Articles | Volume 25, issue 10
https://doi.org/10.5194/nhess-25-3713-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3713-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An ensemble random forest model for seismic energy forecasting
Sukh Sagar Shukla
CORRESPONDING AUTHOR
School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India
Jaya Dhanya
School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India
Praveen Kumar
School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India
Priyanka
School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India
Varun Dutt
School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India
Related authors
No articles found.
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024, https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary
Short summary
Our study focuses on predicting soil movement to mitigate landslide risks. We develop machine learning models with oversampling techniques to address the class imbalance in monitoring data. The dynamic ensemble model with K-means SMOTE (synthetic minority oversampling technique) achieves high precision, high recall, and a high F1 score. Our findings highlight the potential of these models with oversampling techniques to improve soil movement predictions in landslide-prone areas.
Cited articles
Ader, T., Avouac, J.-P., Liu-Zeng, J., Lyon-Caen, Bollinger, L., Galetzka, J., Genrich, J., Thomas, M., Chanard, K., Sapkota, S. N., Rajaure, S., Shrestha, P., Ding, L., and Flouzat, M.: Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard, J. Geophys. Res.-Sol. Ea., 117, B04403, https://doi.org/10.1029/2011JB009071, 2012. a
Aha, D. W., Kibler, D., and Albert, M. K.: Instance-based learning algorithms, Mach. Learn., 6, 37–66, 1991. a
Ahmed, F., Akter, S., Rahman, S. M., Harez, J. B., Mubasira, A., and Khan, R.: Earthquake magnitude prediction using machine learning techniques, in: 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), Gwalior, India, 14–16 March 2024, IEEE, 2, 1–5, https://doi.org/10.1109/IATMSI60426.2024.10502770, 2024. a
Alavi, A. H. and Gandomi, A. H.: Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing, Comput. Struct., 89, 2176–2194, https://doi.org/10.1016/j.compstruc.2011.08.019, 2011. a
Al Banna, M. H., Taher, K. A., Kaiser, M. S., Mahmud, M., Rahman, M. S., Hosen, A. S., and Cho, G. H.: Application of artificial intelligence in predicting earthquakes: state-of-the-art and future challenges, IEEE Access, 8, 192880–192923, https://doi.org/10.1109/ACCESS.2020.3029859, 2020. a
Alpaydin, E.: Combining Pattern Classifiers: Methods and Algorithms (Kuncheva, L.I.; 2004) [book review], IEEE T. Neural Networ., 18, 964–964, https://doi.org/10.1109/TNN.2007.897478, 2007. a
Altay, G., Kayadelen, C., and Kara, M.: Model selection for prediction of strong ground motion peaks in Türkiye, Nat. Hazards, 120, 1443–1461, https://doi.org/10.1007/s11069-023-06252-y, 2023. a
Baker, J., Bradley, B., and Stafford, P.: Seismic hazard and risk analysis, Cambridge University Press, https://doi.org/10.1017/9781108425056, 2021. a
Banerjee, P. and Bürgmann, R.: Convergence across the northwest Himalaya from GPS measurements, Geophys. Res. Lett., 29, 30–1, https://doi.org/10.1029/2002GL015184, 2002. a
Bendick, R. and Bilham, R.: How perfect is the Himalayan arc?, Geology, 29, 791–794, https://doi.org/10.1130/0091-7613(2001)029<0791:HPITHA>2.0.CO;2, 2001. a
