 

5. From the randomly sampled points within the interior of each flood zone polygon, 

calculate odd depth percentiles (1st, 3rd, 5th,…,99th) for each flood zone. 

 

The result of this process is a distribution (described by percentiles) of flood depths for each 120 

NFHL-Census Block intersection. For each intersection, three distributions are generated: 1) 

depths throughout the polygon, 2) depths within areas designated as Developed, and 3) depths 

within areas designated as Undeveloped. From these results, the following steps are used to 

calculate monetary damages: 

 125 

                                                           

 

 

 
5 Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., 

Wickham, J.D., and Megown, K., 2015, Completion of the 2011 National Land Cover Database for the 

conterminous United States-Representing a decade of land cover change information. 
Photogrammetric Engineering and Remote Sensing, v. 81, no. 5, p. 345-354 
  

http://bit.ly/1K7WjO3
http://bit.ly/1K7WjO3
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1. For the “Developed” portions of the NFHL-Census block intersection, data on built assets 

are tabulated from FEMA’s HAZUS-MH6 General Building Stock inventory. The 

General Building Stock inventory provides estimates of the number and aggregate dollar 

value of multiple types of residential, commercial, and industrial buildings for each 

Census block.  130 

2. The number and value of buildings and contents that are exposed to flood inundation is 

equal to the percentage of the Developed portion of a Census block that is intersected by 

a NFHL flood zone multiplied by the corresponding total number of residential assets and 

their values within the block. Buildings and aggregate building value are assumed to be 

evenly distributed across the Developed portions of each Census Block. For example, if 135 

50% of the developed portion of a block is intersected by a floodzone, it is assumed that 

50% of that Block’s buildings and aggregate building value are exposed to flooding.  

3. The same assumption is applied to estimate exposure to different depths – if the 10th 

percentile of depth for given polygon is 2.5 feet, it is assumed that 10% of the developed 

portion of that block, as well as 10% of its buildings and building value, is exposed to 2.5 140 

feet of inundation. 

4. Damage estimates are created using depth-damage functions from USACE and FEMA7. 

A separate depth-damage function is used for each of 28 different categories of buildings 

(e.g., residential one-story homes without a basement). Each depth damage function 

describes the percent loss as a function of depth.  145 

5. The depth damage functions are applied to the aggregate value for each category of 

building within each NFHL-Census block intersection, using depth exposure results 

described above. In other words, if it was estimated that 10% of buildings are exposed to 

                                                           

 

 
6 FEMA (2015). HAZUS-MH 2.2, FEMA's Software Program for Multi-Hazard Loss Estimation for Potential 

Losses from Disaster. Federal Emergency Management Agency. Washington, D.C. 
7 USACE (2000). Economic Guidance Memorandum (EGM 01-03): Generic Depth-Damage Relationships. 

http://planning.usace.army.mil/toolbox/library/EGMs/egm01-03.pdf 

USACE (2003). Economic Guidance Memorandum (EGM) 04-01, Generic Depth-Damage Relationships for 

Residential Structures with Basements. http://planning.usace.army.mil/toolbox/library/EGMs/egm04-01.pdf 

FEMA (2009a). HAZUS-MH, FEMA's Software Program for Estimating Potential Losses from Disaster. Federal 

Emergency Management Agency. Washington, D.C. 

 

 

http://planning.usace.army.mil/toolbox/library/EGMs/egm04-01.pdf
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2.5 feet of inundation, then the depth-damage estimate for 2.5 feet of inundation is 

applied to 10% of the aggregate building value. 150 
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Figure S1. Spatial field of one of the VIC soil parameter fields, the linear reservoir coefficient of 155 

the baseflow equation (Nijssen et al., 2002). Top panel shows the CMIP5 default VIC parameters 

and the bottom panel shows newly calibrated VIC parameters. 
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Figure S2. NSE values of retrospective VIC simulations at each HCDN basin.  Top panel shows 160 

the results of VIC simulations using the CMIP5 VIC parameters and bottom panel shows the 

results with the newly calibrated VIC parameters. 

 

 
  165 
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Figure S3. Example of uncertainty analysis on 1% AEP event for a single node, based on 

bootstrapping method described above. 
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Figure S4. Distribution of uncertainty on 1% AEP event based on 1,000 randomly selected 

nodes in the model domain. 170 
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Figure S5. Comparison between timeseries of the number of floods in the US through the 21st 

century a) with random +/-20% uncertainty on the 1% AEP event propagated through all 

calculations, and b) without accounting for uncertainty on the 1% AEP event. Note that while 175 

there are subtle differences in the plots, the intermodel variability is substantially larger than the 

differences in flood timeseries between the two methods. Data in right panel are identical to the 

data in Figure 5. 

 

  

 180 
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