Articles | Volume 13, issue 3
https://doi.org/10.5194/nhess-13-795-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-13-795-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
On the water hazards in the trans-boundary Kosi River basin
N. Sh. Chen
Key Lab of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
G. Sh. Hu
Graduate School, Chinese Academy of Sciences, Beijing, China
Key Lab of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
W. Deng
Key Lab of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
N. Khanal
Central Department of Geography, Tribhuvan University, Kathmandu, Nepal
Y. H. Zhu
Graduate School, Chinese Academy of Sciences, Beijing, China
Key Lab of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
D. Han
Department of Civil Engineering, University of Bristol, Bristol, UK
Related authors
Ivo Janos Fustos-Toribio, Bastian Morales-Vargas, Marcelo Somos-Valenzuela, Pablo Moreno-Yaeger, Ramiro Muñoz-Ramirez, Ines Rodriguez Araneda, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci., 21, 3015–3029, https://doi.org/10.5194/nhess-21-3015-2021, https://doi.org/10.5194/nhess-21-3015-2021, 2021
Short summary
Short summary
Links between debris flow and volcanic evolution are an open question in the southern Andes. We modelled the catastrophic debris flow using field data, a geotechnical approach and numerical modelling of the Petrohué event (Chile, 2017). Our results indicated new debris-flow-prone zones. Finally, we propose considering connections between volcanoes and debris flow in the southern Andes.
Marcelo A. Somos-Valenzuela, Joaquín E. Oyarzún-Ulloa, Ivo J. Fustos-Toribio, Natalia Garrido-Urzua, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci., 20, 2319–2333, https://doi.org/10.5194/nhess-20-2319-2020, https://doi.org/10.5194/nhess-20-2319-2020, 2020
Short summary
Short summary
This work presents a study of the biggest mudflow event in 20 years in Chilean Patagonia, which resulted from an avalanche in the Cordon Yelcho. We integrate in situ geotechnical tests and numerical modeling to model the Villa Santa Lucía mudflow event. Our results suggest that the initial soil water content is sufficient to transform the landslide and scoured soil into a mudflow. Therefore, knowing the soil characteristics is crucial to evaluating the impact of landslides in the study area.
Lu Zhuo, Qiang Dai, Dawei Han, Ningsheng Chen, and Binru Zhao
Hydrol. Earth Syst. Sci., 23, 4199–4218, https://doi.org/10.5194/hess-23-4199-2019, https://doi.org/10.5194/hess-23-4199-2019, 2019
Short summary
Short summary
This study assesses the usability of WRF model-simulated soil moisture for landslide monitoring in northern Italy. In particular, three advanced land surface model schemes (Noah, Noah-MP, and CLM4) are used to provide multi-layer soil moisture data. The results have shown Noah-MP can provide the best landslide monitoring performance. It is also demonstrated that a single soil moisture sensor located in plain area has a high correlation with a significant proportion of the study area.
Mingfeng Deng, Yong Zhang, Mei Liu, Yuanhuan Wang, Wanyin Xie, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-390, https://doi.org/10.5194/nhess-2017-390, 2017
Preprint withdrawn
Short summary
Short summary
Research of the post-wildfire in Reneyong Valley shows: (1) the thresholds of post-fire debris flows was low and tend to increase as time passes; (2) reason for the post-fire debris flows with high frequency lies in an increase in soil water repellency, the soft geology, drainage area, channel gradient and regional arid climate; and (3) the varied rainfall thresholds (low in branch No. 3 and higher in branch No. 1 and No. 2) among the different branches are dependent on the drainage area.
Mingfeng Deng, Ningsheng Chen, and Mei Liu
Nat. Hazards Earth Syst. Sci., 17, 345–356, https://doi.org/10.5194/nhess-17-345-2017, https://doi.org/10.5194/nhess-17-345-2017, 2017
Short summary
Short summary
Annual air temperature spiked and glacier retreated shortly before the three periglacial debris flows in Tianmo valley. However, they did not occur when glacier retreat was sharpest, resulting from the frozen bared glacial till as the melting of internal ice lags behind glacial retreat. The activity of the glacial till can be enhanced by prolonged high air temperature. Finally, either rainfall or continuous percolation of ice ablation water flows can generate debris flow.