Bertolini, M., Mezzogori, D., Neroni, M., and Zammori, F.: Machine Learning for industrial applications: A comprehensive literature review, Expert Syst. Appl., 175, 114820, https://doi.org/10.1016/j.eswa.2021.114820, 2021. a
Bhatia, S., Kumar, M., and Gupta, H.: A probabilistic seismic hazard map of India and adjoining regions, Ann. Geophys.-Italy, 42, 1153–1164, https://www.annalsofgeophysics.eu/index.php/annals/article/view/3777 (last access: 20 November 2024), 1999. a
Bhattacharya, A., Vöge, M., Arora, M. K., Sharma, M. L., and Bhasin, R. K.: Surface displacement estimation using multi-temporal SAR interferometry in a seismically active region of the Himalaya, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 7, 184–197, https://doi.org/10.1080/17499518.2013.798185, 2013. a
Bilham, R.: Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential, Geological Society, London, Special Publications, 483, 423–482, https://doi.org/10.1144/SP483.16, 2019. a, b
Bilham, R. and Ambraseys, N.: Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000, Curr. Sci. India, 88, 1658–1663, 2005. a
Bilham, R., Larson, K., and Freymueller, J.: GPS measurements of present-day convergence across the Nepal Himalaya, Nature, 386, 61–64, https://doi.org/10.1038/386061a0, 1997. a
Bose, S., Das, K., and Arima, M.: Multiple stages of melting and melt-solid interaction in the lower crust: new evidence from UHT granulites of Eastern Ghats Belt, India, J. Miner. Petrol. Sci., 103, 266–272, https://doi.org/10.2465/jmps.080312, 2008. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a, b
Cho, Y., Khosravikia, F., and Rathje, E.: A comparison of artificial neural network and classical regression models for earthquake-induced slope displacements, Soil Dyn. Earthq. Eng., 152, 107024, https://doi.org/10.1016/j.soildyn.2021.107024, 2022. a
Choy, G. L. and Boatwright, J. L.: Global patterns of radiated seismic energy and apparent stress, J. Geophys. Res.-Sol. Ea., 100, 18205–18228, https://doi.org/10.1029/95JB01969, 1995. a
Cutler, A., Cutler, D. R., and Stevens, J. R.: Random forests, in: Ensemble machine learning: Methods and applications, edited by: Zhang, C. and Ma, Y., Springer, New York, NY, 157–175, https://doi.org/10.1007/978-1-4419-9326-7_5, 2012. a
Dasgupta, S., Narula, P., Acharyya, S., and Banerjee, J.: Seismotectonic atlas of India and its environs, Geological Survey of India, ISSN 02540436, 2000. a
De Gooijer, J. G. and Hyndman, R. J.: 25 years of time series forecasting, Int. J. Forecasting, 22, 443–473, https://doi.org/10.1016/j.ijforecast.2006.01.001, 2006. a
Derras, B., Bard, P. Y., and Cotton, F.: Towards fully data driven ground-motion prediction models for Europe, B. Earthq. Eng., 12, 495–516, https://doi.org/10.1007/s10518-013-9481-0, 2014. a, b
Dhanya, J. and Raghukanth, S. T. G.: Ground motion prediction model using artificial neural network, Pure Appl. Geophys., 175, 1035–1064, https://doi.org/10.1007/s00024-017-1751-3, 2018. a, b
Dhanya, J. and Raghukanth, S. T. G.: Neural network-based hybrid ground motion prediction equations for Western Himalayas and North-Eastern India, Acta Geophys., 68, 303–324, https://doi.org/10.1007/s11600-019-00395-y, 2020. a
Dhanya, J. and Raghukanth, S. T. G.: Probabilistic Fling Hazard Map of India and Adjoined Regions, J. Earthq. Eng., 26, 4712–4736, https://doi.org/10.1080/13632469.2020.1838969, 2022. a
