Articles | Volume 25, issue 11
https://doi.org/10.5194/nhess-25-4577-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4577-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drought hazard assessment across Sweden's diverse hydro-climatic regimes
Claudia Canedo Rosso
CORRESPONDING AUTHOR
Centre for Societal Risk Research (CSR), University of Karlstad, Karlstad, 65188, Sweden
Centre of Natural Hazards and Disaster Science (CNDS), Uppsala, 75236, Sweden
Lars Nyberg
Centre for Societal Risk Research (CSR), University of Karlstad, Karlstad, 65188, Sweden
Centre of Natural Hazards and Disaster Science (CNDS), Uppsala, 75236, Sweden
Ilias Pechlivanidis
Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, 60176, Sweden
Related authors
Claudia Canedo-Rosso, Stefan Hochrainer-Stigler, Georg Pflug, Bruno Condori, and Ronny Berndtsson
Nat. Hazards Earth Syst. Sci., 21, 995–1010, https://doi.org/10.5194/nhess-21-995-2021, https://doi.org/10.5194/nhess-21-995-2021, 2021
Short summary
Short summary
Drought is a major natural hazard that causes large losses for farmers. This study evaluated drought severity based on a drought classification scheme using NDVI and LST, which was related to the ENSO anomalies. In addition, the spatial distribution of NDVI was associated with precipitation and air temperature at the local level. Our findings show that drought severity increases during El Niño years, and as a consequence the socio-economic drought risk of farmers will likely increase.
Riccardo Biella, Anastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel J. Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris E. Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid J. Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena M. Tallaksen
Nat. Hazards Earth Syst. Sci., 25, 4475–4501, https://doi.org/10.5194/nhess-25-4475-2025, https://doi.org/10.5194/nhess-25-4475-2025, 2025
Short summary
Short summary
The DitA (Drought in the Anthropocene) network's study on the 2022 European drought reveals growing risks, varied impacts, and fragmented, short-term management. Based on a survey of water managers, it explores risk, impacts, strategies, and their evolution. While challenges persist, signs of improvement show readiness for change. The authors call for a European Drought Directive to unify and guide future drought risk management.
Sven Fuchs, Konstantinos Karagiorgos, Margreth Keiler, Lars Nyberg, and Maria Papathoma-Köhle
EGUsphere, https://doi.org/10.5194/egusphere-2025-2509, https://doi.org/10.5194/egusphere-2025-2509, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The 2025 California wildfires highlighted major gaps in fire-resilient land use and design. This brief identifies four key barriers: limited stakeholder awareness and capacity, weak or missing incentives, governance challenges, and insufficient integration of risk into spatial planning processes. It calls for integrated policy frameworks to build adaptive capacity, enforce building codes, and align risk reduction with sustainability and climate resilience goals.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
N. Hempelmann, C. Ehbrecht, E. Plesiat, G. Hobona, J. Simoes, D. Huard, T. J. Smith, U. S. McKnight, I. G. Pechlivanidis, and C. Alvarez-Castro
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 187–194, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-187-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-187-2022, 2022
Ruud T. W. L. Hurkmans, Bart van den Hurk, Maurice J. Schmeits, Fredrik Wetterhall, and Ilias G. Pechlivanidis
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-604, https://doi.org/10.5194/hess-2021-604, 2022
Manuscript not accepted for further review
Short summary
Short summary
Seasonal forecasts can help in safely and efficiently managing a fresh water reservoir in the Netherlands. We compare hydrological forecast systems of the river Rhine, the lakes most important source and analyze forecast skill for over 1993–2016 and for specific extreme years. On average, forecast skill is high in spring due to Alpine snow and smaller in summer. Dry summers appear to be more predictable, skill increases with event extremity. In those cases, seasonal forecasts are valuable tools.
Claudia Canedo-Rosso, Stefan Hochrainer-Stigler, Georg Pflug, Bruno Condori, and Ronny Berndtsson
Nat. Hazards Earth Syst. Sci., 21, 995–1010, https://doi.org/10.5194/nhess-21-995-2021, https://doi.org/10.5194/nhess-21-995-2021, 2021
Short summary
Short summary
Drought is a major natural hazard that causes large losses for farmers. This study evaluated drought severity based on a drought classification scheme using NDVI and LST, which was related to the ENSO anomalies. In addition, the spatial distribution of NDVI was associated with precipitation and air temperature at the local level. Our findings show that drought severity increases during El Niño years, and as a consequence the socio-economic drought risk of farmers will likely increase.