Ivo Janos Fustos-Toribio, Bastian Morales-Vargas, Marcelo Somos-Valenzuela, Pablo Moreno-Yaeger, Ramiro Muñoz-Ramirez, Ines Rodriguez Araneda, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci., 21, 3015–3029, https://doi.org/10.5194/nhess-21-3015-2021, https://doi.org/10.5194/nhess-21-3015-2021, 2021
Short summary
Short summary
Links between debris flow and volcanic evolution are an open question in the southern Andes. We modelled the catastrophic debris flow using field data, a geotechnical approach and numerical modelling of the Petrohué event (Chile, 2017). Our results indicated new debris-flow-prone zones. Finally, we propose considering connections between volcanoes and debris flow in the southern Andes.
Marcelo A. Somos-Valenzuela, Joaquín E. Oyarzún-Ulloa, Ivo J. Fustos-Toribio, Natalia Garrido-Urzua, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci., 20, 2319–2333, https://doi.org/10.5194/nhess-20-2319-2020, https://doi.org/10.5194/nhess-20-2319-2020, 2020
Short summary
Short summary
This work presents a study of the biggest mudflow event in 20 years in Chilean Patagonia, which resulted from an avalanche in the Cordon Yelcho. We integrate in situ geotechnical tests and numerical modeling to model the Villa Santa Lucía mudflow event. Our results suggest that the initial soil water content is sufficient to transform the landslide and scoured soil into a mudflow. Therefore, knowing the soil characteristics is crucial to evaluating the impact of landslides in the study area.
Lu Zhuo, Qiang Dai, Dawei Han, Ningsheng Chen, and Binru Zhao
Hydrol. Earth Syst. Sci., 23, 4199–4218, https://doi.org/10.5194/hess-23-4199-2019, https://doi.org/10.5194/hess-23-4199-2019, 2019
Short summary
Short summary
This study assesses the usability of WRF model-simulated soil moisture for landslide monitoring in northern Italy. In particular, three advanced land surface model schemes (Noah, Noah-MP, and CLM4) are used to provide multi-layer soil moisture data. The results have shown Noah-MP can provide the best landslide monitoring performance. It is also demonstrated that a single soil moisture sensor located in plain area has a high correlation with a significant proportion of the study area.
Mingfeng Deng, Yong Zhang, Mei Liu, Yuanhuan Wang, Wanyin Xie, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-390, https://doi.org/10.5194/nhess-2017-390, 2017
Preprint withdrawn
Short summary
Short summary
Research of the post-wildfire in Reneyong Valley shows: (1) the thresholds of post-fire debris flows was low and tend to increase as time passes; (2) reason for the post-fire debris flows with high frequency lies in an increase in soil water repellency, the soft geology, drainage area, channel gradient and regional arid climate; and (3) the varied rainfall thresholds (low in branch No. 3 and higher in branch No. 1 and No. 2) among the different branches are dependent on the drainage area.
Mingfeng Deng, Ningsheng Chen, and Mei Liu
Nat. Hazards Earth Syst. Sci., 17, 345–356, https://doi.org/10.5194/nhess-17-345-2017, https://doi.org/10.5194/nhess-17-345-2017, 2017
Short summary
Short summary
Annual air temperature spiked and glacier retreated shortly before the three periglacial debris flows in Tianmo valley. However, they did not occur when glacier retreat was sharpest, resulting from the frozen bared glacial till as the melting of internal ice lags behind glacial retreat. The activity of the glacial till can be enhanced by prolonged high air temperature. Finally, either rainfall or continuous percolation of ice ablation water flows can generate debris flow.