Articles | Volume 26, issue 2
https://doi.org/10.5194/nhess-26-791-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-26-791-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rapid amplification of Compound Drought and Heatwave risk over India: a regime shift from arid northwest to humid southern and eastern hotspots
Debankana Bhattacharjee
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
Chandrika Thulaseedharan Dhanya
CORRESPONDING AUTHOR
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
Related authors
No articles found.
Apoorva Singh, Ravikumar Guntu, Nivedita Sairam, Kasra Rafiezadeh Shahi, Anna Buch, Melanie Fischer, Chandrika Thulaseedharan Dhanya, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 26, 103–118, https://doi.org/10.5194/nhess-26-103-2026, https://doi.org/10.5194/nhess-26-103-2026, 2026
Short summary
Short summary
We develop novel probabilistic models to estimate flash flood losses of companies and households in Germany. Using multiple flash flood events, we identify key drivers of flash floods loss. FLEMO flash model reveals that for companies, the effectiveness of emergency measures is crucial in mitigating losses. In contrast, household benefit more from knowledge about emergency action, suggesting adaptation strategies can effectively reduce flash flood losses.
Cited articles
Afroz, M., Chen, G., and Anandhi, A.: Drought-and heatwave-associated compound extremes: A review of hotspots, variables, parameters, drivers, impacts, and analysis frameworks, Frontiers in Earth Science, 10, 914437, https://doi.org/10.3389/feart.2022.914437, 2023.
Afshar, M. H., Bulut, B., Duzenli, E., Amjad, M., and Yilmaz, M. T.: Global spatiotemporal consistency between meteorological and soil moisture drought indices, Agr. Forest Meteorol., 316, 108848, https://doi.org/10.1016/j.agrformet.2022.108848, 2022.
Ali, J.: Assessing Multi-Hazard Risks And Impacts Of Compound Climate And Weather Extreme Events For Socio-Economic Risk Management, Graduate Thesis and Dissertation post-2024.96, University of Central Florida, https://stars.library.ucf.edu/etd2024/96 (last access: 2 February 2026), 2025.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen–Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 1–12, https://doi.org/10.1038/sdata.2018.214, 2018.
Bhattacharjee, D. and Dhanya, C. T.: Compound Drought and Heatwave Analysis, Zenodo [data set/code], https://doi.org/10.5281/zenodo.15255598, 2025.
Chuphal, D. S., Kushwaha, A. P., Aadhar, S., and Mishra, V.: Drought Atlas of India, 1901–2020, Sci. Data., 11, https://doi.org/doi:10.1038/s41597-023-02856-y, 2024.
Chapman, S., Trancoso, R., Syktus, J., Eccles, R., and Toombs, N.: Impacts on compound drought heatwave events in Australia per global warming level, Environ. Res. Lett., 20, 054070, https://doi.org/10.1088/1748-9326/adc8bd, 2025.
Chen, Y., Zhang, Z., Wang, P., Song, X., Wei, X., and Tao, F.: Identifying the impact of multi-hazards on crop yield – a case for heat stress and dry stress on winter wheat yield in northern China, Eur. J. Agron., 73, 55–63, https://doi.org/10.1016/j.eja.2015.10.009, 2016.
Dash, S. K., Kulkarni, M. A., Mohanty, U. C., and Prasad, K.: Changes in the characteristics of rain events in India, J. Geophys. Res.-Atmos., 114, https://doi.org/10.1029/2008JD010572, 2009.
Dracup, J. A., Lee, K. S., and Paulson Jr., E. G.: On the statistical characteristics of drought events, Water Resour. Res., 16, 289–296, https://doi.org/10.1029/WR016i002p00289, 1980.
FAO: Agricultural production statistics 2010–2023, FAOSTAT Analytical Briefs, No. 96, FAO, Rome, https://openknowledge.fao.org/handle/20.500.14283/cd3755en (last access: 2 February 2026), 2024.