Marc Girons Lopez, Louise Crochemore, and Ilias G. Pechlivanidis
Hydrol. Earth Syst. Sci., 25, 1189–1209, https://doi.org/10.5194/hess-25-1189-2021, https://doi.org/10.5194/hess-25-1189-2021, 2021
Short summary
Short summary
The Swedish hydrological warning service is extending its use of seasonal forecasts, which requires an analysis of the available methods. We evaluate the simple ESP method and find out how and why forecasts vary in time and space. We find that forecasts are useful up to 3 months into the future, especially during winter and in northern Sweden. They tend to be good in slow-reacting catchments and bad in flashy and highly regulated ones. We finally link them with areas of similar behaviour.
Matteo Giuliani, Louise Crochemore, Ilias Pechlivanidis, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 24, 5891–5902, https://doi.org/10.5194/hess-24-5891-2020, https://doi.org/10.5194/hess-24-5891-2020, 2020
Short summary
Short summary
This paper aims at quantifying the value of hydroclimatic forecasts in terms of potential economic benefit to end users in the Lake Como basin (Italy), which allows the inference of a relation between gains in forecast skill and gains in end user profit. We also explore the sensitivity of this benefit to both the forecast system setup and end user behavioral factors, showing that the estimated forecast value is potentially undermined by different levels of end user risk aversion.
Cited articles
Aldea, J., Dahlgren, J., Holmström, E., and Löf, M.: Current and future drought vulnerability for three dominant boreal tree species, Global Change Biology, 30, e17079, https://doi.org/10.1111/gcb.17079, 2023.
Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., Knutson, C., Smith, K. H., Wall, N., Fuchs, B., Crossman, N. D., and Overton, I. C.: Drought indicators revisited: the need for a wider consideration of environment and society, WIREs Water, 3, 516–536, https://doi.org/10.1002/wat2.1154, 2016.
Barthel, R., Stangefelt, M., Giese, M., Nygren, M., Seftigen, K., and Chen, D.: Current understanding of groundwater recharge and groundwater drought in Sweden compared to countries with similar geology and climate, Geografiska Annaler Series A-Physical Geography, 103, 323–345, https://doi.org/10.1080/04353676.2021.1969130, 2021.
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013.
Beguería, S. and Vicente Serrano, S. M.: SPEI: Calculation of the Standardized Precipitation-Evapotranspiration Index, version 1.8.1, the R Project for Statistical Computing, https://doi.org/10.32614/CRAN.package.SPEI, 2023.
Caloiero, T., Veltri, S., Caloiero, P., and Frustaci, F.: Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index, Water, 10, 1043, https://doi.org/10.3390/w10081043, 2018.
Campana, P. E., Zhang, J., Yao, T., Andersson, S., Landelius, T., Melton, F., and Yan, J.: Managing agricultural drought in Sweden using a novel spatially-explicit model from the perspective of water-food-energy nexus, Journal of Cleaner Production, 197, 1382–1393, https://doi.org/10.1016/j.jclepro.2018.06.096, 2018.
Canedo Rosso, C.: Drought indicators across Sweden (1975–2021) (R version 4.2.0 or later), Zenodo [data set], https://doi.org/10.5281/ZENODO.16539105, 2025.
Chen, D., Zhang, P., Seftigen, K., Ou, T., Giese, M., and Barthel, R.: Hydroclimate changes over Sweden in the twentieth and twenty-first centuries: a millennium perspective, Geografiska Annaler Series A-Physical Geography, 103, 103–131, https://doi.org/10.1080/04353676.2020.1841410, 2020.
Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global warming and 21st century drying, Clim. Dynam., 43, 2607–2627, https://doi.org/10.1007/s00382-014-2075-y, 2014.
Crochemore, L., Ramos, M.-H., and Pechlivanidis, I. G.: Can Continental Models Convey Useful Seasonal Hydrologic Information at the Catchment Scale?, Water Resources Research, 56, e2019WR025700, https://doi.org/10.1029/2019WR025700, 2020.
Dai, A.: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008, J. Geophys. Res., 116, D12115, https://doi.org/10.1029/2010JD015541, 2011a.
Dai, A.: Drought under global warming: a review, WIREs Climate Change, 2, 45–65, https://doi.org/10.1002/wcc.81, 2011b.
Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R., Cherchi, A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Pokam Mba, W., Rosenfeld, D., Tierney, J., and Zolina, O.: Water Cycle Changes, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1055–1210, https://doi.org/10.1017/9781009157896.010, 2021.
