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Abstract. Seismic energy forecasting is critical for hazard
preparedness, but current models have limits in accurately
predicting seismic energy changes. This paper fills that gap
by introducing a novel ensemble-based random forest frame-
work for seismic energy forecasting. Building on a previ-
ously established methodology, the global energy time se-
ries is decomposed into intrinsic mode functions (IMFs) us-
ing ensemble empirical mode decomposition for better rep-
resentation. Following this approach, we split the data into
stationary (IMF1) and non-stationary (sum of IMF2–IMF6)
components for modelling. We acknowledge the inadequacy
of IMFs in capturing seismic energy dynamics, notably in
anticipating the final values of the time series. To overcome
this limitation, the yearly seismic energy time series and the
stationary and non-stationary parts are also fed as inputs to
the developed models. In this study, we employ the support
vector machine (SVM), random forest (RF), instance-based
learning (IBk), ridge regression (RR), and multi-layer per-
ceptron (MLP) algorithms for the modelling. Furthermore,
the five models discussed above are suitably employed in
a stacked regression ensemble using random forest as the
meta-learner to arrive at the final predictions. The root mean
squared error (RMSE) obtained in the training and testing
phases of the validation model is 0.127 and 0.134, respec-
tively. It is observed that the performance of the developed
ensemble model is superior to those existing in the literature.
Further, the developed algorithm is employed for the seismic
energy prediction in the active Western Himalayan region for
a comprehensively compiled catalogue, and the mean fore-
casted seismic energy for year 2024 is 7.21× 1014 J. This
work is a pilot project that aims to create a robust, scal-
able framework for forecasting seismic energy release glob-
ally and regionally. The findings of our investigation demon-
strate the promise of the ensemble approach in delivering re-

liable seismic energy forecast, which can help with appropri-
ate hazard preparedness.

1 Introduction

Earthquakes are among the most disastrous natural calami-
ties due to the release of accumulated strain energy from
continuous tectonic movements. Like other natural disas-
ters, they can cause destruction both in financial terms and
through loss of life (Jain, 2016). The devastating potential
of earthquakes is increased by their fundamentally unpre-
dictable character due to both aleatory and epistemic un-
certainties (Kramer, 1996; Baker et al., 2021). Because the
problem at hand is unpredictable, creating an accurate fore-
casting model is a unique challenge. There have been several
attempts by seismologists to quantify the activity of regions
based on several seismicity indicators. Some of the studies
for the Himalayan region involved performing a palaeoseis-
mic study (Lavé et al., 2005; Rajendran et al., 2013), us-
ing statistical inferences (Bilham and Ambraseys, 2005), tak-
ing Global Positioning System (GPS) measurements (Baner-
jee and Bürgmann, 2002; Ader et al., 2012), carrying out
numerical calculations (Ismail-Zadeh et al., 2007; Jayalak-
shmi and Raghukanth, 2017), using satellite-imagery-based
data (Bhattacharya et al., 2013; Misra et al., 2020), and per-
forming Global Navigation Satellite System (GNSS) studies
(Sharma et al., 2023b; Kumar et al., 2023a). However, the
inadequacy in precisely monitoring stress changes, pressure,
material variability, and temperature variation deep beneath
the Earth’s crust using scientific instruments leads to a lack
of comprehensive data regarding accurate seismic character-
istics. Subsequently, this lack of information has contributed
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to the uncertainty in earthquake occurrence, which has re-
sulted in major risks to life and property. Hence, a robust
quantification approach is essential considering the increas-
ing vulnerability of the active regions due to developmental
activities (Bilham, 2019). However, the variability in seismic
behaviour, the worldwide occurrence of earthquakes, and the
paucity of historical data all hamper predictive modelling.
The ethical and practical consequences of delivering earth-
quake forecasts, the diversity in earthquake magnitudes, and
the differences between human and geological timelines all
add to the challenges in achieving reliable earthquake predic-
tion (Mignan and Broccardo, 2020; Sun et al., 2022).

While progress is being made, the emphasis in earthquake
research has turned toward establishing effective earthquake
forecast models and early warning systems, understanding
seismic risks, and improving preparation to lessen the effects
of these deadly occurrences (Bose et al., 2008; Tiampo and
Shcherbakov, 2012; Mousavi and Beroza, 2018; Mousavi et
al., 2020; Tan et al., 2022). Nevertheless, with the advance-
ments in field instrumentation, once an event occurs, we have
attained the knowledge to estimate and record its informa-
tion, like magnitude, location, extent of ground shaking, etc.,
immediately (USGS, 2024; IMD, 2024). The robustness of
this data has also improved significantly over the years. An
intriguing question here is as follows: is it possible to pre-
dict and be better prepared for a forthcoming event using this
information? This study tackles this problem by compiling
an extensive seismic dataset and building predictive models
using state-of-the-art machine learning (ML) algorithms.

ML has evolved so much that its potential is widely ex-
plored to address numerous real-world problems (Schmidt
et al., 2019; Kaushik et al., 2020; Sarker, 2021; Bertolini
et al., 2021; Kumar et al., 2023b). Appropriate data pro-
cessing using advanced ML algorithms has led to successful
prediction models. However, ML algorithms have only re-
cently gained popularity in engineering seismology (Xie et
al., 2020; Mousavi and Beroza, 2023). The most comprehen-
sive application is in developing efficient ground motion pre-
diction equations (GMPEs) (Alavi and Gandomi, 2011; Der-
ras et al., 2014; Dhanya and Raghukanth, 2018; Gade et al.,
2021; Seo et al., 2022; Sreenath et al., 2024). Moreover, sev-
eral machine learning techniques have been explored, among
which multi-layer perceptrons (MLPs) are the most widely
used model in earthquake engineering applications (Xie et
al., 2020). Raghukanth et al. (2017) utilized a similar model
for suitably combining stationary and non-stationary parts
of energy series to forecast seismic energy. The MLP tech-
nique is also widely used in developing ground motion pre-
diction equations, as evidenced by the works of Derras et
al. (2014), Dhanya and Raghukanth (2018, 2020), and Dou-
glas (2021). In another direction, Paolucci et al. (2018) pro-
posed a simple MLP model that should efficiently generate
broadband ground motions. Sharma et al. (2023a) improved
the model by incorporating source, path, and site character-
istics. Another architecture, i.e. linear regression (LR), has

also been applied in various seismological studies due to its
simplicity and efficiency. Pairojn and Wasinrat (2015) used
LR for ground motion prediction in Thailand, while Cho et
al. (2022) compared artificial neural networks (ANNs) and
LR for predicting earthquake-induced slope displacement.
The random forest (RF) technique has similarly motivated re-
searchers across different fields, including seismology. Apart
from the standard linear regression, studies have also used
ridge regression for earthquake forecast problems (Ahmed et
al., 2024). Pyakurel et al. (2023) utilized five supervised al-
gorithms, including RF, to predict earthquake-induced land-
slides for the 2015 Gorkha earthquake. Additionally, Li and
Goda (2023) extended the application of RF to tsunami early
warning systems and loss forecasting. Furthermore, support
vector machines (SVMs) with the optimized version named
sequential minimal optimization for regression (SMOreg),
as proposed by Shevade et al. (2000), are widely used for
parameter learning. This approach has been applied to vari-
ous natural hazard contexts, such as flood susceptibility map-
ping (Saha et al., 2021), ground motion prediction equations
(Altay et al., 2023), and landslide monitoring (Kumar et al.,
2023b). Similar to SMOreg, instance-based learning is also
well explored in earthquake prediction problems, as its relia-
bility and accuracy are owed to the algorithm’s resistance to
noise and outliers, as well as its versatility in the use of dis-
tance measures. Its applicability in seismic prediction is well
demonstrated by Reyes et al. (2013), Ghaedi and Ibrahim
(2017), Al Banna et al. (2020), and Ridzwan and Yusoff
(2023).

Apart from the individual machine learning techniques,
ensemble learning is a mature and widely adopted method-
ology in the ML literature, renowned for averaging several
models to enhance prediction accuracy and generality (Di-
etterich, 2000; De Gooijer and Hyndman, 2006; Alpaydin,
2007). Ensemble models combine different base learners
based on techniques such as bagging, boosting, and stacking
and thus maximize the variance in data, reduce overfitting,
and improve model reliability. They have been successful
across a variety of applications, including medical diagnosis
and climate modelling to financial forecasting (Re and Valen-
tini, 2012; Tan et al., 2022; Rezaei et al., 2022). Although ex-
tensively used, their use in seismic energy forecasting is still
not well exploited, making the current research a timely and
new addition in the geophysical hazard field.

This research is based on the success of ensemble learning
with the application of a stacked ensemble framework that is
specific to the challenge of seismic energy forecasting. Even
though ensemble models are extensively applied in other ar-
eas such as healthcare, climate, and finance, their niche use
in seismic energy prediction remains limited and largely un-
tapped. The predictions of five individual machine learning
models – MLP, RF, LR, SMOreg, and instance-based learn-
ing with the parameter k (IBk) – are combined and stacked
in this research through a random forest meta-learner. In this
setup, the final ensemble model uses the random forest as
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a meta-learner that synthesizes predictions from these indi-
vidual models, each trained using domain-informed design
choices and preprocessing. As such, the RF model mimics a
consensus-based expert system, combining diverse perspec-
tives across learning paradigms to enhance forecasting ro-
bustness.

The improved long-term seismic energy prediction ca-
pability – essential for forward-looking hazard mitigation
– is the main contribution of this work. The proposed
model shows versatility across diverse tectonic environments
by working well for both global and Western Himalayan
datasets. The objective of this project is to apply stacked en-
semble learning to develop a reliable model for annual seis-
mic energy predictions. The empirical mode decomposition
(EMD) method is applied to decompose global seismic en-
ergy time series, considering stationary and non-stationary
components as inputs. The model is compared to existing
research, and its predictive ability is established via a case
study for the Western Himalayan region.

2 Global seismic energy (GSE) time series

Making accurate earthquake predictions requires a thor-
ough earthquake catalogue. We have used two global earth-
quake catalogues for this study. Raghukanth et al. (2017)
used the ISC-GEM catalogue (https://www.isc.ac.uk/, last
access: 20 November 2024) as the primary resource. In
the current study, the model construction, comparison, and
validation of the suggested approach are done using this
catalogue. A more thorough and current worldwide earth-
quake catalogue (up to 2023) was created using the USGS
seismic database (https://earthquake.usgs.gov/earthquakes/
search/, last access: 20 November 2024) and the ISC-GEM
catalogue after the methodology was verified using these
data. For our analysis, we used the same inputs as those
mentioned in Raghukanth et al. (2017). We provide a brief
explanation of the processing that goes into creating the fi-
nal time series that is used for modelling in order to im-
prove our understanding of the data. The validation cata-
logue, which is the worldwide earthquake catalogue that was
obtained from Raghukanth et al. (2017), includes data from
1900 to 2015, totalling 24 375 occurrences with a minimum
magnitude ofMw 4.98. The new global catalogue created for
this study, which will be referred to simply as the global cat-
alogue, is compiled from both USGS and ISC-GEM sources
and contains data from 1900 to 2023. Duplicates were thor-
oughly examined and eliminated because the data were ob-
tained from two distinct sources. There were 988 812 dis-
tinct occurrences with a minimum magnitude of 1.09 after
duplicate events were removed. All reported event magni-
tudes were converted to moment magnitude (Mw) using em-
pirical relationships from Scordilis (2006) and Yenier et al.
(2008) to guarantee magnitude uniformity across datasets.
We next determined the magnitude of completeness (Mc)

for both catalogues, which is the lowest magnitude above
which earthquakes are consistently documented. According
to Raghukanth et al. (2017), using the maximum curvature
approach (Wiemer and Wyss, 2000), Mc was determined to
be 6.4 for the validation catalogue (Fig. S1a in the Supple-
ment). Using the MATLAB-based program ZMAP version
7.1,Mc was calculated to beMw 4.9 for the global catalogue,
as seen in Fig. 1a.