Dhanya, J., Sreejaya, K. P., and Raghukanth, S. T. G.: Seismic recurrence parameters for India and adjoined regions, J. Seismol., 26, 1–25, https://doi.org/10.1007/s10950-022-10093-w, 2022. a
Dietterich, T.: An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization, Mach. Learn., 40, 139–157, https://doi.org/10.1023/A:1007607513941, 2000. a
Douglas, J.: Ground Motion Prediction Equations 1964–2021, Technical report, Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom, https://rapidn.jrc.ec.europa.eu/reference/152 (last access: 20 November 2024), 2021. a
Duin, R. P. W. and Tax, D. M. J.: Experiments with Classifier Combining Rules, in: Multiple Classifier Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 16–29, https://doi.org/10.1007/3-540-45014-9_2, ISBN 978-3-540-45014-6, 2000. a
Gade, M., Nayek, P. S., and Dhanya, J.: A new neural network-based prediction model for Newmark’s sliding displacements, B. Eng. Geol. Environ., 80, 385–397, https://doi.org/10.1007/s10064-020-01923-7, 2021. a
Ghaedi, K. and Ibrahim, Z.: Earthquake prediction, in: Earthquakes – Tectonics, Hazard and Risk Mitigation, edited by: Zouaghi, T., IntechOpen, 66, 205–227, https://doi.org/10.5772/65511, 2017. a
Hanks, T. C. and Kanamori, H.: A moment magnitude scale, J. Geophys. Res.-Sol. Ea., 84, 2348–2350, https://doi.org/10.1029/JB084iB05p02348, 1979. a
Hoerl, A. E. and Kennard, R. W.: Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12, 55–67, https://doi.org/10.1080/00401706.1970.10488634, 1970. a
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., and Liu, H. H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, P. Roy. Soc. Lond. A Mat., 454, 903–995, https://doi.org/10.1098/rspa.1998.0193, 1998. a
Hyndman, R. and Athanasopoulos, G.: Forecasting: Principles and Practice, OTexts, Australia, 2nd edn., ISBN 978-0-9875071-1-2, 2018. a
IMD (Indian Meteorological Department), https://riseq.seismo.gov.in/riseq/earthquake, last access: 1 January 2024. a
IS 1893-1: IS 1893 (Part 1): 2016 – Criteria for Earthquake Resistant Design of Structures, Part 1: General Provisions and Buildings, Bureau of Indian Standards (BIS), New Delhi, India, 2016. a
Ismail-Zadeh, A., Le Mouël, J.-L., Soloviev, A., Tapponnier, P., and Vorovieva, I.: Numerical modeling of crustal block-and-fault dynamics, earthquakes and slip rates in the Tibet-Himalayan region, Earth Planet. Sc. Lett., 258, 465–485, https://doi.org/10.1016/j.epsl.2007.04.006, 2007. a
Iyengar, R. N. and Raghukanth, S. T. G.: Intrinsic mode functions and a strategy for forecasting Indian monsoon rainfall, Meteorol. Atmos. Phys., 90, 17–36, https://doi.org/10.1007/s00703-004-0089-4, 2005. a
Jain, S. K.: Earthquake safety in India: achievements, challenges and opportunities, B. Earthq. Eng., 14, 1337–1436, https://doi.org/10.1007/s10518-016-9870-2, 2016. a
Jayalakshmi, S. and Raghukanth, S. T. G.: Finite element models to represent seismic activity of the Indian plate, Geosci. Front., 8, 81–91, https://doi.org/10.1016/j.gsf.2015.12.004, 2017. a
Jo, T.: Instance Based Learning, in: Machine Learning Foundations: Supervised, Unsupervised, and Advanced Learning, Springer, Cham, 93–115, https://doi.org/10.1007/978-3-030-65900-4_5, 2021. a
Kaushik, S., Choudhury, A., Sheron, P. K., Dasgupta, N., Natarajan, S., Pickett, L. A., and Dutt, V.: AI in healthcare: time-series forecasting using statistical, neural, and ensemble architectures, Frontiers in Big Data, 3, 4, https://doi.org/10.3389/fdata.2020.00004, 2020. a