Foghagen, C. and Alriksson, S.: Mitigation of water shortage impacts among tourism and farming companies on the islands of Öland and Gotland, Sweden, Environ. Dev. Sustain., 26, 7509–7527, https://doi.org/10.1007/s10668-023-03019-0, 2023.
Girons Lopez, M., Crochemore, L., and Pechlivanidis, I. G.: Benchmarking an operational hydrological model for providing seasonal forecasts in Sweden, Hydrol. Earth Syst. Sci., 25, 1189–1209, https://doi.org/10.5194/hess-25-1189-2021, 2021.
Girons Lopez, M., Bosshard, T., Crochemore, L., and Pechlivanidis, I. G.: Leveraging GCM-based forecasts for enhanced seasonal streamflow prediction in diverse hydrological regimes, Journal of Hydrology, 650, 132504, https://doi.org/10.1016/j.jhydrol.2024.132504, 2025.
Grusson, Y., Wesström, I., and Joel, A.: Impact of climate change on Swedish agriculture: Growing season rain deficit and irrigation need, Agricultural Water Management, 251, 106858, https://doi.org/10.1016/j.agwat.2021.106858, 2021.
Hagenlocher, M., Naumann, G., Meza, I., Blauhut, V., Cotti, D., Döll, P., Ehlert, K., Gaupp, F., Van Loon, A. F., Marengo, J. A., Rossi, L., Sabino Siemons, A. S., Siebert, S., Tsehayu, A. T., Toreti, A., Tsegai, D., Vera, C., Vogt, J., and Wens, M.: Tackling Growing Drought Risks—The Need for a Systemic Perspective, Earths Future, 11, e2023EF003857, https://doi.org/10.1029/2023EF003857, 2023.
Hartigan, J. A. and Wong, M. A.: Algorithm AS 136: A K-Means Clustering Algorithm, Applied Statistics, 28, 100, https://doi.org/10.2307/2346830, 1979.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild , M., and Zhai, P. M.: Observations: Atmosphere and Surface, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex , V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324 (last access: 6 February 2025), 2013.
IPCC: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M. M. B., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, UK and New York, NY, USA, 3056 pp., https://doi.org/10.1017/9781009325844, 2022.
Jensen, M. E. and Haise, H. R.: Estimating Evapotranspiration from Solar Radiation, Journal of the Irrigation and Drainage Division, 89, 15–41, 1963.
JRC EDO: EDO indicator factsheet: Soil Moisture Anomaly (SMA), European Commission via the Copernicus European Drought Observatory (EDO) operated by the Joint Research Centre (JRC), https://drought.emergency.copernicus.eu/data/factsheets/factsheet_soilmoisture.pdf (last access: 29 April 2024), 2020a.
JRC EDO: EDO indicator factsheet: Standardized Precipitation Index (SPI), European Commission via the Copernicus European Drought Observatory (EDO) operated by the Joint Research Centre (JRC), https://drought.emergency.copernicus.eu/data/factsheets/factsheet_spi.pdf (last access: 26 January 2025), 2020b.
Kendall, M. G.: Rank correlation methods, 4. edn., 2. impr., Griffin, London, 202 pp., ISBN 9780852641996, 1975.
Lantmännen: Årets svenska skörd är bland de sämsta på 30 år [press release], https://www.lantmannen.se/om-lantmannen/press-och-nyheter/pressmeddelanden/2023/arets-svenska-skord-ar-bland-de-samsta-pa-30-ar/ (last access: 14 June 2024), 2024.
Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., and Arheimer, B.: Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales, Hydrology Research, 41, 295–319, https://doi.org/10.2166/nh.2010.007, 2010.
MacQueen, J.: Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, vol. 5.1, University of California Press, 281–298, https://projecteuclid.org/Proceedings/berkeley-symposium-on-mathematical-statistics-and-probability/ (last access: 26 March 2024), 1967.
Mann, H. B.: Nonparametric Tests Against Trend, Econometrica, 13, 245, https://doi.org/10.2307/1907187, 1945.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration of time scales, Eighth Conference on Applied Climatology, Anaheim, California, 1979–1986, https://www.scirp.org/reference/ReferencesPapers?ReferenceID=2099290 (last access: 23 March 2023), 1993.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, Journal of Hydrology, 391, 202–216, https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010.
Modarres, R.: Streamflow drought time series forecasting, Stoch. Environ. Res. Risk Assess., 21, 223–233, https://doi.org/10.1007/s00477-006-0058-1, 2007.