Furthermore, the global catalogue’s year of completeness
was established using the Stepp (1973) approach, showing
that the catalogue is complete starting in 1953 (Fig. 1b). Fig-
ure S1b and c display the distribution of events from the full
validation catalogue (4619 events), while Fig. 1c shows the
full global catalogue with 217 751 events. Because partial
representation increases statistical bias, events with magni-
tudes<Mc were not included in the analysis. Furthermore,
the energy contribution is dominated by large occurrences
because the connection between seismic energy and earth-
quake magnitude is logarithmic. According to Eq. (1), for
instance, the seismic energy associated with a Mw 3 event
is 5.0596× 108 J, but the seismic energy associated with a
Mw 5 event is 5.0596× 1011 J. This indicates that it takes
roughly 1000 smallerMw 3 events to equal the energy output
of a single Mw 5 event. Therefore, from a hazard standpoint,
smaller-magnitude events are not of major interest and do
not considerably contribute to the total seismic energy. The
1960 Mw 9.6 Valdivia event is the greatest of the four major
earthquakes (Mw≥ 9) listed in the database. Instead of using
monthly or weekly aggregation, which can result in decep-
tive zeros because of few occurrences in smaller windows,
annual accumulation was employed to generate the seismic
energy time series. Following Hanks and Kanamori (1979),
moment magnitudes (Mw) were first transformed into seis-
mic moments (Mo). Choy and Boatwright (1995) then esti-
mated seismic energy (SE) using the relation:

SE= 1.6× 10−5Mo, where Mo = 101.5×(Mw+6). (1)

For both catalogues, annual seismic energy time series were
computed using this formula. Figure 2a for the global cata-
logue and Fig. S2a for the validation catalogue display the
generated graphs. In the energy time history, significant oc-
currences like the earthquakes in Japan in 2011, Alaska in
1964, Sumatra in 2004, and Valdivia in 1960 emerge as
peaks. The seismic energy was also presented in logarith-
mic form, as seen in Fig. 2b for the global catalogue and
Fig. S2b for the validation catalogue, because sudden shifts
in the time series can skew scale interpretation. The result-
ing time series is non-Gaussian and non-stationary, accord-
ing to Raghukanth et al. (2017). As shown in the sections
that follow, the signal was broken down into stationary and
non-stationary components using ensemble empirical mode
decomposition in order to better capture trends and cycles.
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Figure 1. (a) Magnitude of completeness. (b) Year of completeness using the Stepp (1973) approach. (c) Distribution of the events from the
complete global earthquake catalogue.

2.1 Mode decomposition of GSE

The final seismic energy time series were split into orthog-
onal modes following the empirical mode decomposition
(EMD) technique proposed by Huang et al. (1998). The ba-
sic functions, termed as intrinsic modes, were obtained fol-
lowing an iterative procedure on the data directly without
any predefined functional form. Hence, the corresponding
methodology is reported to be more adaptive to the features
in the data. Furthermore, to avoid the issue of mode mixing
in conventional EMD, Wu and Huang (2009) proposed en-
semble EMD (EEMD), where finite white noise is added to
the data while performing decomposition. The basic steps in
the mode extraction involve (1) adding finite white noise to
the data, (2) using a cubic spline to construct lower and up-
per envelopes connecting consecutive peaks as the respective
sides, (3) estimating at each time step the average of positive
and negative envelopes and then subtracting that from the
data from step 1, (4) repeating steps 2–3 with the data from
step 3 until we obtain the IMF (the time history where the

number of extrema and the zero-crossing differ by one and
the mean is zero), (5) subtracting the corresponding value
from the time history in step 1 once the first IMF (IMF1) is
extracted, and (6) further following steps 2–4 to extract the
next IMF. This is repeated until there are no zero-crossings
left in the data. To perform ensemble empirical mode decom-
position, steps 1–6 are repeated multiple times by adding dif-
ferent white noise, and the mean of IMFs at each level is
identified as the final mode. The observations that served as
the foundation for the above strategy are as follows: (1) if
we take an average of white noise in a time domain, it can-
cels out in the ensemble mean. Hence, in the final noise-
added ensemble signal, when averaged, only the signal sur-
vives, not the noise. (2) To drive the ensemble to exhaust
all viable solutions, finite, not infinitesimal, amplitude white
noise is required. Finite-magnitude noise causes the distinct
scale signals to reside in the corresponding IMF, as man-
dated by the dyadic filter banks, and therefore improves the
meaning of the final ensemble mean. For the data of the log
seismic energy time series for the validation and global cata-
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Figure 2. (a) Estimated global seismic energy (J) time series from
the global catalogue used in developing the models. (b) Log-scaled
global seismic energy time series (ln(GSE)). (c) Intrinsic modes es-
timated from ln(GSE) by performing ensemble empirical mode de-
composition (EEMD).

logues shown in Figs. S2b and 2b, we were able to extract six
IMFs each following the described procedure. These IMFs
are mostly uncorrelated and orthogonal. Also, for the phys-
ical interpretation of IMFs, various methods exist in the lit-
erature to estimate the periodicity of time series, including
the instantaneous frequency method and Fourier-based ap-
proaches. The resulting IMFs in the present study are com-
parable to sine/cosine waves. Hence, counting the number of
extremes in an IMF allows for easy estimation of the time
period. Table 1 lists the periods of all six IMFs in log-scaled
seismic energy time series from both catalogues. Table 1 also
includes an estimate of the percentage variance for all IMFs,
which is a statistical parameter, calculated as the ratio of the
variance of each IMF to the variance of the data (Eq. 2). The
%(variance) denotes the contribution of each IMF to annual
earthquake energy release. It can be noted that IMF1 consti-
tutes the maximum variance of the time series and that IMF6
represents the non-stationary trend in the data.

Pvarn =
Var

(
XIMFn

)
Var(Xdata)

× 100 (2)

Here, Pvarn is the % variance of the nth IMF.

Moreover, the IMFs are simple and well behaved when
compared to the original seismic energy data; hence, they
can capture the physics of the occurrence of annual seis-
mic energy when used as the input instead of complex seis-
mic energy time series. Considering more about the physi-
cal interpretation of the IMF study performed by Liritzis and
Tsapanos (1993), they calculated the periodicity of global
shallow seismic events from conventional approaches like
the Fourier method, and they determined the dominant pe-
riods to be 3(±0.5), 4.5, 6.5, 8–9, 14–20, and 31–34 years.
IMF1, being the predominant period, with a contribution of
around 50 %–60 % to the annual seismic energy release, has
a mean period of 3 years, which was also reported by Liritzis
and Tsapanos (1993) as one of the periods. IMF2 having a
period in the range of 6 to 6.29 years also conforms with the
period of 6.5 years reported by Liritzis and Tsapanos (1993).
IMF3, with a period ranging from 11 to 15.5 years, is in the
range of the 11-year sunspot cycle reported by Raghukanth et
al. (2017), who also found out that annual seismic energy re-
lease follows the sunspot period with a 2-year delay, and the
standardized correlation coefficient between IMF3 and the
sunspot cycle is 0.3024, which is significant. IMF4 and IMF5
have 6 %–10 % and 1 %–6 % contributions to the annual seis-
mic energy, respectively. Also, Wu and Huang (2004) pro-
posed a methodology to assess the importance of IMFs by
comparing them with the intrinsic mode functions of white
noise. We performed the suggested test on the IMFs obtained
by using the log seismic energy from the updated global cat-
alogue, and the results are presented in Fig. 3. For pure noise,
the energy and associated periods of IMFs will fluctuate lin-
early on the log–log plot, with all IMFs falling inside the con-
fidence zone. It can be clearly inferred from Fig. 3 that all five
IMFs (excluding IMF6, which shows the trend) lie within the
confidence interval, confirming that the IMFs are the signal.
Hence, adopting the IMFs to forecast seismic energy instead
of the complex seismic energy time series itself will better
capture the underlying physics. For the forecast of seismic
energy, autoregressive modes can be adopted. Thus, the lin-
ear and non-linear parts are separated, and IMF1 is modelled
separately from the remaining IMFs, as proposed by Iyen-
gar and Raghukanth (2005) and Raghukanth et al. (2017).
The corresponding IMF1 to IMF6 are shown in Fig. 2c for
the global catalogue (corresponding figures for the validation
catalogue are present in Fig. S2c and d). The correlation of
the IMFs obtained by utilizing the log global time series of
the global catalogue is shown in Fig. 4, from which it is ev-
ident that all the IMFs are almost orthogonal. In the present
study, this information was suitably incorporated into more
advanced machine learning algorithms to take one step ahead
of the seismic energy forecast. A detailed description of the
ML algorithms and the corresponding implementation is dis-
cussed further.
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Table 1. Period observed and the variance captured by the IMFs obtained for log-scaled seismic energy time series.

IMFs Validationa Globalb Western Himalayas

Period (Years) %(Variance) Period (Years) %(Variance) Period (Years) %(Variance)

IMF1 2.95 49.18 3.05 59.82 2.76 74.16
IMF2 6.29 7.02 6 15.39 8.29 16.57
IMF3 11.55 5.61 15.5 6.01 10.6 4.50
IMF4 31.00 6.43 34 10.26 26 2.12
IMF5 91 6.60 56 1.40 – 1.97
IMF6 – 25.80 – 7.69

a Validation catalogue is the catalogue sourced from Raghukanth et al. (2017).
b Updated global catalogue prepared in the present study.

Figure 3. White noise test estimated using the procedure proposed
by Wu and Huang (2004) for log seismic energy IMFs obtained
from the global catalogue. The black line represents the expected
line for white noise, and the dotted blue line shows the 95 % confi-
dence band.

3 Methodology

There are numerous advanced machine learning techniques
available in the literature. Some of the widely used variants
include artificial neural networks (ANNs), decision trees,
instance-based learning, classification, and regression mod-
els (Bishop, 2006). In this study, we attempted to include
each of these flavours by including one representative algo-
rithm for the analysis and further combining them using a
suitable ensemble formulation. Furthermore, for seismic en-
ergy forecasting, four input parameters are employed, which
are log seismic energy, i.e. the original time series data for
log seismic energy, denoted as “S”; the first intrinsic mode
function IMF1, denoted as “Z”; the sum of the remaining in-
trinsic mode functions, i.e.

∑n
i=2IMFi , denoted as “Y ”; and

Figure 4. Correlation of the intrinsic mode functions obtained from
the global seismic energy time series of global catalog.

the year of occurrence of seismic energy. Furthermore, the
description of each model utilized in the study is provided.

3.1 Multi-layer perceptron

The multi-layer perceptron (MLP) is part of an ANN
(Bishop, 2006). A typical MLP architecture constitutes three
layers, i.e. input, hidden, and output, mutually interconnected
with weights. The typical functional form of an MLP from a
single layer can be represented as

ŷ = f (Wx+ b), (3)

where ŷ is the output from the layer, f the activation func-
tion, W the weights, x the vector of inputs corresponding to
the values at the previous layer, and b the bias. The number
of hidden layers, nodes, and activation functions (e.g. linear,
logistic, tanh, ReLU) depends on the non-linearity between
predicted and predictor variables (Kumar et al., 2023b). Once
the architecture is finalized, the parameters are estimated us-
ing back-propagation with the mean squared error (MSE) or
mean absolute error (MAE) as the cost function. Our MLP
uses four input features: log seismic energy (S), IMF1 (Z),
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Figure 5. (a) Log-scaled global seismic energy time series (S) from
the global catalogue, used as one of the inputs to the individual ma-
chine learning models. (b) First intrinsic mode function (Z) esti-
mated from the log global seismic energy of the global catalogue,
used as input to the individual models. (c) Summation of the second-
to-last intrinsic mode functions obtained for the log global seismic
energy of the global catalogue.

