Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal)
Abstract. A general methodology for the probabilistic evaluation of landslide hazard is applied, taking in account both the landslide susceptibility and the instability triggering factors, mainly rainfall. The method is applied in the Fanhões-Trancão test site (north of Lisbon, Portugal) where 100 shallow translational slides were mapped and integrated into a GIS database.
For the landslide susceptibility assessment it is assumed that future landslides can be predicted by statistical relationships between past landslides and the spatial data set of the predisposing factors (slope angle, slope aspect, transversal slope profile, lithology, superficial deposits, geomorphology, and land use). Susceptibility is evaluated using algorithms based on statistical/probabilistic analysis (Bayesian model) over unique-condition terrain units in a raster basis. The landslide susceptibility map is prepared by sorting all pixels according to the pixel susceptibility value in descending order.
In order to validate the results of the susceptibility ana- lysis, the landslide data set is divided in two parts, using a temporal criterion. The first subset is used for obtaining a prediction image and the second subset is compared with the prediction results for validation. The obtained prediction-rate curve is used for the quantitative interpretation of the initial susceptibility map.
Landslides in the study area are triggered by rainfall. The integration of triggering information in hazard assessment includes (i) the definition of thresholds of rainfall (quantity-duration) responsible for past landslide events; (ii) the calculation of the relevant return periods; (iii) the assumption that the same rainfall patterns (quantity/duration) which produced slope instability in the past will produce the same effects in the future (i.e. same types of landslides and same total affected area).
The landslide hazard is present as the probability of each pixel to be affected by a slope movement, and results from the coupling between the susceptibility map, the prediction-rate curve, and the return periods of critical rainfall events, on a scenario basis.
Using this methodology, different hazard scenarios were assessed, corresponding to different rain paths with different return periods.