Fehlman, C. A., Ryan, S. C., Lysne, K. G., Rundgren, Q. M., Spurlock, T. J., Orbison, R. O., Runkle, J. D., and Sugg, M. M.: Scoping review of the societal impacts of compound climate events, Discov. Environ., 3, https://doi.org/10.1007/s44274-025-00185-y, 2025.
Feng, A., Zhang, Q., Gu, X., Singh, V. P., Hu, L., Sun, Y., and Zhao, J.: Compound drought-heatwaves in China: driving factors and risks, Nat. Hazards, 121, 21283–21303, https://doi.org/10.1007/s11069-025-07621-5, 2025.
Feng, S., Wu, X., Hao, Z., Hao, Y., Zhang, X., and Hao, F.: A database for characteristics and variations of global compound dry and hot events, Weather and Climate Extremes, 30, 100299, https://doi.org/10.1016/j.wace.2020.100299, 2020.
Fischer, E. M. and Knutti, R.: Robust projections of combined humidity and temperature extremes, Nat. Clim. Change, 3, 126–130, https://doi.org/10.1038/nclimate1682, 2013.
Fischer, E. M. and Knutti, R.: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes, Nat. Clim. Change, 5, 560–564, https://doi.org/10.1038/nclimate2617, 2015.
Goel, N. K. and Rajendran, V.: Integrating regionalisation, uncertainty, and nonstationarity in modelling extreme rainfall events in India, J. Environ. Manage., 376, 124377, https://doi.org/10.1016/j.jenvman.2025.124377, 2025.
Government of India, Ministry of Agriculture & Farmers Welfare, Department of Agriculture & Farmers Welfare, and Directorate of Economics & Statistics: Agricultural Statistics at a Glance 2024, Government of India, https://www.scribd.com/document/962786318/Agricultural-Statistics-at-a-Glance-2024-%E0%A4%95%E0%A5%83%E0%A4%B7%E0%A4%BF-%E0%A4%B8%E0%A4%BE%E0%A4%82%E0%A4%96-%E0%A4%AF%E0%A4%BF%E0%A4%95%E0%A5%80-%E0%A4%8F%E0%A4%95-%E0%A4%9D%E0%A4%B2%E0%A4%95-2024 (last access: 2 February 2026), 2025.
Gumbel, E. J.: Statistical forecast of droughts, Hydrolog. Sci. J., 8, 5–23, 1963.
Hao, Z., AghaKouchak, A., and Phillips, T. J.: Changes in concurrent monthly precipitation and temperature extremes, Environ. Res. Lett., 8, 034014, https://doi.org/10.1088/1748-9326/8/3/034014, 2013.
Hao, Y., Hao, Z., Feng, S., Zhang, X., and Hao, F.: Response of vegetation to El Niño-Southern Oscillation (ENSO) via compound dry and hot events in southern Africa, Global Planet. Change, 195, 103358, https://doi.org/10.1016/j.gloplacha.2020.103358, 2020a.
Hao, Z., Li, W., Singh, V. P., Xia, Y., Zhang, X., and Hao, F.: Impact of dependence changes on the likelihood of hot extremes under drought conditions in the United States, J. Hydrol., 581, 124410, https://doi.org/10.1016/j.jhydrol.2019.124410, 2020b.
He, Y., Fang, J., Xu, W., and Shi, P.: Substantial increase of compound droughts and heatwaves in wheat growing seasons worldwide, Int. J. Climatol., 42, 5038–5054, https://doi.org/10.1002/joc.7518, 2022.
Ionita, M., Caldarescu, D. E., and Nagavciuc, V.: Compound hot and dry events in Europe: variability and large-scale drivers, Frontiers in Climate, 3, 688991, https://doi.org/10.3389/fclim.2021.688991, 2021.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp, https://doi.org/10.1017/9781009157896, 2021.
Kong, Q., Guerreiro, S., Blenkinsop, S., Li, X. F., and Fowler, H.: Increases in summertime concurrent drought and heatwave in Eastern China, Weather and Climate Extremes, 28, 100242, https://doi.org/10.1016/j.wace.2019.100242, 2020.
