Articles | Volume 13, issue 5
https://doi.org/10.5194/nhess-13-1285-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/nhess-13-1285-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Instant tsunami early warning based on real-time GPS – Tohoku 2011 case study
A. Hoechner
GFZ German Research Centre for Geosciences, Potsdam, Germany
M. Ge
GFZ German Research Centre for Geosciences, Potsdam, Germany
A. Y. Babeyko
GFZ German Research Centre for Geosciences, Potsdam, Germany
S. V. Sobolev
GFZ German Research Centre for Geosciences, Potsdam, Germany
Related authors
Irene Molinari, Roberto Tonini, Stefano Lorito, Alessio Piatanesi, Fabrizio Romano, Daniele Melini, Andreas Hoechner, José M. Gonzàlez Vida, Jorge Maciás, Manuel J. Castro, and Marc de la Asunción
Nat. Hazards Earth Syst. Sci., 16, 2593–2602, https://doi.org/10.5194/nhess-16-2593-2016, https://doi.org/10.5194/nhess-16-2593-2016, 2016
Short summary
Short summary
We present a database of pre-calculated tsunami waveforms for the entire Mediterranean Sea, obtained by numerical propagation of uniformly spaced Gaussian-shaped elementary sources for the sea level elevation. Based on any initial sea surface displacement, the database allows the fast calculation of full waveforms of coastal sites. The resulting product is suitable for different applications such as probabilistic tsunami hazard, tsunami source inversions and tsunami warning systems.
Andreas Hoechner, Andrey Y. Babeyko, and Natalia Zamora
Nat. Hazards Earth Syst. Sci., 16, 1339–1350, https://doi.org/10.5194/nhess-16-1339-2016, https://doi.org/10.5194/nhess-16-1339-2016, 2016
Short summary
Short summary
The Makran subduction zone is not very active seismically, but nevertheless capable of hosting destructive earthquakes and tsunami, such as the Balochistan event in 1945, which led to about 4000 casualties. Some recent studies suggest that the maximum magnitude might be higher than previously thought. We generate a set of synthetic earthquake catalogs to compute tsunami hazard along the coast of Iran, Pakistan and Makran and show how different seismicity assumptions affect the hazard.
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024, https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Short summary
Modelling tsunami generation due to a rapid submarine earthquake is a complex problem. Under a variety of realistic conditions in a subduction zone, we propose and test an efficient solution to this problem: a tool that can compute the generation of any potential tsunami in any ocean in the world. In the future, we will explore solutions that would also allow us to model tsunami generation by slower (time-dependent) seafloor displacement.
Edgar U. Zorn, Aiym Orynbaikyzy, Simon Plank, Andrey Babeyko, Herlan Darmawan, Ismail Fata Robbany, and Thomas R. Walter
Nat. Hazards Earth Syst. Sci., 22, 3083–3104, https://doi.org/10.5194/nhess-22-3083-2022, https://doi.org/10.5194/nhess-22-3083-2022, 2022
Short summary
Short summary
Tsunamis caused by volcanoes are a challenge for warning systems as they are difficult to predict and detect. In Southeast Asia there are many active volcanoes close to the coast, so it is important to identify the most likely volcanoes to cause tsunamis in the future. For this purpose, we developed a point-based score system, allowing us to rank volcanoes by the hazard they pose. The results may be used to improve local monitoring and preparedness in the affected areas.
Juan Camilo Gomez-Zapata, Nils Brinckmann, Sven Harig, Raquel Zafrir, Massimiliano Pittore, Fabrice Cotton, and Andrey Babeyko
Nat. Hazards Earth Syst. Sci., 21, 3599–3628, https://doi.org/10.5194/nhess-21-3599-2021, https://doi.org/10.5194/nhess-21-3599-2021, 2021
Short summary
Short summary
We present variable-resolution boundaries based on central Voronoi tessellations (CVTs) to spatially aggregate building exposure models and physical vulnerability assessment. Their geo-cell sizes are inversely proportional to underlying distributions that account for the combination between hazard intensities and exposure proxies. We explore their efficiency and associated uncertainties in risk–loss estimations and mapping from decoupled scenario-based earthquakes and tsunamis in Lima, Peru.
Zhilu Wu, Yanxiong Liu, Yang Liu, Jungang Wang, Xiufeng He, Wenxue Xu, Maorong Ge, and Harald Schuh
Atmos. Meas. Tech., 13, 4963–4972, https://doi.org/10.5194/amt-13-4963-2020, https://doi.org/10.5194/amt-13-4963-2020, 2020
Short summary
Short summary
The HY-2A calibration microwave radiometer (CMR) water vapor product is validated using ground-based GNSS observations along the coastline and shipborne GNSS observations over the Indian Ocean. The validation result shows that HY-2A CMR PWV agrees well with ground-based GNSS PWV, with 2.67 mm in rms within 100 km and an RMS of 1.57 mm with shipborne GNSS for the distance threshold of 100 km. Ground-based GNSS and shipborne GNSS agree with HY-2A CMR well.
Cuixian Lu, Florian Zus, Maorong Ge, Robert Heinkelmann, Galina Dick, Jens Wickert, and Harald Schuh
Atmos. Meas. Tech., 9, 5965–5973, https://doi.org/10.5194/amt-9-5965-2016, https://doi.org/10.5194/amt-9-5965-2016, 2016
Short summary
Short summary
The recent dramatic development of multi-GNSS constellations brings great opportunities and potential for more enhanced precise positioning, navigation, timing, and other applications. In this contribution, we develop a numerical weather model (NWM) constrained PPP processing system to improve the multi-GNSS precise positioning. Compared to the standard PPP solution, significant improvements of both convergence time and positioning accuracy are achieved with the NWM-constrained PPP solution.
Irene Molinari, Roberto Tonini, Stefano Lorito, Alessio Piatanesi, Fabrizio Romano, Daniele Melini, Andreas Hoechner, José M. Gonzàlez Vida, Jorge Maciás, Manuel J. Castro, and Marc de la Asunción
Nat. Hazards Earth Syst. Sci., 16, 2593–2602, https://doi.org/10.5194/nhess-16-2593-2016, https://doi.org/10.5194/nhess-16-2593-2016, 2016
Short summary
Short summary
We present a database of pre-calculated tsunami waveforms for the entire Mediterranean Sea, obtained by numerical propagation of uniformly spaced Gaussian-shaped elementary sources for the sea level elevation. Based on any initial sea surface displacement, the database allows the fast calculation of full waveforms of coastal sites. The resulting product is suitable for different applications such as probabilistic tsunami hazard, tsunami source inversions and tsunami warning systems.
Andreas Hoechner, Andrey Y. Babeyko, and Natalia Zamora
Nat. Hazards Earth Syst. Sci., 16, 1339–1350, https://doi.org/10.5194/nhess-16-1339-2016, https://doi.org/10.5194/nhess-16-1339-2016, 2016
Short summary
Short summary
The Makran subduction zone is not very active seismically, but nevertheless capable of hosting destructive earthquakes and tsunami, such as the Balochistan event in 1945, which led to about 4000 casualties. Some recent studies suggest that the maximum magnitude might be higher than previously thought. We generate a set of synthetic earthquake catalogs to compute tsunami hazard along the coast of Iran, Pakistan and Makran and show how different seismicity assumptions affect the hazard.
Altmetrics