Articles | Volume 25, issue 10
https://doi.org/10.5194/nhess-25-3713-2025
https://doi.org/10.5194/nhess-25-3713-2025
Research article
 | 
01 Oct 2025
Research article |  | 01 Oct 2025

An ensemble random forest model for seismic energy forecasting

Sukh Sagar Shukla, Jaya Dhanya, Praveen Kumar, Priyanka, and Varun Dutt

Related authors

Addressing class imbalance in soil movement predictions
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024,https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary

Cited articles

Ader, T., Avouac, J.-P., Liu-Zeng, J., Lyon-Caen, Bollinger, L., Galetzka, J., Genrich, J., Thomas, M., Chanard, K., Sapkota, S. N., Rajaure, S., Shrestha, P., Ding, L., and Flouzat, M.: Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard, J. Geophys. Res.-Sol. Ea., 117, B04403, https://doi.org/10.1029/2011JB009071, 2012. a
Aha, D. W., Kibler, D., and Albert, M. K.: Instance-based learning algorithms, Mach. Learn., 6, 37–66, 1991. a
Ahmed, F., Akter, S., Rahman, S. M., Harez, J. B., Mubasira, A., and Khan, R.: Earthquake magnitude prediction using machine learning techniques, in: 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), Gwalior, India, 14–16 March 2024, IEEE, 2, 1–5, https://doi.org/10.1109/IATMSI60426.2024.10502770, 2024. a
Alavi, A. H. and Gandomi, A. H.: Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing, Comput. Struct., 89, 2176–2194, https://doi.org/10.1016/j.compstruc.2011.08.019, 2011. a
Al Banna, M. H., Taher, K. A., Kaiser, M. S., Mahmud, M., Rahman, M. S., Hosen, A. S., and Cho, G. H.: Application of artificial intelligence in predicting earthquakes: state-of-the-art and future challenges, IEEE Access, 8, 192880–192923, https://doi.org/10.1109/ACCESS.2020.3029859, 2020. a
Download
Short summary
Earthquakes are among the most disastrous natural calamities due to the release of accumulated strain energy from continuous tectonic movements. They have the potential to cause havoc in terms of both economic losses and loss of life. This paper presents a methodology to predict earthquakes in terms of seismic energy release globally using an ensemble machine learning technique, and then the approach is tested for one of the most seismically active regions of the world: the Western Himalayas.
Share
Altmetrics
Final-revised paper
Preprint