Muthiah, M., Sivarajan, S., Madasamy, N., Natarajan, A., and Ayyavoo, R.: Exploring short- and long-term meteorological drought parameters in the Vaippar Basin of Southern India, Sci. Rep., 14, 13428, https://doi.org/10.1038/s41598-024-62095-y, 2024.
Rousseeuw, P. J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, 20, 53–65, https://doi.org/10.1016/0377-0427(87)90125-7, 1987.
SGU: Lägst uppmätta grundvattennivåer, The Geological Survey of Sweden (SGU), https://www.sgu.se/grundvatten/grundvattennivaer/om-grundvattennivaer/lagst-uppmatta-grundvattennivaer/ (last access: 10 August 2025), 2020.
Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in global drought over the past 60 years, Nature, 491, 435–438, https://doi.org/10.1038/nature11575, 2012.
Sjöstrand, K., Lindhe, A., Söderqvist, T., Dahlqvist, P., and Rosén, L.: Marginal Abatement Cost Curves for Water Scarcity Mitigation under Uncertainty, Water Resour. Manage., 33, 4335–4349, https://doi.org/10.1007/s11269-019-02376-8, 2019.
SMHI: Nederbörds- och humiditetsklimat i Sverige under vegetationsperioden, Bertil Eriksson, Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden, Reports on Meteorology and Climatology RMK 46, ISSN 0347-2116, https://www.smhi.se/publikationer-fran-smhi/sok-publikationer/ (last access: 10 August 2025), 1986.
SMHI: Väder och Vatten 1994, Carla Eggertsson Karlström, Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden, ISSN 0281-9619, https://www.smhi.se/publikationer-fran-smhi/sok-publikationer/1994-12-30-vader-och-vatten-1994 (last access: 10 August 2025), 1994.
SMHI: Vattenåret 2003, Torbjörn Jutman, Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden, Faktablad N 18, https://www.smhi.se/publikationer-fran-smhi/sok-publikationer/2004-05-25-vattenaret-2003 (last access: 10 August 2025), 2004.
SMHI: Temperatur och nederbörd – Juli 2006, Swedish Meteorological and Hydrological Institute (SMHI), https://www.smhi.se/klimat/klimatet-da-och-nu/manadens-vader-och-vatten-i-sverige/manadens-vader-och-vatten-i-sverige/2006-08-02-juli-2006---temperatur-och-nederbord (last access: 10 August 2025), 2006a.
SMHI: Vattenföring, markvatten och grundvatten – Juli 2006, Swedish Meteorological and Hydrological Institute (SMHI), https://www.smhi.se/klimat/klimatet-da-och-nu/manadens-vader-och-vatten-i-sverige/manadens-vader-och-vatten-i-sverige/2006-08-02-juli-2006---vattenforing-markvatten-och-grundvatten (last access: 10 August 2025), 2006b.
SMHI: Klimatanpassning: Torka, Swedish Meteorological and Hydrological Institute (SMHI), https://www.klimatanpassning.se/hur-klimatet-forandras/klimateffekter/torka-1.21291 (last access: 21 May 2024), 2024.
SMHI: Historiska torrperioder, Swedish Meteorological and Hydrological Institute (SMHI), https://www.smhi.se/kunskapsbanken/hydrologi/historiska-torrperioder (last access: 10 August 2025), 2025a.
SMHI: HYPEwebb, Swedish Meteorological and Hydrological Institute (SMHI), https://hypeweb.smhi.se/model-water/ (last access: 10 August 2025), 2025b.
SMHI: Vattenwebb, Swedish Meteorological and Hydrological Institute (SMHI), https://www.smhi.se/data/sjoar-och-vattendrag/vattenwebb (last access: 10 August 2025), 2025c.
Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., and Vogt, J.: World drought frequency, duration, and severity for 1951-2010: WORLD DROUGHT CLIMATOLOGIES FOR 1951-2010, Int. J. Climatol., 34, 2792–2804, https://doi.org/10.1002/joc.3875, 2014.
Spinoni, J., Naumann, G., Vogt, J., and Barbosa, P.: European drought climatologies and trends based on a multi-indicator approach, Global and Planetary Change, 127, 50–57, https://doi.org/10.1016/j.gloplacha.2015.01.012, 2015.
SCB and Jordbruksverket: Statistiska Meddelanden – Skörd av spannmål, trindsäd, oljeväxter och slåttervall 2018, the Swedish Statistical Office (SCB) and Jordbruksverket, JO 19 SM 1802, ISSN 1654-4226, 2018.
SVT: Fem av de värsta somrarna de senaste 100 åren, SVT Nyheter, 9 July 2018.