∑n
i=2IMFi (Y ), and the year of occurrence of seismic en-

ergy. The hyperparameters for the model were optimized by
varying the parameters as shown in Table 2. In time series
forecasting, the concept of lag values is fundamental. Lag
values refer to the number of past observations used to pre-
dict future values in a time series (Surakhi et al. 2021). By
incorporating information from previous time points, mod-
els can capture temporal dependencies and trends, leading to
more accurate forecasts. The lag values were varied from 1 to
15, the number of neurons in hidden layers from 1 to 15, the
learning rate (L) from 0.1 to 1.0, momentum (M) from 0.1 to
1.0, and the number of epochs from 100 to 2000. A batch size
of 100 was used for both the global and Himalayan models
for consistency. For the Himalayan dataset (48 samples), this
effectively resulted in full-batch training, which is appropri-
ate given the small data size.

3.2 Ridge regression (RR)

Ridge regression (RR) is one of the widely used statistical
machine learning models (Hoerl and Kennard, 1970). It ex-
tends linear regression by introducing an L2 regularization
term to penalize large coefficients, thereby improving gen-
eralization and reducing overfitting, especially in cases of
multicollinearity or small datasets. The model establishes a
linear relationship between the target variable and the input
features, and the general form can be expressed as:

ŷ = β0+β1x1+β2x2+ . . .+βnxn+ ε, (4)

where y is the target variable, ŷ is the predicted value,
x1, . . .,xn are the input variables, β0 is the intercept,

β1, . . .,βn are the regression coefficients, n is the number of
features, p is the total number of data points, and ε is the
error term.

In ridge regression, the coefficients βi are estimated by
minimizing a regularized loss function:

min
β

{
p∑
i=1

(
yi − ŷi

)2
+ λ

n∑
j=1

β2
j

}
. (5)

Here, λ is the ridge regularization parameter that controls the
strength of the penalty. The unknown parameters β0, . . .,βn
are estimated using the gradient descent algorithm with the
mean squared error (MSE) as the cost function.

MSE=
1
p

p∑
i=1

(
yi − ŷi

)2 (6)

Based on the number of input variables, there are two com-
mon variants of linear models: single-variable linear regres-
sion and multiple-variable linear regression.

RR architectures are employed for developing the forecast
model. The inputs are the same as for the MLP. The lag val-
ues were varied from 1 to 15, which resulted in transformed
input parameters from the higher order of the time variable
and the product of time and different lagged variables. At-
tribute selection methods, such as the M5 method introduced
by Quinlan (1992) and the Greedy method, can be used to
reduce the number of attributes. In this work, the M5 method
was used, retaining only the time steps from input variables
that significantly affect the results for regression. The hyper-
parameter “ridge” was varied from 1.0× 10−6 to 1.0× 10−9,
and the batch size was consistently set to 100, as shown in
Table 2.

3.3 Random forest

Random forest (RF) is a supervised learning model used for
classification and regression (Breiman, 2001). It combines
multiple decision trees to improve predictive accuracy (Cut-
ler et al., 2012). A decision tree has decision nodes (with
branches) and leaf nodes (with no branches). Trees start from
a root node containing the entire dataset, splitting at each
node based on attribute selection measures (ASMs) like in-
formation gain or the Gini index. Pruning removes unneces-
sary nodes to prevent overfitting.

RF addresses overfitting by building multiple decision
trees on different data subsets and averaging their predic-
tions. This ensemble of uncorrelated trees uses bootstrap
sampling and feature randomness. RFs have lower compu-
tational costs, handle missing data, and can manage larger
datasets efficiently. Randomness in tree generation is con-
trolled by a fixed seed (set to 1). The number of trees (it-
erations) was varied from 30 to 120, and tree depth is un-
limited (depth of 0). Features at each split are calculated
by (log2(N)+ 1), where N is the number of predictors
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Table 2. Combinations considered for the optimization of hyperparameters in the model architecture.

Model Parameter Parameter range

Global Western Himalayas

MLP Lag 1 to 15 1 to 12
Hidden layers 1, 2 1, 2
Neuron in hidden layers 1 to 15 1 to 15
Learning rate 0.1 to 1.0 0.1 to 1.0
Momentum 0.1 to 1.0 0.1 to 1.0
Batch size 100 100
Epochs 100 to 2000 100 to 2000

Ridge regression Lag 1 to 15 1 to 12
Ridge 1.0× 10−6 to 1.0× 10−9 1.0× 10−6 to 1.0× 10−9

Batch size 100 100

Random forest Lag 1 to 15 1 to 12
Batch size 100 100
Bag size 100 100
Number of trees 30 to 120 30 to 120

SMOreg Lag 1 to 15 1 to 12
Kernel Poly, puk, RBF, string Poly, puk, RBF, string
Epsilon (ε) 1.0× 10−9 to 1.0× 10−15 1.0× 10−9 to 1.0× 10−15

Complexity 1 to 9 1 to 9
Batch size 100 100

IBk Lag 1 to 15 1 to 12
K 1 to 12 1 to 12
Distance function Euclidean and Manhattan Euclidean and Manhattan
Batch size 100 100

(Breiman, 2001). The lag values were varied from 1 to 15,
and the batch size and bag size were consistently set to 100,
as shown in Table 2.

3.4 Sequential minimal optimization regression

Sequential minimal optimization (SMO) is an iterative algo-
rithm proposed by Platt (1998) for solving regression prob-
lems using support vector machines (SVMs). SMO sim-
plifies the optimization problem by breaking it down into
smaller sub-problems that can be solved analytically, which
makes it more efficient for training SVMs. Further improve-
ments to SMO for regression were proposed by Shevade et
al. (2000), who introduced modifications to enhance its effi-
ciency. These improvements address the way SMO updates
and maintains threshold values, resulting in two significantly
more efficient versions for regression tasks. The correspond-
ing algorithm effectively solves the quadratic optimization
problem inherent in SVM training. SMOreg employs four
input features: log seismic energy (S), IMF1 (Z),

∑n
i=2IMFi

(Y ), and the year of occurrence of seismic energy. The model
is optimized by fine-tuning hyperparameters such as the com-
plexity number (C) and epsilon (ε). In this study, the com-
plexity number was varied from 1 to 9 to balance minimiz-
ing the training error and problem complexity. Epsilon was

varied from 1.0× 10−9 to 1.0× 10−15 to determine the al-
lowable error within the epsilon tube. The kernel function,
crucial for SVMs, impacts the ability to manage complex re-
lationships in the data. Various kernel functions, including
polynomial (Polykernel), puk, RBF, and string kernels, were
considered. The lag values were varied from 1 to 15, and the
batch size was consistently set to 100, as shown in Table 2.

3.5 Instance-based learning with the parameter k

Instance-based learning (IBL), also called instance-based
learning with the parameter k (IBk), is a type of supervised
learning used for both classification and regression problems
(Aha et al., 1991; Jo, 2021). It falls under lazy learning al-
gorithms, which memorize the training data and make pre-
dictions based on the similarity between new and training
datasets. The parameter k represents the number of nearest
neighbours considered for predictions. IBk searches for the
k most similar instances from the training dataset based on
the similarity measures using the Manhattan distance, Eu-
clidean distance, or other distance matrices. More accurately,
let the given instance x be described by the feature vector
〈a1 (x ),a2 (x ), . . .an (x )〉, where ar(x) denotes the value
of the rth attribute of instance x. The Euclidean distance be-
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tween xi and xj is given by

d(xi,xj )≡

√√√√ n∑
r=1

((
ar(xi)− ar(xj )

)2)
. (7)

Here, in the k-nearest neighbour algorithm, the target func-
tion may be either real-valued or discrete-valued, defined by
f̂ (xq), which is just the most common value of f among k
training examples nearest to xq .

f̂ ←

∑k
i=1f (xi)

k
(8)

In this study, the k value was varied between 1 and 12, us-
ing Euclidean and Manhattan distances. The lag values were
varied from 1 to 15, resulting in transformed input features.
The number of nearest neighbours for prediction was set us-
ing these variations, with a consistent batch size of 100, as
shown in Table 2. The LinearNNSearch algorithm, suitable
for small datasets, was adopted for the nearest neighbour
search, employing a linear search across all data points.

4 Ensemble models

Hyndman and Athanasopoulos (2018) suggested that in time
series forecasting approaches, there is a need to include rele-
vant characteristics to increase accuracy. Also, the wider no-
tion of adding time-related characteristics is a well-known
approach in machine learning and forecasting. Hence, the in-
clusion of year as one of the input features is decided in the
present study. Now, using only IMFs as the inputs for devel-
oping the forecasting model might not be that effective be-
cause finding IMF1 at the boundary of the data can be chal-
lenging due to undefined envelopes on both sides. To address
this challenge, the previous value of the end point might be
used as the next value. However, this strategy is not effective
for anticipating issues. If n data are provided, IMFs can only
be extracted for i= 2, 3, 4,. . .,n−1. As the distance between
extrema increases, extrapolation errors might permeate into
the signal, misrepresenting greater IMFs at the end points.
Hence, the inclusion of S in the input ensures that the defi-
ciency of the empirical mode decomposition to estimate the
end value does not affect the model predictions. Hence, the
time histories from S, Y , and Z (see Fig. 5 for the global cat-
alogue and Fig. S2 for the corresponding figure for the vali-
dation catalogue) were provided simultaneously as inputs to
the model, along with the year, to predict S as the output
variable. The time series up to 1995 is taken for the training
phase and the remaining data from 1996–2015 are considered
for the testing phase for the validation catalogue, whereas for
the updated global catalogue, the time series up to 2009 is
taken for training and 2009–2023 for testing. Additionally,
the combination of the inputs is determined such that it gives
the best prediction when performing beta coefficient analy-
sis, whereby the approach tries different indices and retains

only those that are significant and minimizes the prediction
error. To determine the optimal lag period, an analysis was
performed by varying the lag from 1 to 15 time points. The
optimal lag value was identified by evaluating the model’s
performance and selecting the lag period that minimizes the
prediction error. The range of lag values, along with the other
hyperparameters varied to get the final model, is presented in
Table 2. Also, different lag values for different models were
obtained, and these values, along with the other hyperparam-
eters used in the prediction models, are presented in Table 3.
The overall flow of the proposed approach is described in
Fig. 6. Furthermore, a detailed description of the model ar-
chitectures of the ensemble model is furnished in Sect. 4.1.

4.1 Ensemble model architecture

Ensembling can be performed by second-level trainable com-
biners through meta-learning techniques (Duin and Tax,
2000). In the present study, the stacking method was em-
ployed, wherein the output results of the base or weak learn-
ers were used as features in an intermediate space. These
features were subsequently fed as input to a second-level
meta-learner to perform a trained combination of weak learn-
ers. The base learners in this study included MLP, LR, RF,
SMOreg, and IBk, which forecasted the values of seismic
energy, as depicted in Fig. 6. These base learners were op-
timized models with varying parameters, as detailed in Ta-
ble 2. Each base learner produced predictions of different
lengths due to the use of varying lag values in their op-
timization process. To address this discrepancy and ensure
consistency across all learners, the shortest prediction length
among the models was used to align the inputs. This ap-
proach was visually represented in Fig. 6, where the orange
blocks indicated the forecasted values and the empty blocks
denoted absent values. Here, forecasted values from all five
techniques were then used as input features for the ensemble
RF model, with the actual log seismic energy as the target
for regression. This ensemble RF model ultimately predicted
the log seismic energy, integrating the results from the base
learners to improve the ensemble prediction accuracy.

To ensure optimal performance of the models, we em-
ployed grid search techniques for hyperparameter tuning.
Grid search is an exhaustive search method that tests all pos-
sible combinations of specified hyperparameters to identify
the best-performing configuration for each model. The pro-
cess involves defining a parameter grid for each model, spec-
ifying a range of values for each hyperparameter. For exam-
ple, for the multi-layer perceptron (MLP), the grid includes
different numbers of neurons in the hidden layers, learning
rates, and momentum values. For the random forest (RF), the
grid includes the number of trees and maximum depth. Each
combination of hyperparameters is evaluated using an 80 : 20
train–test split method. The dataset is divided into 80 % train-
ing and 20 % testing sets, with the model trained on the train-
ing set and evaluated on the testing set. The performance of
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Figure 6. Flow chart representing the various steps and modelling approaches adopted for seismic energy forecasting.