Köppen, W.: The Earth's heat zones, considered according to the duration of the hot, temperate, and cold seasons and according to the effect of heat on the organic world, Meteorological Journal, 1, 5–226, https://koeppen-geiger.vu-wien.ac.at (last access: 2 February 2026), 1884.
Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound event framework for understanding extreme impacts, WIREs Clim. Change, 5, 113–128, https://doi.org/10.1002/wcc.252, 2014.
Liu, L.: Study of heatwave evolution in Southeast Asia and its correlation with drought and extreme precipitation amidst climate change, Doctoral thesis, Nanyang Technological University, Singapore, https://hdl.handle.net/10356/183380 (last access: 2 February 2026), 2024.
Liu, L. and Qin, X.: Investigating Compound Drought and Hot Extreme Events in Southeast Asia Through Copula Analysis, Int. J. Climatol., 45, e8773, https://doi.org/10.1002/joc.8773, 2025.
Liu, T., Zhang, Y., Guo, B., Zhang, S., and Li, X.: Substantial increase in future land exposure to compound droughts and heatwaves in China dominated by climate change, J. Hydrol., 645, 132219, https://doi.org/10.1016/j.jhydrol.2024.132219, 2024.
Liu, Z., Jiao, L., and Lian, X.: Changes in compound extreme events and their impacts on cropland productivity in China, 1985–2019, Earth's Future, 13, e2024EF005038, https://doi.org/10.1029/2024EF005038, 2025.
Lobell, D. B., Sibley, A., and Ivan Ortiz-Monasterio, J.: Extreme heat effects on wheat senescence in India, Nat. Clim. Change, 2, 186–189, https://doi.org/10.1038/nclimate1356, 2012.
Madhukar, A., Kumar, V., and Dashora, K.: Temperature and precipitation are adversely affecting wheat yield in India, J. Water Clim. Change, 13, 1631–1656, https://doi.org/10.2166/wcc.2022.443, 2022.
Mazdiyasni, O. and AghaKouchak, A.: Substantial increase in concurrent droughts and heatwaves in the United States, P. Natl. Acad. Sci. USA, 112, 11481–11489, https://doi.org/10.1073/pnas.1422945112, 2015.
Mbokodo, I. L., Bopape, M. J. M., Ndarana, T., Mbatha, S. M., Muofhe, T. P., Singo, M. V., Singo, M. V., Xulu, N. G., Mohomi, T., Ayisi, K. K., and Chikoore, H.: Heatwave variability and structure in South Africa during summer drought, Climate, 11, 38, https://doi.org/10.3390/cli11020038, 2023.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, in: Proceedings of the 8th Conference on Applied Climatology, 17, 179–183, 1993.
McElroy, S., Schwarz, L., Green, H., Corcos, I., Guirguis, K., Gershunov, A., and Benmarhnia, T.: Defining heat waves and extreme heat events using sub-regional meteorological data to maximize benefits of early warning systems to population health, Sci. Total Environ., 721, 137678, https://doi.org/10.1016/j.scitotenv.2020.137678, 2020.
Meehl, G. A. and Tebaldi, C.: More intense, more frequent, and longer lasting heat waves in the 21st century, Science, 305, 994–997, https://doi.org/10.1126/science.1098704, 2004.
Miao, C., Sun, Q., Duan, Q., and Wang, Y.: Joint analysis of changes in temperature and precipitation on the Loess Plateau during the period 1961–2011, Clim. Dynam., 47, 3221–3234, https://doi.org/10.1007/s00382-016-3022-x, 2016.
Mohanty, A. and Shreya, W.: Mapping India's Climate Vulnerability: A District-Level Assessment, Council on Energy, Environment and Water, New Delhi, https://images.hindustantimes.com/images/app-images/2021/11/ ceew-study-on-climate-change-vulnerability-index-and-district-level-risk-assessment.pdf (last access: 2 February 2026), 2021.
Morán-Tejeda, E., Lorenzo-Lacruz, J., López-Moreno, J. I., Rahman, K., and Beniston, M.: Streamflow timing of mountain rivers in Spain: Recent changes and future projections, J. Hydrol., 517, 1114–1127, https://doi.org/10.1016/j.jhydrol.2014.06.053, 2014.