Khattri, K.: Probabilities of occurrence of great earthquakes in the Himalaya, P. Indian As.-Earth, 108, 87–92, https://doi.org/10.1007/BF02840486, 1999. a
Khattri, K., Rogers, A., Perkins, D., and Algermissen, S.: A seismic hazard map of India and adjacent areas, Tectonophysics, 108, 93–134, https://doi.org/10.1016/0040-1951(84)90156-2, 1984. a
Kramer, S. L.: Geotechnical earthquake engineering, Pearson Education India, ISBN 0-13-374943-6, 1996. a
Kumar, P., Malik, J. N., Gahalaut, V. K., Yadav, R. K., and Singh, G.: Evidence of strain accumulation and coupling variation in the Himachal Region of NW Himalaya from short term geodetic measurements, Tectonics, 42, e2022TC007690, https://doi.org/10.1029/2022TC007690, 2023a. a
Kumar, P., Priyanka, P., Dhanya, J., Uday, K. V., and Dutt, V.: Analyzing the Performance of Univariate and Multivariate Machine Learning Models in Soil Movement Prediction: A Comparative Study, IEEE Access, 11, 62368–62381, https://doi.org/10.1109/ACCESS.2023.3287851, 2023b. a, b, c, d
Lavé, J., Yule, D., Sapkota, S., Basant, K., Madden, C., Attal, M., and Pandey, R.: Evidence for a great medieval earthquake (~ 1100 AD) in the central Himalayas, Nepal, Science, 307, 1302–1305, https://doi.org/10.1126/science.1104804, 2005. a
Li, Y. and Goda, K.: Risk-based tsunami early warning using random forest, Comput. Geosci., 179, 105423, https://doi.org/10.1016/j.cageo.2023.105423, 2023. a
Liritzis, I. and Tsapanos, T. M.: Probable evidence for periodicities in global seismic energy release, Earth Moon and Planets, 60, 93–108, https://doi.org/10.1007/BF00614377, 1993. a, b, c
Mignan, A. and Broccardo, M.: Neural network applications in earthquake prediction (1994–2019): Meta-analytic and statistical insights on their limitations, Seismol. Res. Lett., 91, 2330–2342, https://doi.org/10.1785/0220200021, 2020. a
Misra, A., Agarwal, K., Kothyari, G. C., Talukdar, R., and Joshi, G.: Quantitative geomorphic approach for identifying active deformation in the foreland region of central Indo-Nepal Himalaya, Geotectonics, 54, 543–562, https://doi.org/10.1134/S0016852120040093, 2020. a
Mousavi, S. M. and Beroza, G. C.: Evaluating the 2016 one-year seismic hazard model for the central and eastern United States using instrumental ground-motion data, Seismol. Res. Lett., 89, 1185–1196, https://doi.org/10.1785/0220170226, 2018. a
Mousavi, S. M. and Beroza, G. C.: Machine Learning in Earthquake Seismology, Annu. Rev. Earth Pl. Sc., 51, 105–129, https://doi.org/10.1146/annurev-earth-071822-100323, 2023. a
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., and Beroza, G. C.: Earthquake transformer – an attentive deep-learning model for simultaneous earthquake detection and phase picking, Nat. Commun., 11, 3952, https://doi.org/10.1038/s41467-020-17591-w, 2020. a
Nath, S. and Thingbaijam, K.: Probabilistic seismic hazard assessment of India, Seismol. Res. Lett., 83, 135–149, https://doi.org/10.1785/gssrl.83.1.135, 2012. a
Pairojn, P. and Wasinrat, S.: Earthquake Ground Motions Prediction in Thailand by Multiple Linear Regression Model, Electronic Journal of Geotechnical Engineering, 20.25, 12113–12124, 2015. a
Paolucci, R., Gatti, F., Infantino, M., Smerzini, C., Özcebe, A. G., and Stupazzini, M.: Broadband ground motions from 3D physics-based numerical simulations using artificial neural networks, B. Seismol. Soc. Am., 108, 1272–1286, https://doi.org/10.1785/0120170293, 2018. a