Table 3. Optimized hyperparameter of the models for the data under consideration.

Model Parameters Validation Global Western Himalayas

MLP Lag 8 8 6
Hidden layers 2 2 1
Neurons in hidden layer 4, 2 21, 18 11
Learning rate 0.3 0.2 0.3
Momentum 0.2 0.1 0.2
Batch size 100 100 100
Epochs 1500 1000 500

Ridge regression Lag 6 9 6
Ridge 1.0× 10−8 1.0× 10−12 1.0× 10−8

Batch size 100 100 100

Random forest Lag 7 5 7
Batch size 100 100 100
Bag size 100 100 100
Number of trees 100 70 100

SMOreg Lag 8 4 5
Kernel Poly Poly Poly
Epsilon (ε) 1.0× 10−12 1.0× 10−12 1.0× 10−12

Complexity 1 1 1
Batch size 100 100 100

IBk Lag 8 8 8
K 2 9 9
Distance function Euclidean Euclidean Euclidean
Batch size 100 100 100

each hyperparameter combination is assessed using an ap-
propriate evaluation metric, such as the mean squared error
(MSE) or root mean squared error (RMSE). The combina-
tion of hyperparameters that results in the lowest error (or
highest accuracy) on the training set is selected as the opti-
mal configuration for the model. The final model, with opti-
mized hyperparameters, is then tested on the testing dataset
to evaluate its generalization performance. This ensures that
the selected model configuration not only performs well on
the training data but also maintains its accuracy, generaliza-
tion, and robustness.

4.2 Input and output to different models

The proposed two-level ensemble forecasting framework op-
erates on a structured input–output configuration where the
input vector comprises four fundamental components: log
seismic energy (S), IMF1 (Z),

∑n
i=2IMFi (Y ), and tempo-

ral information, i.e. the year of occurrence of seismic en-
ergy, systematically organized into sequential packets, i.e.
(X1,X2, . . .,Xm) for training and (Xm+1, . . .,Xn) for testing,
with a suitable temporal dependency structure (i.e. lag value).
All four features (S, Z, Y , and year) have lagged values in

Nat. Hazards Earth Syst. Sci., 25, 3713–3736, 2025 https://doi.org/10.5194/nhess-25-3713-2025



S. S. Shukla et al.: Seismic energy forecasting 3723

each input packet, which are structured so that past observa-
tions are utilized to forecast future S values. A generalized
flow of input and output is presented in Fig. 7 for a lag value
of 8. However, different base models have different lag val-
ues. These lag values are determined based on the optimized
model for varying parameters, as presented in Table 2. The
final values of lag for different base learners are presented in
Table 3. To be clear, the model is trained to predict the seis-
mic energy at the subsequent time step (e.g. S9), and each
input packet contains eight previous time steps of S, Y , Z,
and year as features for a lag value of 8. This sliding-window
method guarantees that the learning algorithm employs log-
ical event sequences and catches temporal patterns in the
data. The first level of the ensemble processes these input
packets with different lag values through five different base
models (linear regression, multi-layer perceptron, SMOreg,
IBk, and random forest) that make the initial predictions.
This changes the original four-dimensional input space into a
five-dimensional prediction space, where each observation is
represented by the outputs from all base models. After that,
the second level uses a random forest meta-learner to process
these stacked five-dimensional prediction vectors and make
final consensus predictions (S9, S10, S11, S12, . . ., Sn). In or-
der to ensure temporal consistency and assess prediction per-
formance, the same input structure is employed during the
testing phase by shifting the lag window across unseen se-
quences. To prevent input mismatches, the output from only
the overlapping prediction region (shortest sequence) is sent
to the meta-learner because each base learner employs a dis-
tinct lag length. This is done by using the collective intelli-
gence of the base models and learning the best combination
weights and interaction patterns to make better predictions
than individual algorithmic approaches. This is done by sys-
tematically combining different temporal pattern recognition
capabilities across different seismic conditions.

5 Validation

Based on the optimized hyperparameters, the predictions
from the models trained on the data derived from the valida-
tion and global catalogues in the training and testing phases
are summarized in Figs. 8 and 9 for the individual models.
The performance is observed to vary between models in both
the training and testing parts. Hence, to have a quantitative
evaluation of the model performances, the following indica-
tors are estimated for both the training and testing phases:

1. Standard deviation of error (σ(ε))

σ(ε)=

√√√√√ N∑
i=1

(
Si − Ŝi

)
−

(
Si − Ŝi

)
N − 1

(9)

2. Pearson correlation coefficient (R)

R =

N∑
i=1

(
Si − Si

)(
Ŝi − Ŝi

)
√

N∑
i=1

(
Ŝi − Ŝi

)2 N∑
i=1

(
Si − Si

)2 (10)

3. Performance parameter (PP)

PP= 1−
〈‖ S− Ŝ‖2〉

σ 2
Ŝ

(11)

4. Root mean squared error (RMSE)

RMSE=

√√√√√ N∑
i=1

(
Si − Ŝi

)2

N
(12)

To ensure reliable model selection while mitigating over-
fitting, hyperparameter tuning is performed using the train-
ing dataset. This approach avoids information leakage from
the testing set and ensures unbiased performance estimates.
Rather than reserving a third dataset exclusively for valida-
tion, this strategy allows efficient use of the available data
while maintaining a robust generalization capability. The fi-
nal model performance is then evaluated on the separate
hold-out test set. The corresponding estimations for the weak
learners and ensemble models are summarized in Table 4.
For models developed with the validation catalogue log seis-
mic energy data, the MLP model performs well in the train-
ing phase; however, in the testing phase, it is relatively weak.
By contrast, the MLP model developed on the global cat-
alogue data performs well in both the training and testing
phases. The RF model also shows a similar trend to that of
MLP. However, the LR and SMOreg models are observed to
perform consistently in both the training and testing phases.
The IBk architecture is the worst-performing model for both
the validation and global catalogues under consideration.
Nevertheless, according to the detailed literature review ex-
plained earlier, ensemble models are expected to improve the
model’s performance. Thus, a suitable ensemble model is de-
veloped, as described in Sect. 4. The corresponding model
performance is summarized in Fig. 10 for the validation cat-
alogue and Fig. 11 for the global catalogue, as well as in
Table 4. Interestingly, across both datasets, the ensemble
model outperformed any single base learner in terms of the
RMSE and correlation coefficients. Furthermore, the model
performance is good and consistent in both the training and
testing phases. Additionally, from a comparison of perfor-
mance with the previous study (Raghukanth et al., 2017) (Ta-
ble 4) on the same data, i.e. the validation catalogue, we were
able to conclude that the ensemble model performs signif-
icantly better, having lesser variability. As a result, the rel-
evant model may be a good fit for real-time seismic energy
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Figure 7. A general diagram showing the input and output at different stages of the methodology with a representative value of lag= 8.

forecasting applications and can be appropriately used to pro-
duce accurate seismic energy predictions. With this motiva-
tion, we further attempt to explore the proposed approach for
regional-level seismic energy forecasting. The active West-
ern Himalayan province is chosen for the evaluations. A de-
tailed description of the corresponding data, processing, and
modelling is provided in Sect. 6.

6 Application to Western Himalayas

The vast Indian subcontinent region, which includes
Bangladesh, India, Nepal, Bhutan, Pakistan, and Sri Lanka,
is prone to frequent and severe earthquakes. This region is
particularly vulnerable to seismic activity because of the tec-
tonic movements and the proximity to the convergent margin
of the Indian and Eurasian plates. The subsequent collision
has resulted in a vast mountain belt known as the Great Hi-
malayas, where frequent earthquakes are caused by ongoing
tectonic activity. The uplift due to collision has caused linear

zones of deformation, leading to crustal shortening along ma-
jor boundary faults. These faults are the Himalayan Frontal
Thrust (HFT), Main Boundary Thrust (MBT), and Main Cen-
tral Thrust (MCT), which have resulted in some large palaeo-
earthquakes in the region (Dasgupta et al., 2000). India’s
northern and northeastern parts are more vulnerable; they are
classified majorly as seismic zones IV and V in IS 1893-1
(2016), which indicates the highest degree of seismic haz-
ard. As the Indian plate slowly sinks and subducts beneath
Asia at a pace of around 47 mm yr−1, this collision tectonics
makes the area very vulnerable to catastrophic earthquakes
due to energy accumulation and subsequent release (Bendick
and Bilham, 2001). Several large earthquakes have been ob-
served in this region in the last 2 decades, such as the Ut-
tarkashi earthquake in 1991 (mb 6.6), the Chamoli earth-
quake in 1999 (mb 6.3), the Kashmir earthquake in 2005
(Mw 7.8), the Sikkim earthquake in 2011 (Mw 6.9), and the
Nepal earthquake in 2015 (Mw 7.8). Moreover, the region
between the Kangra earthquake in 1905 (Mw 7.8) and the
Bihar-Nepal earthquake in 1934 (Mw 8) is relatively silent
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Figure 8. Actual vs. predicted values of global log seismic energy from individual machine learning techniques adopted in this work for the
validation catalogue data.

Figure 9. Actual vs. predicted values of individual machine learning techniques for global log seismic energy calculated from the global
catalogue.
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Table 4. Performance evaluation of the individual models and the final ensemble random forest model (highlighted with the bold characters)
in the training and testing phases for global seismic energy.

Models Training Testing

σ(ε) R PP RMSE σ(ε) R PP RMSE

Raghukanth et al. (2017) 0.285 0.968 0.920 0.284 0.361 0.940 0.860 0.364

Validation

MLP∗ 0.259 0.971 0.887 0.362 0.497 0.862 0.611 0.607
Ridge regression (RR) 0.347 0.946 0.896 0.345 0.373 0.926 0.855 0.371
Random forest (RF) 0.378 0.974 0.877 0.377 0.789 0.693 0.205 0.868
SMOreg∗∗ 0.309 0.958 0.919 0.307 0.400 0.916 0.837 0.393
IBk∗∗∗ 0.642 0.819 0.649 0.639 0.931 0.323 −0.808 1.308
Ensemble RF 0.127 0.994 0.986 0.127 0.136 0.992 0.981 0.134

Global

MLP∗ 0.109 0.993 0.985 0.108 0.482 0.861 0.687 0.483
Ridge regression (RR) 0.361 0.915 0.840 0.358 0.579 0.776 0.581 0.559
Random forest (RF) 0.359 0.964 0.884 0.356 0.577 0.825 0.547 0.582
SMOreg∗∗ 0.570 0.881 0.698 0.575 0.595 0.725 0.559 0.574
IBk∗∗∗ 0.733 0.617 0.324 0.738 0.783 0.648 0.232 0.757
Ensemble RF 0.077 0.997 0.992 0.077 0.185 0.978 0.956 0.180
∗ MLP – multi-layer perceptron.
∗∗ SMOreg – sequential minimal optimization regression.
∗∗∗ IBk – instance-based learning with the parameter k.

Figure 10. Actual vs. predicted values for global seismic energy
from the proposed ensemble random forest model for the validation
catalogue.