Mukherjee, S. and Mishra, A. K.: Increase in compound drought and heatwaves in a warming world, Geophys. Res. Lett., 48, e2020GL090617, https://doi.org/10.1029/2020GL090617, 2021.
Mukherjee, S., Ashfaq, M., and Mishra, A.: Compound drought and heatwaves at a global scale: The role of natural climate variability-associated synoptic patterns and land-surface energy budget anomalies, J. Geophys. Res.-Atmos., 125, https://doi.org/10.1029/2019JD031943, 2020.
Mukherjee, S., Mishra, A. K., Ashfaq, M., and Kao, S. C.: Relative effect of anthropogenic warming and natural climate variability to changes in Compound drought and heatwaves, J. Hydrol., 605, 127396, https://doi.org/10.1016/j.jhydrol.2021.127396, 2022.
Pai, D., Nair, S., and Ramanathan, A.: Long term climatology and trends of heat waves over India during the recent 50 years (1961–2010), Mausam, 64, 585–604, 2013.
Pai, D., Sridhar, L., Rejeevan, M., Sreejith, O., Satbhai, N., and Mukhopadhyay, B.: Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region, Mausam, 65, 1–18, https://doi.org/10.54302/mausam.v65i1.851, 2014.
Palmer, W. C.: Meteorological drought, Research Paper No. 45, U.S. Department of Commerce, Weather Bureau, https://www.ncei.noaa.gov/monitoring-content/temp-and-precip /drought/docs/palmer.pdf (last access: 2 February 2026), 1965.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Peng, L., Sheffield, J., Wei, Z., Ek, M., and Wood, E. F.: An enhanced Standardized Precipitation–Evapotranspiration Index (SPEI) drought-monitoring method integrating land surface characteristics, Earth Syst. Dynam., 15, 1277–1300, https://doi.org/10.5194/esd-15-1277-2024, 2024.
Rastogi, D., Trok, J., Depsky, N., Monier, E., and Jones, A.: Historical evaluation and future projections of compound heatwave and drought extremes over the conterminous United States in CMIP6, Environ. Res. Lett., 19, 014039, https://doi.org/10.1088/1748-9326/ad0efe, 2023.
Rawat, K. S., Behera, A., Bahuguna, A., and Baweja, H. S.: A case study of rainfall variability analysis using precipitation concentration index in talcher region, Odisha, India, AIP Conference Proc., 3072, 040010, https://doi.org/10.1063/5.0198692, 2024.
Raymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak, A., Balch, J., Bowen, S. G., Camargo, S. J., Hess, J., Kornhuber, K., Oppenheimer, M., Ruane, A. C., Wahl, T., and White, K.: Understanding and managing connected extreme events, Nat. Clim. Change, 10, 611–621, https://doi.org/10.1038/s41558-020-0790-4, 2020.
Ridder, N. N., Ukkola, A. M., Pitman, A. J., and Perkins-Kirkpatrick, S. E.: Increased occurrence of high impact compound events under climate change, npj Clim. Atmos. Sci., 5, 3, https://doi.org/10.1038/s41612-021-00224-4, 2022.
Rohini, P., Rajeevan, M., and Srivastava, A. K.: On the variability and increasing trends of heat waves over India, Scientific Reports, 6, 1–9, https://doi.org/10.1038/srep26153, 2016.
Mishra, V., Thirumalai, K., Singh, D., and Aadhar, S.: Future exacerbation of hot and dry summer monsoon extremes in India, npj Clim. Atmos. Sci., 3, 10, https://doi.org/10.1038/s41612-020-0113-5, 2020.
Salvadori, G., De Michele, C., Kottegoda, N. T., and Rosso, R.: Extreme Value Analysis Via Copulas, in: Extremes in Nature, Water Science and Technology Library, Vol. 56, Springer, Dordrecht, https://doi.org/10.1007/1-4020-4415-1_5, 2007.
Sehgal, A., Sita, K., Siddique, K. H., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V. V., and Nayyar, H.: Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality, Frontiers in Plant Science, 9, 1705, https://doi.org/10.3389/fpls.2018.01705, 2018.