Swedish Ministry of the Environment: Sweden's Adaptation Communication – A report to the United Nations Framework Convention on Climate Change, Regeringen och Regeringskansliet, Stockholm, Sweden, https://www.svt.se/nyheter/inrikes/fem-av-de-varsta-torkorna-de-senaste-100-aren (last access: 10 August 2025), 2022.
Teutschbein, C., Albrecht, F., Grabs, T., and Blicharska, M.: A culture of proactive drought management? Unraveling the perception and management of droughts in Swedish municipalities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18879, https://doi.org/10.5194/egusphere-egu2020-18879, 2020.
Teutschbein, C., Quesada Montano, B., Todorović, A., and Grabs, T.: Streamflow droughts in Sweden: Spatiotemporal patterns emerging from six decades of observations, Journal of Hydrology-Regional Studies, 42, 101171, https://doi.org/10.1016/j.ejrh.2022.101171, 2022.
Teutschbein, C., Albrecht, F., Blicharska, M., Tootoonchi, F., Stenfors, E., and Grabs, T.: Drought hazards and stakeholder perception: Unraveling the interlinkages between drought severity, perceived impacts, preparedness, and management, Ambio, 52, 1262–1281, https://doi.org/10.1007/s13280-023-01849-w, 2023a.
Teutschbein, C., Jonsson, E., Todorović, A., Tootoonchi, F., Stenfors, E., and Grabs, T.: Future drought propagation through the water-energy-food-ecosystem nexus – A Nordic perspective, Journal of Hydrology, 617, 128963, https://doi.org/10.1016/j.jhydrol.2022.128963, 2023b.
Tian, L., Zhang, B., and Wu, P.: A global drought dataset of standardized moisture anomaly index incorporating snow dynamics (SZIsnow) and its application in identifying large-scale drought events, Earth Syst. Sci. Data, 14, 2259–2278, https://doi.org/10.5194/essd-14-2259-2022, 2022.
UNDRR: GAR Special report on drought 2021, United Nations Office for Disaster Risk Reduction, Geneva, Switzerland, 173 pp., 2021.
Van Loon, A. F., Kchouk, S., Matanó, A., Tootoonchi, F., Alvarez-Garreton, C., Hassaballah, K. E. A., Wu, M., Wens, M. L. K., Shyrokaya, A., Ridolfi, E., Biella, R., Nagavciuc, V., Barendrecht, M. H., Bastos, A., Cavalcante, L., De Vries, F. T., Garcia, M., Mård, J., Streefkerk, I. N., Teutschbein, C., Tootoonchi, R., Weesie, R., Aich, V., Boisier, J. P., Di Baldassarre, G., Du, Y., Galleguillos, M., Garreaud, R., Ionita, M., Khatami, S., Koehler, J. K. L., Luce, C. H., Maskey, S., Mendoza, H. D., Mwangi, M. N., Pechlivanidis, I. G., Ribeiro Neto, G. G., Roy, T., Stefanski, R., Trambauer, P., Koebele, E. A., Vico, G., and Werner, M.: Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems, Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, 2024.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A Multiscalar Drought Index Sensitive to Global Warming, Journal of Climate, 23, 1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010.
Wilhite, D. A. and Glantz, M. H.: Understanding: the Drought Phenomenon: The Role of Definitions, Water International, 10, 111–120, https://doi.org/10.1080/02508068508686328, 1985.
Xu, Y., Wang, L., Ross, K., Liu, C., and Berry, K.: Standardized Soil Moisture Index for Drought Monitoring Based on Soil Moisture Active Passive Observations and 36 Years of North American Land Data Assimilation System Data: A Case Study in the Southeast United States, Remote Sensing, 10, 301, https://doi.org/10.3390/rs10020301, 2018.
Yevjevich, V. M.: An objective approach to definitions and investigations of continental hydrologic droughts, Colorado State University Fort Collins, CO, USA, http://hdl.handle.net/10217/61303 (last access: 20 August 2024), 1967.
Short summary
Severe droughts have increasingly impacted water supply, farming, and forestry in Sweden. This study examines how meteorological, agricultural, and hydrological droughts differ and how they have changed over time and across regions. The results indicate drier conditions in central and south-eastern Sweden, while northern regions show a tendency toward wetter conditions. These findings can inform climate services and support decision-making for drought preparedness and climate adaptation.
Severe droughts have increasingly impacted water supply, farming, and forestry in Sweden. This...
Altmetrics
Final-revised paper
Preprint