Figure 11. Actual vs. predicted values of the proposed ensemble
random forest model for global log seismic energy calculated from
the global catalogue.

and hence is identified as the central seismic gap (CSG) re-
gion, having the potential to generate> 8 magnitude events
(Bilham et al., 1997; Khattri, 1999; Bilham, 2019). It is there-
fore essential to have a reliable quantification of hazard in
order to reduce the related seismic risks in the active Western
Himalayan area. The current approach, designed especially
for this seismically active and dynamic area, is critical. Its
alignment with the distinct geological features of the West-
ern Himalayas emphasizes its significance and makes it an
indispensable instrument for reducing the possible effect of
seismic occurrences in this susceptible region. Furthermore,
seismic hazard studies have also reported high values for de-
sign parameters for the region due to its active tectonics and
recurrence rate (NDMA, 2010; Nath and Thingbaijam, 2012;
Dhanya and Raghukanth, 2022; Sreejaya et al., 2022). Con-
sidering the tectonics and the risk due to exposure, an ef-
ficient forecast model is critical for this region. However, a
dedicated model for annual seismic energy forecasting is still
lacking. Hence, the present work aims to develop a robust
forecast model for annual seismic energy release in the West-
ern Himalayas. The ensemble model algorithm validated in
Sect. 5 shall be utilized for the work. A detailed description
of the data compiled for the region and the resultant forecast
is furnished. This application demonstrates the extension of
our ensemble methodology to a regional scale with real haz-
ard implications.
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6.1 Study region and data preparation

From the tectonics described earlier, the Hindu Kush region
and the adjoined region are seismically very active, as evi-
dent from Fig. 12. This observation is consistent with both
the frequency of documented earthquakes and the geograph-
ical distribution of faults and lineaments (Fig. 12). This has
motivated researchers to divide the whole geographical area
of the country and the adjoining region into different seis-
mic zones. For instance, Khattri et al. (1984) used seismo-
tectonic and seismicity data to split the nation into 24 source
zones. Bhatia et al. (1999) found 85 source zones in In-
dia, whereas 40 seismic zones were detected by another re-
search Parvez et al. (2003). Considering all these past ef-
forts, the National Disaster Management Authority (NDMA)
of India created a thorough study in 2010 that further di-
vided the whole Indian subcontinent into 32 seismic zones,
designated SZ-1 to SZ-32 NDMA (2010). This division of
seismic zones was done by considering factors such as re-
gional geodynamics, fault alignment, and recurrence param-
eters for the regions. Among these 32 zones, the present
study focuses on earthquakes in SZ-1, SZ-2, SZ-6, and SZ-
30, which lie in the western part of the Himalayan belt. As
this is preliminary work towards energy prediction for the
regions, the comprehensive catalogue is combined together
for all zones in the Western Himalayas. Here, the earth-
quake catalogue for the region has been taken from Dhanya
et al. (2022) and was updated until 31 December 2023
via the USGS seismic database (https://earthquake.usgs.gov/
earthquakes/search/, last access: 20 November 2024). There
are 25 769 events (for the Western Himalayan region consid-
ered for this work) in the final updated catalogue, spanning
from 1250 BCE to 2023 CE. Furthermore, the updated cata-
logue has been checked for both completeness for year and
magnitude. For completeness of year, the method suggested
by Stepp (1972) has been adopted, in which the standard de-
viation of the mean rate is plotted as a function of the sample
length, and the period where this value deviated from the tan-
gent, i.e. 1/

√
(T ), is considered as completeness for the con-

sidered magnitude. Furthermore, the magnitude of complete-
ness is identified from the maximum curvature method pro-
posed by Wiemer and Wyss (2000). The catalogue compiled
for the region in the present work is observed to have a mag-
nitude of completeness of Mw 4 and a corresponding year of
completeness of 1964 (Fig. 13a and b). Hence, events span-
ning from 1964 and having a magnitude greater than Mw 4
have been considered for further input preparation. The dis-
tribution of the event in the final compiled catalogue can be
identified from Fig. 14.

6.2 Seismic time series and mode decomposition

The same approach discussed in Sect. 2 has been adopted
for the Western Himalayas, where the complete catalogue
spanning from 1964 to 2023 with 20 774 events having a

magnitude in different scales is unified by converting all
the earthquake magnitudes into moment magnitudes Mw.
The catalogue has two major earthquakes with a magnitude
Mw≥ 7.5: the 2005 Kashmir earthquake (Mw 7.6) and the
2015 Afghanistan earthquake (Mw 7.5) (Fig. 14). After uni-
fication, magnitudes are converted to seismic energy using
Eq. (1) as discussed in Sect. 2, considering the physical sig-
nificance of the parameter in earthquake occurrence. Further-
more, energies are added annually to get the seismic energy
time series. From Fig. 15a, one can note two distinct peaks
at 2005 and 2015, indicators of the major earthquakes ex-
plained earlier. Furthermore, to enhance the predictability of
the time series, these values are converted to log scale to re-
move sudden jumps, similar to that described in Sect. 2. Af-
ter the seismic energy time series is obtained, it is further
decomposed into intrinsic mode functions using the EEMD
technique. The corresponding division is expected to account
for the linear and non-linear components of time histories
appropriately. The decomposition allows the model to sepa-
rately learn dominant cycles (IMF1) and low-frequency, non-
linear patterns (IMF2–IMF5). Thus, by applying the EEMD
technique as described in Sect. 2.1 on the log-scaled West-
ern Himalayan seismic energy time series (Fig. 15b, first
subplot), we are able to obtain five intrinsic mode functions
(Fig. 15b). Furthermore, the correlation coefficients between
the models are presented in Fig. 16. It is noted that the IMFs
are mostly uncorrelated and orthogonal. Table 1 lists the pe-
riods and variance of all five IMFs in the log-scaled seis-
mic energy time series. Similar to the global seismic energy
modes, for the regional model, the period of the IMFs seems
to increase. Furthermore, IMF1 is observed to capture max-
imum variance in the data. To incorporate these IMFs as in-
put for the machine learning techniques, IMF1 and the sum
of IMF2 to IMF5 (

∑5
i=2IMFi) have been taken separately,

as suggested in Raghukanth et al. (2017). Furthermore, con-
sidering the limitation of EEMD at the time series boundary,
the log seismic energy and year are also used as model inputs
(see Fig. 17). A detailed description of the model architecture
that was found optimal for the regional database is discussed
further.

6.3 Model architecture for the Western Himalayas

After input preparation, the approaches discussed in Sect. 3
are also tested for the active Western Himalayan region, i.e.
the obtained IMFs along with the log seismic energy and year
of occurrence are taken as input for the first-level individual
machine learning techniques (MLP, LR, RF, SMOreg, and
IBk), and the forecasted results of these techniques, as in-
put for the final ensemble random forest technique (Fig. 6).
For lag consideration, the look-back period is varied from
1 to 15 for the individual models, and the value for which
the results are optimum is selected. Other hyperparameters
are also suitably iterated to find the best model in each indi-
vidual architecture for the data under consideration. The lag
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Figure 12. The regional-level tectonics and past seismicity, where the highlighted portion shows the seismogenic zones as per NDMA (2010)
in the Western Himalayas.

Figure 13. (a) The magnitude of completeness derived using the approach of Wiemer and Wyss (2000) and (b) the year of completeness
derived using the approach of Stepp (1972), obtained for the catalogue compiled for the Western Himalayan region.

value for individual models, along with the other hyperpa-
rameters used to optimize the model predictions for the re-
gional dataset corresponding to various techniques, are pre-
sented in Table 3. For the final ensemble RF model, 100 trees
are considered, along with a tree depth of 0 and a bag and
batch size of 100. Furthermore, for the ensemble model, the
overall lag value of 8 is adopted. For base learners, the time

series data are divided into 80 % and 20 % for training and
testing, respectively, i.e. the time series up to 2011 is used to
train the model, and that from 2012 to 2023 is used to test
the model. The division into training (up to 2011) and testing
(2012–2023) is performed to preserve the time dependence
of the sequence and to evaluate model generalization.
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Figure 14. Distribution of events for the complete catalogue for
the Western Himalayan region. Events with magnitude equal to or
greater than Mw 7.5 are shown in black.

6.4 Results for the Western Himalayas

The representation of the model results and the compari-
son with the data are illustrated in Fig. 18 for the individ-
ual model and Fig. 19 for the ensemble model. Similar to
that observed for the global data, we observed varied per-
formance in the training and testing phases. Furthermore,
the qualitative performance seemed to improve by adopting
the ensemble model. Standard statistical metrics such as the
Pearson correlation coefficient (R), performance parameter
(PP), root mean squared error (RMSE), and standard devi-
ation of error (σ(ε)) were employed to objectively assess
model performance. Table 5 displays these values for the
Western Himalayan model. In an ideal case, the values of
R and PP should be unity, and the value of σ(ε) should be 0.
With an R value of 0.989 and 0.848, respectively, and a PP
value of 0.968 in training and 0.685 in testing, Table 5 clearly
shows that the multi-layer perceptron (MLP) outperformed
the other models. The same is true for an R value of 0.989
in training and 0.848 in testing. The same is evident from
Fig. 14, where for both the training and testing phases, the
MLP model is observed to capture the data variations better
than other architectures. Furthermore, when the prediction
made from the individual techniques is employed as input
for the ensemble random forest model, its performance in-
creases significantly, with RMSE values of 0.117 and 0.236
in the training and testing phases, respectively. These find-
ings show the satisfactory performance of the model, ensur-
ing a reliable prediction. This improvement is also evident
from the ensemble RF model presented in Fig. 15, where the
model is able to capture the peaks and troughs efficiently.

Additionally, we made an effort to predict the anticipated
yearly seismic energy release for 2024. According to the
ensemble model that was built, the estimated seismic en-

Figure 15. (a) Annual seismic energy estimated for the catalogue
compiled for the Western Himalayas. (b) Log-scaled seismic energy
for the Western Himalayas, and the corresponding intrinsic mode
function obtained by employing ensemble empirical mode decom-
position (EEMD).

Figure 16. The correlation coefficient estimated for the intrinsic
mode functions extracted from the log-scaled seismic energy time
series of the Western Himalayas.
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Figure 17. Estimated seismic energy series from the updated cat-
alogue for the Western Himalayan region used in developing the
models. (a) Global seismic energy (GSE) time series, with units of
joules. (b) Log-scaled GSE. (c) First intrinsic mode estimated from
ln(GSE) by performing ensemble empirical mode decomposition
(EEMD). (d) Sum of the second to last intrinsic modes estimated
from ln(GSE) by performing EEMD.

ergy falls between 5.69× 1014 and 9.11× 1014 J. This range
highlights the region’s potential for a destructive event and
corresponds to a maximum predicted magnitude of roughly
Mw 7.17. Even with these encouraging outcomes, the perfor-
mance of the existing model might be enhanced by adding
more geophysical variables, increasing the catalogue inputs’
geographic resolution, and adding real-time updates for op-
erational forecasts. These are potential directions for future
growth.