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Luca, A. D., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., Zhou, B. and Allan, R.: Weather and climate extreme events in a changing climatem in: Climate Change 2021: The Physical Science Basis: Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V. P., Zhai, A., Pirani, S. L. and Connors, C., Cambridge University Press, Cambridge, UK, 1513–1766, https://doi.org/10.1017/9781009157896.013, 2021.
Seo, Y. W. and Ha, K. J.: Changes in land-atmosphere coupling increase compound drought and heatwaves over northern East Asia, npj Climate and Atmospheric Science, 5, 100, https://doi.org/10.1038/s41612-022-00325-8, 2022.
Shan, B., Verhoest, N. E. C., and De Baets, B.: Identification of compound drought and heatwave events on a daily scale and across four seasons, Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024, 2024.
Sharma, S. and Majumdar, P.: Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India, Scientific Reports, 7, 15582, https://doi.org/10.1038/s41598-017-15896-3, 2017.
Singh, D., Tsiang, M., Rajaratnam, B., and Diffenbaugh, N. S.: Observed changes in extreme wet and dry spells during the South Asian summer monsoon season, Nat. Clim. Change, 4, 456–461, https://doi.org/10.1038/nclimate2208, 2014.
Singh, G., Dhanya, C., and Chakravorty, A.: A Robust Drought Index accounting changing Precipitaion Characteristics, Water Resour. Res., 57, https://doi.org/10.1029/2020WR029496, 2021.
Singh, G. R., Dhanya, C. T., and Chakravorty, A.: Unraveling the pertinence of drought indices in the changing climate, Environ. Res. Lett., 18, 064024, https://doi.org/10.1088/1748-9326/acd567, 2023.
Srivastava, A., Rajeevan, M., and Kshirsagar, S.: Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region, Atmos. Sci. Lett., 10, 249, https://doi.org/10.1002/asl.232, 2009.
Sushama, L., Khaliq, N., and Laprise, R.: Dry spell characteristics over Canada in a changing climate as simulated by the Canadian RCM, Global Planet. Change, 74, 1–14, https://doi.org/10.1016/j.gloplacha.2010.07.004, 2010.
Swain, S. S., Mishra, A., and Chatterjee, C.: Time-varying evaluation of compound drought and hot extremes in machine learning–predicted ensemble CMIP5 future climate: A multivariate multi-index approach, J. Hydrol. Eng., 29, 04024001, https://doi.org/10.1061/JHYEFF.HEENG-602, 2024.
Takyi, E.: Spatial and compound dependencies in drought and heatwaves in the climate of South-Western Europe, Master's thesis, Oslo Metropolitan University, https://dhefeus.rd.ciencias.ulisboa.pt/teses/ACIT_Master_Ebenezer_ExtremeClimate.pdf (last access: 2 February 2026), 2024.
Tavakol, A., Rahmani, V., and Harrington Jr., J.: Probability of compound climate extremes in a changing climate: A copula-based study of hot, dry, and windy events in the central United States, Environ. Res. Lett., 15, 104058, https://doi.org/10.1088/1748-9326/abb1ef, 2020.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res., 47, 123–138, https://doi.org/10.3354/cr00953, 2011.
Trepanier, J. C., Yuan, J., and Jagger, T. H.: The combined risk of extreme tropical cyclone winds and storm surges along the US Gulf of Mexico Coast, J. Geophys. Res.-Atmos., 122, 3299–3316, https://doi.org/10.1002/2016JD026180, 2017.
Tripathy, K. P. and Mishra, A. K.: How unusual is the 2022 European compound drought and heatwave event?, Geophys. Res. Lett., 50, e2023GL105453, https://doi.org/10.1029/2023GL105453, 2023.
Tripathy, K. P., Mukherjee, S., Mishra, A. K., Mann, M. E., and Williams, A. P.: Climate change will accelerate the high-end risk of compound drought and heatwave events, P. Natl. Acad. Sci. USA, 120, e2219825120, https://doi.org/10.1073/pnas.2219825120, 2023.
Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I., Stahl, K., Hannaford, J., Di Baldassarre, G., Teuling, A. J., Tallaksen, L. M., Uijlenhoet, R., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., Rangecroft, S., Wanders, N., and Van Lanen, H. A. J.: Drought in the Anthropocene, Nat. Geosci., 9, 89–91, https://doi.org/10.1038/ngeo2646, 2016.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index, J. Climate, 23, 1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010.
Vinnarasi, R. and Dhanya, C. T.: Changing characteristics of extreme wet and dry spells of Indian monsoon rainfall, J. Geophys. Res.-Atmos., 121, 2146–2160, https://doi.org/10.1002/2015JD024310, 2016.
Vinnarasi, R., Dhanya, C. T., Chakravorty, A., and AghaKouchak, A.: Unravelling diurnal asymmetry of surface temperature in different climate zones, Scientific Reports, 7, 7350, https://doi.org/10.1038/s41598-017-07627-5, 2017.
Wang, C., Li, Z., Chen, Y., Li, Y., Liu, X., Hou, Y., Wang, X., Kulaixi, Z., and Sun, F.: Increased compound droughts and heatwaves in a double pack in Central Asia, Remote Sensing, 14, 2959, https://doi.org/10.3390/rs14132959, 2022.
Wang, C., Li, Z., Chen, Y., Ouyang, L., Zhao, H., Zhu, J., Wang, J., and Zhao, Y.: Characteristic changes in compound drought and heatwave events under climate change, Atmos. Res., 305, 107440, https://doi.org/10.1016/j.atmosres.2024.107440, 2024.
Wang, H., Chen, J., and Dong, G.: Feature Extraction of Rolling Bearing's early weak fault based on EEMD and tunable Q-factor wavelet transform, Mech. Syst. Signal Pr., 48, 103–119, https://doi.org/10.1016/j.ymssp.2014.04.006, 2014.
Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M. U., and Yasunari, T.: Monsoons: Processes, predictability, and the prospects for prediction, J. Geophys. Res.-Oceans, 103, 14451–14510, https://doi.org/10.1029/97JC02719, 1998.
Wells, N., Goddard, S., and Hayes, M. J.: A self-calibrating Palmer drought severity index, J. Climate, 17, 2335–2351, https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2, 2004.
Wu, Z. and Huang, N. E.: On the Filtering properties of the Emperical Mode Decomposition, Advances in Adaptive Data Analysis, 2, 397–414, https://doi.org/10.1142/S1793536910000604, 2010.
Wu, Z., Huang, N. E., Wallace, J. M., Smoliak, B. V., and Chen, X.: On the time-varying trend in global-mean surface temperature, Clim. Dynam., 37, 759–773, https://doi.org/10.1007/s00382-011-1128-8, 2011.
Zhang, B., Wang, S., and Slater, L.: Anthropogenic climate change doubled the frequency of compound drought and heatwaves in low-income regions, Commun. Earth. Environ., 5, 715, https://doi.org/10.1038/s43247-024-01894-7, 2024.
Zhang, Y., Ren, Z., Zhou, Y., Wang, X., Song, C., Cai, Y., Qin, B., Shi, K., and Woolway, R. I.: Varied responses of inland waters to compound heatwave-drought events in the Yangtze River Basin, Sci. Total Environ., 996, 180185, https://doi.org/10.1016/j.scitotenv.2025.180185, 2025.
Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects risks associated with compound events, Science Advances, 3, e1700263, https://doi.org/10.1126/sciadv.1700263, 2017.
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nature Reviews Earth & Environment, 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Short summary
India has been increasingly facing simultaneous drought and heatwave events over the past six decades. Using a spell-sensitive index to capture variability in precipitation spells, the spread and intensification of the compound events is tracked toward historically safe humid regions. These events are becoming more frequent, severe, and harder to mitigate, even with short wet spells, highlighting the urgent need to rethink climate preparedness across both traditionally dry and wet regions.
India has been increasingly facing simultaneous drought and heatwave events over the past six...
Altmetrics
Final-revised paper
Preprint