Parvez, I. A., Vaccari, F., and Panza, G. F.: A deterministic seismic hazard map of India and adjacent areas, Geophys. J. Int., 155, 489–508, https://doi.org/10.1046/j.1365-246X.2003.02052.x, 2003. a
Platt, J.: Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines, Tech. Rep. MSR-TR-98-14, Microsoft, https://www.microsoft.com/en-us/research/publication/sequential- minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/ (last access: 1 May 2024), 1998. a
Pyakurel, A., Dahal, B. K., and Gautam, D.: Does machine learning adequately predict earthquake induced landslides?, Soil Dyn. Earthq. Eng., 171, 107994, https://doi.org/10.1016/j.soildyn.2023.107994, 2023. a
Quinlan, J. R.: Learning with continuous classes, in: 5th Australian Joint Conference on Artificial Intelligence, Hobart, Tasmania, 16–18 November 1992, World Scientific, 92, 343–348, https://doi.org/10.1142/1897, 1992. a
Rajendran, C., Rajendran, K., Sanwal, J., and Sandiford, M.: Archeological and historical database on the medieval earthquakes of the central Himalaya: Ambiguities and inferences, Seismol. Res. Lett., 84, 1098–1108, https://doi.org/10.1785/0220130077, 2013. a
Re, M. and Valentini, G.: Ensemble Methods, in: Advances in Machine Learning and Data Mining for Astronomy, 563–593, ISBN 9781138199309, 2012. a
Reyes, J., Morales-Esteban, A., and Martínez-Álvarez, F.: Neural networks to predict earthquakes in Chile, Appl. Soft Comput., 13, 1314–1328, https://doi.org/10.1016/j.asoc.2012.10.014, 2013. a
Rezaei, H., Amjadian, A., Sebt, M., Askari, R., and Gharaei, A.: An ensemble method of the machine learning to prognosticate the gastric cancer, Ann. Oper. Res., 328, 151–192, https://doi.org/10.1007/s10479-022-04964-1, 2022. a
Ridzwan, N. S. M. and Yusoff, S. H. M.: Machine learning for earthquake prediction: a review (2017–2021), Earth Sci. Inform., 16, 1133–1149, https://doi.org/10.1007/s12145-023-00991-z, 2023. a
Saha, T. K., Pal, S., Talukdar, S., Debanshi, S., Khatun, R., Singha, P., and Mandal, I.: How far spatial resolution affects the ensemble machine learning based flood susceptibility prediction in data sparse region, J. Environ. Manage., 297, 113344, https://doi.org/10.1016/j.jenvman.2021.113344, 2021. a
Sarker, I. H.: Machine learning: Algorithms, real-world applications and research directions, SN Computer Science, 2, 160, https://doi.org/10.1007/s42979-021-00592-x, 2021. a
Schmidt, J., Marques, M. R., Botti, S., and Marques, M. A.: Recent advances and applications of machine learning in solid-state materials science, npj Comput. Mater., 5, 83, https://doi.org/10.1038/s41524-019-0221-0, 2019. a
Scordilis, E.: Empirical global relations converting MS and mb to moment magnitude, J. Seismol., 10, 225–236, https://doi.org/10.1007/s10950-006-9012-4, 2006. a
Seo, H., Kim, J., and Kim, B.: Machine-learning-based surface ground-motion prediction models for South Korea with low-to-moderate seismicity, B. Seismol. Soc. Am., 112, 1549–1564, https://doi.org/10.1785/0120210244, 2022. a
Sharma, V., Dhanya, J., Gade, M., and Sivasubramonian, J.: New generalized ANN-based hybrid broadband response spectra generator using physics-based simulations, Nat. Hazards, 116, 1879–1901, https://doi.org/10.1007/s11069-022-05746-5, 2023a. a, b
Sharma, Y., Pasari, S., Ching, K.-E., Verma, H., Kato, T., and Dikshit, O.: Interseismic slip rate and fault geometry along the northwest Himalaya, Geophys. J. Int., 235, 2694–2706, https://doi.org/10.1093/gji/ggad384, 2023b. a
Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., and Murthy, K. R. K.: Improvements to the SMO algorithm for SVM regression, IEEE T. Neural Networ., 11, 1188–1193, https://doi.org/10.1109/72.870050, 2000. a, b
Sreejaya, K. P., Raghukanth, S. T. G., Gupta, I. D., Murty, C. V. R., and Srinagesh, D.: Seismic hazard map of India and neighbouring regions, Soil Dyn. Earthq. Eng., 163, 107505, https://doi.org/10.1016/j.soildyn.2022.107505, 2022. a
Sreenath, V., Basu, J., and Raghukanth, S.: Ground motion models for regions with limited data: Data-driven approach, Earthq. Eng. Struct. D., 53, 1363–1375, https://doi.org/10.1002/eqe.4075, 2024. a
Sun, Z., Sandoval, L., Crystal-Ornelas, R., Mousavi, S. M., Wang, J., Lin, C., Cristea, N., Tong, D., Carande, W. H., Ma, X., Rao, Y., Bednar, J. A., Tan, A., Wang, J., Purushotham, S., Gill, T. E., Chastang, J., Howard, D., Holt, B., Gangodagamage, C., Zhao, P., Rivas, P., Chester, Z., Orduz, J., and John, A.: A review of earth artificial intelligence, Comput. Geosci., 159, 105034, https://doi.org/10.1016/j.cageo.2022.105034, 2022. a
Tan, M. L., Becker, J. S., Stock, K., Prasanna, R., Brown, A., Kenney, C., Cui, A., and Lambie, E.: Understanding the social aspects of earthquake early warning: A literature review, Frontiers in Communication, 7, 939242, https://doi.org/10.3389/fcomm.2022.939242, 2022. a, b
Tiampo, K. F. and Shcherbakov, R.: Seismicity-based earthquake forecasting techniques: Ten years of progress, Tectonophysics, 522, 89–121, https://doi.org/10.1016/j.tecto.2011.08.019, 2012. a
USGS (U.S. Geological Survey): Search Earthquake Catalog, https://earthquake.usgs.gov/earthquakes/search/, last access: 1 January 2024. a
Wiemer, S. and Wyss, M.: Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan, B. Seismol. Soc. Am., 90, 859–869, https://doi.org/10.1785/0119990114, 2000. a, b, c
Wu, Z. and Huang, N. E.: A study of the characteristics of white noise using the empirical mode decomposition method, P. Roy. Soc. Lond. A Mat., 460, 1597–1611, https://doi.org/10.1098/rspa.2003.1221, 2004. a, b
Wu, Z. and Huang, N. E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method, Advances in adaptive data analysis, 1, 1–41, https://doi.org/10.1142/S1793536909000047, 2009. a
Xie, Y., Ebad Sichani, M., Padgett, J. E., and DesRoches, R.: The promise of implementing machine learning in earthquake engineering: A state-of-the-art review, Earthq. Spectra, 36, 1769–1801, https://doi.org/10.1177/8755293020919419, 2020. a, b
Yenier, E., Erdoğan, O., and Akkar, S.: Empirical relationships for magnitude and source-to-site distance conversions using recently compiled Turkish strong-ground motion database, in: The 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008, 1–8, 2008. a
Short summary
Earthquakes are among the most disastrous natural calamities due to the release of accumulated strain energy from continuous tectonic movements. They have the potential to cause havoc in terms of both economic losses and loss of life. This paper presents a methodology to predict earthquakes in terms of seismic energy release globally using an ensemble machine learning technique, and then the approach is tested for one of the most seismically active regions of the world: the Western Himalayas.
Earthquakes are among the most disastrous natural calamities due to the release of accumulated...
Altmetrics
Final-revised paper
Preprint