7 Discussion

This work investigated the application of sophisticated ma-
chine learning (ML) algorithms for seismic energy predic-
tions. The proposed work is significant in quantifying the
immediate hazard for the region. It is well known that seis-
mic energy is a potential indicator of seismic activity in the
region. Thus, a reliable forecast through robust algorithms
shall aid in the enhancement of hazard preparedness. The re-
search systematically investigates this hypothesis by creating
and comparing various machine learning models to identify
their potential in seismic prediction. Therefore, an exhaustive
modelling with five different architectures reflective of vari-
ous machineries in machine learning is first attempted. The
model approaches considered are the multi-layer perceptron
(MLP), ridge regression (RR), random forest (RF), sequen-
tial minimal optimization for regression (SMOreg), and k-

nearest neighbours (IBk). Examining the separate models,
it was found that MLP consistently performed better than
the others during the training and testing stages. The strong
performance of MLP indicates that it might be a good fit
for encapsulating intricate connections in seismic data. The
model predictions from different architectures were observed
to vary in the training and testing phases. Thus, the different
ways in which these models function highlight how crucial it
is to choose an algorithm that is suitable for the features of
the seismic data. To improve the robustness of the prediction,
the separate models (weak models) were combined to create
an ensemble RF model. The outcomes showed that the en-
semble model outperformed the single models, highlighting
the possible advantages of mixing several modelling tech-
niques. Furthermore, when comparing the ensemble model
to the Raghukanth et al. (2017) model, the variance is lower,
which suggests that the seismic energy forecasts are more
stable and reliable. This research used train–test validation
to ensure impartiality in model choice and to prevent overfit-
ting through hyperparameter optimization using the training
data. The method delivers an unbiased measure of general-
ization performance because it protects against any test expo-
sure during model tuning. Our ensemble method is more con-
sistent and has less error compared to the baseline model of
Raghukanth et al. (2017) with the utilization of the same val-
idation catalogue. This work contributes to the evidence for
the model’s robust generalization and excellent performance
even in the absence of a third separate independent valida-
tion set. To further enhance resilience and evaluate learn-
ing frameworks under robust conditions, a separate valida-
tion dataset can be included in future work. Even though
the study used a worldwide time series that covered the
years 1900 to 2015, it is important to recognize any poten-
tial limitations related to this temporal scope. It is possible
that patterns of seismic activity change and that some re-
cent occurrences go unrecorded. In order to overcome this
constraint and maintain the predictive accuracy and rele-
vance of the results, future research should train models on
an updated catalogue. Updated research (e.g. Sharma et al.,
2023a; Kumar et al., 2023b) has established the advantage
of using recent datasets in enhancing model generalizabil-
ity. The study’s encouraging findings provide opportunities
for more investigation. Thus, as a sample study, a regional-
level forecast model is developed for the Western Himalayan
region. Similar to the global model, the regional data per-
formance in forecasting improved while adopting an ensem-
ble architecture. Even though the results are promising, the
analysis is done on a larger cluster combining four seismo-
genic zones in the region. Such pooling, although stream-
lining model construction, can veil localized spatiotemporal
features of prime importance to accurate hazard estimation.
A more detailed physics-based clustering and further appli-
cation to forecast modelling is expected to provide more in-
sights into the spatiotemporal patterns of seismic activity.
A more sophisticated knowledge of seismic energy trends
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Table 5. Performance evaluation of the individual models and the final ensemble random forest model (highlighted with the bold characters)
in the training and testing phases for the Western Himalayan region.

Models Training Testing

σ(ε) R PP RMSE σ(ε) R PP RMSE

MLP∗ 0.180 0.989 0.968 0.221 0.659 0.848 0.685 0.687
Ridge regression (RR) 0.356 0.957 0.918 0.352 0.677 0.833 0.544 0.826
Random forest (RF) 0.450 0.978 0.866 0.445 1.023 0.673 0.348 0.988
SMOreg∗∗ 0.475 0.924 0.835 0.492 0.574 0.903 0.688 0.684
IBk∗∗∗ 1.088 0.447 0.164 1.090 1.133 0.425 0.180 1.108
Ensemble RF 0.114 0.996 0.990 0.117 0.235 0.991 0.963 0.236
∗ MLP – multi-layer perceptron.
∗∗ SMOreg – sequential minimal optimization regression.
∗∗∗ IBk – instance-based learning with the parameter k.

Figure 18. Actual vs. predicted values of log seismic energy from various individual techniques adopted for the Western Himalayan region.

may be obtained by extending the research to a more recent
catalogue and carrying out extensive regional-level investi-
gations on a regular basis. Furthermore, the present study
acknowledges that ensemble empirical mode decomposition
(EEMD) is adept at addressing non-stationarity in seismic
energy time series; however, it also presents challenges, in-
cluding edge effects, residual noise due to incomplete en-
semble averaging, and constraints in accurately represent-
ing end-point behaviour. These limitations can affect the sig-
nal accuracy and can ultimately affect the performance of
the seismic energy forecasts. Hence, in order to improve the
forecasting capabilities and to address present limitations,
future studies may explore more advanced time series de-

composition techniques like wavelet-based denoising, com-
plete ensemble EMD with adaptive noise (CEEMDAN), or
hybrid filtering methods that enhance signal structure preser-
vation and minimize noise interference. A further potential
direction is uncertainty-conscious modelling, where the con-
fidence interval of predictions is explicitly defined to enable
risk-based decision-making. Furthermore, combining vari-
ous seismogenic zones into larger clusters, although bene-
ficial for this initial analysis, could potentially mask spe-
cific localized spatiotemporal seismic patterns. Therefore,
upcoming models ought to integrate physics-informed re-
gional clustering to improve the spatial resolution. From a
machine learning perspective, the ensemble random forest
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Figure 19. Actual vs. predicted values of seismic energy for the
Western Himalayan region from the developed ensemble random
forest model. The green marker shows the forecasted value for the
year 2024.

model showed enhanced performance compared to individ-
ual models. Furthermore, the potential to improve the accu-
racy of the forecast model through a rigorous feature selec-
tion approach can also be adopted. These shall be taken as the
future scope of this work. Additionally, there are intriguing
prospects to improve forecasting accuracy further and cap-
ture complex patterns in seismic data by exploring more so-
phisticated and hybrid machine learning techniques like deep
learning, the extreme learning machine (ELM), and gener-
ative adversarial networks (GANs). The use of explainable
ML approaches (e.g. SHAP or LIME) will further improve
model interpretability – a crucial step towards establishing
trust in model outputs for stakeholders concerned with policy
and hazard response. The advancements in time series pre-
processing, spatial modelling, and predictive algorithms are
anticipated to significantly improve the accuracy, robustness,
and practical application of seismic energy forecasting mod-
els. This, in turn, will facilitate more effective early warning
systems and strategies for hazard mitigation.

8 Conclusions

It has been found that using an appropriate ensemble model
greatly increases the model’s accuracy in predicting seismic
energy, especially when handling the non-linearity and inher-
ent complexity of geophysical data. The suggested method
was then used to predict seismic energy for the Western Hi-
malayas based on the assurance provided by testing with
published data and a published methodology. The outcomes
demonstrate the model’s applicability in situations involv-
ing regional hazards. According to the proposed model, the
total annual seismic energy in 2024 is expected to be be-
tween 9.11× 1014 and 5.69× 1014 J, or a magnitude range
of 7.03–7.17. Therefore, we may anticipate that the West-
ern Himalayan region would see a maximum magnitude of
Mw 7.17. This study serves as a prototype project aimed at
forecasting seismic energy release in the Himalayan region.

With the appropriate adjustments, the framework developed
here can be expanded or modified for use in other tectonically
active areas. The future focus of this work will be on seismic
energy patterns. However, the findings and recommendations
of the study are essential for developing appropriate policy
formulations, hazard preparedness, urgent risk assessment,
and seismic resilience specific to a given location.

Data availability. All the data are maintained by the corresponding
authors and will be available on reasonable request.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/nhess-25-3713-2025-supplement.

Author contributions. SSS: conceptualization, data curation,
methodology, validation, visualization, writing – original draft.
JD: funding acquisition, conceptualization, writing – original
draft, project administration, supervision. PP: data curation, formal
analysis, software. PK: data curation, formal analysis, software.
VD: conceptualization, resources, software, supervision.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors would like to acknowledge the
seed grant at IIT Mandi in support of this research.

Financial support. This research has been supported by the seed
grant at IIT Mandi under the project titled “Earthquake forecast
and prediction model for Himalayas using machine learning ap-
proaches”, project no. IITM/SG/DJ/98.

Review statement. This paper was edited by Veronica Pazzi and re-
viewed by two anonymous referees.

References

Ader, T., Avouac, J.-P., Liu-Zeng, J., Lyon-Caen, Bollinger, L.,
Galetzka, J., Genrich, J., Thomas, M., Chanard, K., Sapkota,
S. N., Rajaure, S., Shrestha, P., Ding, L., and Flouzat, M.:
Convergence rate across the Nepal Himalaya and interseis-

Nat. Hazards Earth Syst. Sci., 25, 3713–3736, 2025 https://doi.org/10.5194/nhess-25-3713-2025

https://doi.org/10.5194/nhess-25-3713-2025-supplement


S. S. Shukla et al.: Seismic energy forecasting 3733

mic coupling on the Main Himalayan Thrust: Implications
for seismic hazard, J. Geophys. Res.-Sol. Ea., 117, B04403,
https://doi.org/10.1029/2011JB009071, 2012.

Aha, D. W., Kibler, D., and Albert, M. K.: Instance-based learning
algorithms, Mach. Learn., 6, 37–66, 1991.

Ahmed, F., Akter, S., Rahman, S. M., Harez, J. B., Mubasira,
A., and Khan, R.: Earthquake magnitude prediction us-
ing machine learning techniques, in: 2024 IEEE In-
ternational Conference on Interdisciplinary Approaches
in Technology and Management for Social Innovation
(IATMSI), Gwalior, India, 14–16 March 2024, IEEE, 2,
1–5, https://doi.org/10.1109/IATMSI60426.2024.10502770,
2024.

Alavi, A. H. and Gandomi, A. H.: Prediction of principal ground-
motion parameters using a hybrid method coupling artificial
neural networks and simulated annealing, Comput. Struct., 89,
2176–2194, https://doi.org/10.1016/j.compstruc.2011.08.019,
2011.

Al Banna, M. H., Taher, K. A., Kaiser, M. S., Mahmud, M.,
Rahman, M. S., Hosen, A. S., and Cho, G. H.: Application
of artificial intelligence in predicting earthquakes: state-of-the-
art and future challenges, IEEE Access, 8, 192880–192923,
https://doi.org/10.1109/ACCESS.2020.3029859, 2020.

Alpaydin, E.: Combining Pattern Classifiers: Meth-
ods and Algorithms (Kuncheva, L.I.; 2004) [book
review], IEEE T. Neural Networ., 18, 964–964,
https://doi.org/10.1109/TNN.2007.897478, 2007.

Altay, G., Kayadelen, C., and Kara, M.: Model selection for predic-
tion of strong ground motion peaks in Türkiye, Nat. Hazards,
120, 1443–1461, https://doi.org/10.1007/s11069-023-06252-y,
2023.

Baker, J., Bradley, B., and Stafford, P.: Seismic haz-
ard and risk analysis, Cambridge University Press,
https://doi.org/10.1017/9781108425056, 2021.

Banerjee, P. and Bürgmann, R.: Convergence across the northwest
Himalaya from GPS measurements, Geophys. Res. Lett., 29, 30–
1, https://doi.org/10.1029/2002GL015184, 2002.

Bendick, R. and Bilham, R.: How perfect is the Himalayan
arc?, Geology, 29, 791–794, https://doi.org/10.1130/0091-
7613(2001)029<0791:HPITHA>2.0.CO;2, 2001.

Bertolini, M., Mezzogori, D., Neroni, M., and Zammori, F.:
Machine Learning for industrial applications: A compre-
hensive literature review, Expert Syst. Appl., 175, 114820,
https://doi.org/10.1016/j.eswa.2021.114820, 2021.

Bhatia, S., Kumar, M., and Gupta, H.: A probabilistic seismic
hazard map of India and adjoining regions, Ann. Geophys.-
Italy, 42, 1153–1164, https://www.annalsofgeophysics.eu/index.
php/annals/article/view/3777 (last access: 20 November 2024),
1999.

Bhattacharya, A., Vöge, M., Arora, M. K., Sharma, M. L., and
Bhasin, R. K.: Surface displacement estimation using multi-
temporal SAR interferometry in a seismically active region
of the Himalaya, Georisk: Assessment and Management of
Risk for Engineered Systems and Geohazards, 7, 184–197,
https://doi.org/10.1080/17499518.2013.798185, 2013.

Bilham, R.: Himalayan earthquakes: a review of historical
seismicity and early 21st century slip potential, Geolog-
ical Society, London, Special Publications, 483, 423–482,
https://doi.org/10.1144/SP483.16, 2019.

Bilham, R. and Ambraseys, N.: Apparent Himalayan slip deficit
from the summation of seismic moments for Himalayan earth-
quakes, 1500–2000, Curr. Sci. India, 88, 1658–1663, 2005.

Bilham, R., Larson, K., and Freymueller, J.: GPS measurements
of present-day convergence across the Nepal Himalaya, Nature,
386, 61–64, https://doi.org/10.1038/386061a0, 1997.

Bishop, C. M.: Pattern Recognition and Machine Learning, vol. 4,
Springer New York, ISBN 978-1-4939-3843-8 , 2006.

Bose, S., Das, K., and Arima, M.: Multiple stages of melting and
melt-solid interaction in the lower crust: new evidence from UHT
granulites of Eastern Ghats Belt, India, J. Miner. Petrol. Sci., 103,
266–272, https://doi.org/10.2465/jmps.080312, 2008.

Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.

Cho, Y., Khosravikia, F., and Rathje, E.: A comparison of artificial
neural network and classical regression models for earthquake-
induced slope displacements, Soil Dyn. Earthq. Eng., 152,
107024, https://doi.org/10.1016/j.soildyn.2021.107024, 2022.

Choy, G. L. and Boatwright, J. L.: Global patterns of radiated seis-
mic energy and apparent stress, J. Geophys. Res.-Sol. Ea., 100,
18205–18228, https://doi.org/10.1029/95JB01969, 1995.

Cutler, A., Cutler, D. R., and Stevens, J. R.: Random forests, in:
Ensemble machine learning: Methods and applications, edited
by: Zhang, C. and Ma, Y., Springer, New York, NY, 157–175,
https://doi.org/10.1007/978-1-4419-9326-7_5, 2012.

Dasgupta, S., Narula, P., Acharyya, S., and Banerjee, J.: Seismotec-
tonic atlas of India and its environs, Geological Survey of India,
ISSN 02540436, 2000.

De Gooijer, J. G. and Hyndman, R. J.: 25 years of time
series forecasting, Int. J. Forecasting, 22, 443–473,
https://doi.org/10.1016/j.ijforecast.2006.01.001, 2006.

Derras, B., Bard, P. Y., and Cotton, F.: Towards fully data driven
ground-motion prediction models for Europe, B. Earthq. Eng.,
12, 495–516, https://doi.org/10.1007/s10518-013-9481-0, 2014.

Dhanya, J. and Raghukanth, S. T. G.: Ground motion prediction
model using artificial neural network, Pure Appl. Geophys., 175,
1035–1064, https://doi.org/10.1007/s00024-017-1751-3, 2018.

Dhanya, J. and Raghukanth, S. T. G.: Neural network-based
hybrid ground motion prediction equations for Western Hi-
malayas and North-Eastern India, Acta Geophys., 68, 303–324,
https://doi.org/10.1007/s11600-019-00395-y, 2020.

Dhanya, J. and Raghukanth, S. T. G.: Probabilistic Fling Hazard
Map of India and Adjoined Regions, J. Earthq. Eng., 26, 4712–
4736, https://doi.org/10.1080/13632469.2020.1838969, 2022.

Dhanya, J., Sreejaya, K. P., and Raghukanth, S. T. G.: Seismic re-
currence parameters for India and adjoined regions, J. Seismol.,
26, 1–25, https://doi.org/10.1007/s10950-022-10093-w, 2022.

Dietterich, T.: An Experimental Comparison of Three Meth-
ods for Constructing Ensembles of Decision Trees: Bagging,
Boosting, and Randomization, Mach. Learn., 40, 139–157,
https://doi.org/10.1023/A:1007607513941, 2000.

Douglas, J.: Ground Motion Prediction Equations 1964–2021,
Technical report, Department of Civil and Environmental En-
gineering, University of Strathclyde, Glasgow, United King-
dom, https://rapidn.jrc.ec.europa.eu/reference/152 (last access:
20 November 2024), 2021.

Duin, R. P. W. and Tax, D. M. J.: Experiments with
Classifier Combining Rules, in: Multiple Classifier Sys-
tems, Springer Berlin Heidelberg, Berlin, Heidelberg, 16–

https://doi.org/10.5194/nhess-25-3713-2025 Nat. Hazards Earth Syst. Sci., 25, 3713–3736, 2025

https://doi.org/10.1029/2011JB009071
https://doi.org/10.1109/IATMSI60426.2024.10502770
https://doi.org/10.1016/j.compstruc.2011.08.019
https://doi.org/10.1109/ACCESS.2020.3029859
https://doi.org/10.1109/TNN.2007.897478
https://doi.org/10.1007/s11069-023-06252-y
https://doi.org/10.1017/9781108425056
https://doi.org/10.1029/2002GL015184
https://doi.org/10.1130/0091-7613(2001)029<0791:HPITHA>2.0.CO;2
https://doi.org/10.1130/0091-7613(2001)029<0791:HPITHA>2.0.CO;2
https://doi.org/10.1016/j.eswa.2021.114820
https://www.annalsofgeophysics.eu/index.php/annals/article/view/3777
https://www.annalsofgeophysics.eu/index.php/annals/article/view/3777
https://doi.org/10.1080/17499518.2013.798185
https://doi.org/10.1144/SP483.16
https://doi.org/10.1038/386061a0
https://doi.org/10.2465/jmps.080312
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.soildyn.2021.107024
https://doi.org/10.1029/95JB01969
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1016/j.ijforecast.2006.01.001
https://doi.org/10.1007/s10518-013-9481-0
https://doi.org/10.1007/s00024-017-1751-3
https://doi.org/10.1007/s11600-019-00395-y
https://doi.org/10.1080/13632469.2020.1838969
https://doi.org/10.1007/s10950-022-10093-w
https://doi.org/10.1023/A:1007607513941
https://rapidn.jrc.ec.europa.eu/reference/152


3734 S. S. Shukla et al.: Seismic energy forecasting

29, https://doi.org/10.1007/3-540-45014-9_2, ISBN 978-3-540-
45014-6, 2000.

Gade, M., Nayek, P. S., and Dhanya, J.: A new neu-
ral network-based prediction model for Newmark’s slid-
ing displacements, B. Eng. Geol. Environ., 80, 385–397,
https://doi.org/10.1007/s10064-020-01923-7, 2021.

Ghaedi, K. and Ibrahim, Z.: Earthquake prediction, in: Earthquakes
– Tectonics, Hazard and Risk Mitigation, edited by: Zouaghi, T.,
IntechOpen, 66, 205–227, https://doi.org/10.5772/65511, 2017.

Hanks, T. C. and Kanamori, H.: A moment magni-
tude scale, J. Geophys. Res.-Sol. Ea., 84, 2348–2350,
https://doi.org/10.1029/JB084iB05p02348, 1979.

Hoerl, A. E. and Kennard, R. W.: Ridge regression: Biased esti-
mation for nonorthogonal problems, Technometrics, 12, 55–67,
https://doi.org/10.1080/00401706.1970.10488634, 1970.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng,
Q., Yen, N.-C., Tung, C. C., and Liu, H. H.: The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-
stationary time series analysis, P. Roy. Soc. Lond. A Mat., 454,
903–995, https://doi.org/10.1098/rspa.1998.0193, 1998.

Hyndman, R. and Athanasopoulos, G.: Forecasting: Principles and
Practice, OTexts, Australia, 2nd edn., ISBN 978-0-9875071-1-2,
2018.

IMD (Indian Meteorological Department), https://riseq.seismo.gov.
in/riseq/earthquake, last access: 1 January 2024.

IS 1893-1: IS 1893 (Part 1): 2016 – Criteria for Earthquake Resis-
tant Design of Structures, Part 1: General Provisions and Build-
ings, Bureau of Indian Standards (BIS), New Delhi, India, 2016.

Ismail-Zadeh, A., Le Mouël, J.-L., Soloviev, A., Tapponnier,
P., and Vorovieva, I.: Numerical modeling of crustal block-
and-fault dynamics, earthquakes and slip rates in the Tibet-
Himalayan region, Earth Planet. Sc. Lett., 258, 465–485,
https://doi.org/10.1016/j.epsl.2007.04.006, 2007.

Iyengar, R. N. and Raghukanth, S. T. G.: Intrinsic mode functions
and a strategy for forecasting Indian monsoon rainfall, Mete-
orol. Atmos. Phys., 90, 17–36, https://doi.org/10.1007/s00703-
004-0089-4, 2005.

Jain, S. K.: Earthquake safety in India: achievements, chal-
lenges and opportunities, B. Earthq. Eng., 14, 1337–1436,
https://doi.org/10.1007/s10518-016-9870-2, 2016.

Jayalakshmi, S. and Raghukanth, S. T. G.: Finite element models to
represent seismic activity of the Indian plate, Geosci. Front., 8,
81–91, https://doi.org/10.1016/j.gsf.2015.12.004, 2017.

Jo, T.: Instance Based Learning, in: Machine Learning Foundations:
Supervised, Unsupervised, and Advanced Learning, Springer,
Cham, 93–115, https://doi.org/10.1007/978-3-030-65900-4_5,
2021.

Kaushik, S., Choudhury, A., Sheron, P. K., Dasgupta, N.,
Natarajan, S., Pickett, L. A., and Dutt, V.: AI in health-
care: time-series forecasting using statistical, neural,
and ensemble architectures, Frontiers in Big Data, 3, 4,
https://doi.org/10.3389/fdata.2020.00004, 2020.

Khattri, K.: Probabilities of occurrence of great earth-
quakes in the Himalaya, P. Indian As.-Earth, 108, 87–92,
https://doi.org/10.1007/BF02840486, 1999.

Khattri, K., Rogers, A., Perkins, D., and Algermissen, S.: A seismic
hazard map of India and adjacent areas, Tectonophysics, 108,
93–134, https://doi.org/10.1016/0040-1951(84)90156-2, 1984.

Kramer, S. L.: Geotechnical earthquake engineering, Pearson Edu-
cation India, ISBN 0-13-374943-6, 1996.

Kumar, P., Malik, J. N., Gahalaut, V. K., Yadav, R. K., and
Singh, G.: Evidence of strain accumulation and coupling vari-
ation in the Himachal Region of NW Himalaya from short
term geodetic measurements, Tectonics, 42, e2022TC007690,
https://doi.org/10.1029/2022TC007690, 2023a.

Kumar, P., Priyanka, P., Dhanya, J., Uday, K. V., and Dutt,
V.: Analyzing the Performance of Univariate and Multivari-
ate Machine Learning Models in Soil Movement Predic-
tion: A Comparative Study, IEEE Access, 11, 62368–62381,
https://doi.org/10.1109/ACCESS.2023.3287851, 2023b.

Lavé, J., Yule, D., Sapkota, S., Basant, K., Madden, C., Attal, M.,
and Pandey, R.: Evidence for a great medieval earthquake (~
1100 AD) in the central Himalayas, Nepal, Science, 307, 1302–
1305, https://doi.org/10.1126/science.1104804, 2005.

Li, Y. and Goda, K.: Risk-based tsunami early warning
using random forest, Comput. Geosci., 179, 105423,
https://doi.org/10.1016/j.cageo.2023.105423, 2023.

Liritzis, I. and Tsapanos, T. M.: Probable evidence for periodicities
in global seismic energy release, Earth Moon and Planets, 60,
93–108, https://doi.org/10.1007/BF00614377, 1993.

Mignan, A. and Broccardo, M.: Neural network applications in
earthquake prediction (1994–2019): Meta-analytic and statistical
insights on their limitations, Seismol. Res. Lett., 91, 2330–2342,
https://doi.org/10.1785/0220200021, 2020.

Misra, A., Agarwal, K., Kothyari, G. C., Talukdar, R., and
Joshi, G.: Quantitative geomorphic approach for identi-
fying active deformation in the foreland region of cen-
tral Indo-Nepal Himalaya, Geotectonics, 54, 543–562,
https://doi.org/10.1134/S0016852120040093, 2020.

Mousavi, S. M. and Beroza, G. C.: Evaluating the 2016 one-year
seismic hazard model for the central and eastern United States
using instrumental ground-motion data, Seismol. Res. Lett., 89,
1185–1196, https://doi.org/10.1785/0220170226, 2018.

Mousavi, S. M. and Beroza, G. C.: Machine Learning in Earth-
quake Seismology, Annu. Rev. Earth Pl. Sc., 51, 105–129,
https://doi.org/10.1146/annurev-earth-071822-100323, 2023.

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y.,
and Beroza, G. C.: Earthquake transformer – an atten-
tive deep-learning model for simultaneous earthquake
detection and phase picking, Nat. Commun., 11, 3952,
https://doi.org/10.1038/s41467-020-17591-w, 2020.

Nath, S. and Thingbaijam, K.: Probabilistic seismic hazard
assessment of India, Seismol. Res. Lett., 83, 135–149,
https://doi.org/10.1785/gssrl.83.1.135, 2012.

NDMA (National Disaster Management Authority): Development
of Probabilistic Seismic Hazard Map of India, Tech. Report,
NDMA, New Delhi, India, https://ndma.gov.in/sites/default/files/
PDF/Technical%20Documents/Indiapshafinalreport.pdf (last ac-
cess: 20 November 2024), 2010.

Pairojn, P. and Wasinrat, S.: Earthquake Ground Motions Pre-
diction in Thailand by Multiple Linear Regression Model,
Electronic Journal of Geotechnical Engineering, 20.25, 12113–
12124, 2015.

Paolucci, R., Gatti, F., Infantino, M., Smerzini, C., Özcebe,
A. G., and Stupazzini, M.: Broadband ground motions
from 3D physics-based numerical simulations using artifi-

Nat. Hazards Earth Syst. Sci., 25, 3713–3736, 2025 https://doi.org/10.5194/nhess-25-3713-2025

https://doi.org/10.1007/3-540-45014-9_2
https://doi.org/10.1007/s10064-020-01923-7
https://doi.org/10.5772/65511
https://doi.org/10.1029/JB084iB05p02348
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1098/rspa.1998.0193
https://riseq.seismo.gov.in/riseq/earthquake
https://riseq.seismo.gov.in/riseq/earthquake
https://doi.org/10.1016/j.epsl.2007.04.006
https://doi.org/10.1007/s00703-004-0089-4
https://doi.org/10.1007/s00703-004-0089-4
https://doi.org/10.1007/s10518-016-9870-2
https://doi.org/10.1016/j.gsf.2015.12.004
https://doi.org/10.1007/978-3-030-65900-4_5
https://doi.org/10.3389/fdata.2020.00004
https://doi.org/10.1007/BF02840486
https://doi.org/10.1016/0040-1951(84)90156-2
https://doi.org/10.1029/2022TC007690
https://doi.org/10.1109/ACCESS.2023.3287851
https://doi.org/10.1126/science.1104804
https://doi.org/10.1016/j.cageo.2023.105423
https://doi.org/10.1007/BF00614377
https://doi.org/10.1785/0220200021
https://doi.org/10.1134/S0016852120040093
https://doi.org/10.1785/0220170226
https://doi.org/10.1146/annurev-earth-071822-100323
https://doi.org/10.1038/s41467-020-17591-w
https://doi.org/10.1785/gssrl.83.1.135
https://ndma.gov.in/sites/default/files/PDF/Technical%20Documents/Indiapshafinalreport.pdf
https://ndma.gov.in/sites/default/files/PDF/Technical%20Documents/Indiapshafinalreport.pdf


S. S. Shukla et al.: Seismic energy forecasting 3735

cial neural networks, B. Seismol. Soc. Am., 108, 1272–1286,
https://doi.org/10.1785/0120170293, 2018.

Parvez, I. A., Vaccari, F., and Panza, G. F.: A determinis-
tic seismic hazard map of India and adjacent areas, Geo-
phys. J. Int., 155, 489–508, https://doi.org/10.1046/j.1365-
246X.2003.02052.x, 2003.

Platt, J.: Sequential Minimal Optimization: A Fast Algo-
rithm for Training Support Vector Machines, Tech. Rep.
MSR-TR-98-14, Microsoft, https://www.microsoft.com/en-
us/research/publication/sequential- minimal-optimization-
a-fast-algorithm-for-training-support-vector-machines/ (last
access: 1 May 2024), 1998.

Pyakurel, A., Dahal, B. K., and Gautam, D.: Does ma-
chine learning adequately predict earthquake induced
landslides?, Soil Dyn. Earthq. Eng., 171, 107994,
https://doi.org/10.1016/j.soildyn.2023.107994, 2023.

Quinlan, J. R.: Learning with continuous classes, in: 5th Aus-
tralian Joint Conference on Artificial Intelligence, Hobart, Tas-
mania, 16–18 November 1992, World Scientific, 92, 343–348,
https://doi.org/10.1142/1897, 1992.

Raghukanth, S. T. G., Kavitha, B., and Dhanya, J.: Fore-
casting of global earthquake energy time series, Advances
in Data Science and Adaptive Analysis, 9, 1750008,
https://doi.org/10.1142/S2424922X17500085, 2017.

Rajendran, C., Rajendran, K., Sanwal, J., and Sandiford, M.: Arche-
ological and historical database on the medieval earthquakes
of the central Himalaya: Ambiguities and inferences, Seismol.
Res. Lett., 84, 1098–1108, https://doi.org/10.1785/0220130077,
2013.

Re, M. and Valentini, G.: Ensemble Methods, in: Advances in
Machine Learning and Data Mining for Astronomy, 563–593,
ISBN 9781138199309, 2012.

Reyes, J., Morales-Esteban, A., and Martínez-Álvarez, F.: Neu-
ral networks to predict earthquakes in Chile, Appl. Soft Com-
put., 13, 1314–1328, https://doi.org/10.1016/j.asoc.2012.10.014,
2013.

Rezaei, H., Amjadian, A., Sebt, M., Askari, R., and Gharaei,
A.: An ensemble method of the machine learning to prog-
nosticate the gastric cancer, Ann. Oper. Res., 328, 151–192,
https://doi.org/10.1007/s10479-022-04964-1, 2022.

Ridzwan, N. S. M. and Yusoff, S. H. M.: Machine learning for earth-
quake prediction: a review (2017–2021), Earth Sci. Inform., 16,
1133–1149, https://doi.org/10.1007/s12145-023-00991-z, 2023.

Saha, T. K., Pal, S., Talukdar, S., Debanshi, S., Khatun, R.,
Singha, P., and Mandal, I.: How far spatial resolution affects
the ensemble machine learning based flood susceptibility pre-
diction in data sparse region, J. Environ. Manage., 297, 113344,
https://doi.org/10.1016/j.jenvman.2021.113344, 2021.

Sarker, I. H.: Machine learning: Algorithms, real-world applica-
tions and research directions, SN Computer Science, 2, 160,
https://doi.org/10.1007/s42979-021-00592-x, 2021.

Schmidt, J., Marques, M. R., Botti, S., and Marques, M. A.:
Recent advances and applications of machine learning in
solid-state materials science, npj Comput. Mater., 5, 83,
https://doi.org/10.1038/s41524-019-0221-0, 2019.

Scordilis, E.: Empirical global relations converting MS and
mb to moment magnitude, J. Seismol., 10, 225–236,
https://doi.org/10.1007/s10950-006-9012-4, 2006.

Seo, H., Kim, J., and Kim, B.: Machine-learning-based surface
ground-motion prediction models for South Korea with low-to-
moderate seismicity, B. Seismol. Soc. Am., 112, 1549–1564,
https://doi.org/10.1785/0120210244, 2022.

Sharma, V., Dhanya, J., Gade, M., and Sivasubramonian, J.:
New generalized ANN-based hybrid broadband response spec-
tra generator using physics-based simulations, Nat. Hazards,
116, 1879–1901, https://doi.org/10.1007/s11069-022-05746-5,
2023a.

Sharma, Y., Pasari, S., Ching, K.-E., Verma, H., Kato, T., and
Dikshit, O.: Interseismic slip rate and fault geometry along
the northwest Himalaya, Geophys. J. Int., 235, 2694–2706,
https://doi.org/10.1093/gji/ggad384, 2023b.

Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., and Murthy,
K. R. K.: Improvements to the SMO algorithm for SVM
regression, IEEE T. Neural Networ., 11, 1188–1193,
https://doi.org/10.1109/72.870050, 2000.

Sreejaya, K. P., Raghukanth, S. T. G., Gupta, I. D., Murty, C.
V. R., and Srinagesh, D.: Seismic hazard map of India and
neighbouring regions, Soil Dyn. Earthq. Eng., 163, 107505,
https://doi.org/10.1016/j.soildyn.2022.107505, 2022.

Sreenath, V., Basu, J., and Raghukanth, S.: Ground motion models
for regions with limited data: Data-driven approach, Earthq. Eng.
Struct. D., 53, 1363–1375, https://doi.org/10.1002/eqe.4075,
2024.

Stepp, J.: Analysis of completeness of the earthquake sample in the
Puget Sound area and its effect on statistical estimates of earth-
quake hazard, in: Proc. of the 1st Int. Conf. on Microzonazion,
Seattle, 2, 897–910, 1972.

Stepp, J.: Analysis of completeness of the earthquake sample in
the Puget Sound area, Contributions to Seismic Zoning: US Na-
tional Oceanic and Atmospheric Administration Technical Re-
port ERL, 16–28, 1973.

Sun, Z., Sandoval, L., Crystal-Ornelas, R., Mousavi, S. M., Wang,
J., Lin, C., Cristea, N., Tong, D., Carande, W. H., Ma, X., Rao,
Y., Bednar, J. A., Tan, A., Wang, J., Purushotham, S., Gill, T. E.,
Chastang, J., Howard, D., Holt, B., Gangodagamage, C., Zhao,
P., Rivas, P., Chester, Z., Orduz, J., and John, A.: A review
of earth artificial intelligence, Comput. Geosci., 159, 105034,
https://doi.org/10.1016/j.cageo.2022.105034, 2022.

Tan, M. L., Becker, J. S., Stock, K., Prasanna, R., Brown,
A., Kenney, C., Cui, A., and Lambie, E.: Understand-
ing the social aspects of earthquake early warning: A
literature review, Frontiers in Communication, 7, 939242,
https://doi.org/10.3389/fcomm.2022.939242, 2022.

Tiampo, K. F. and Shcherbakov, R.: Seismicity-based earthquake
forecasting techniques: Ten years of progress, Tectonophysics,
522, 89–121, https://doi.org/10.1016/j.tecto.2011.08.019, 2012.

USGS (U.S. Geological Survey): Search Earthquake Catalog, https:
//earthquake.usgs.gov/earthquakes/search/, last access: 1 January
2024.

Wiemer, S. and Wyss, M.: Minimum magnitude of completeness
in earthquake catalogs: Examples from Alaska, the western
United States, and Japan, B. Seismol. Soc. Am., 90, 859–869,
https://doi.org/10.1785/0119990114, 2000.

Wu, Z. and Huang, N. E.: A study of the characteris-
tics of white noise using the empirical mode decomposi-
tion method, P. Roy. Soc. Lond. A Mat., 460, 1597–1611,
https://doi.org/10.1098/rspa.2003.1221, 2004.

https://doi.org/10.5194/nhess-25-3713-2025 Nat. Hazards Earth Syst. Sci., 25, 3713–3736, 2025

https://doi.org/10.1785/0120170293
https://doi.org/10.1046/j.1365-246X.2003.02052.x
https://doi.org/10.1046/j.1365-246X.2003.02052.x
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://doi.org/10.1016/j.soildyn.2023.107994
https://doi.org/10.1142/1897
https://doi.org/10.1142/S2424922X17500085
https://doi.org/10.1785/0220130077
https://doi.org/10.1016/j.asoc.2012.10.014
https://doi.org/10.1007/s10479-022-04964-1
https://doi.org/10.1007/s12145-023-00991-z
https://doi.org/10.1016/j.jenvman.2021.113344
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.1007/s10950-006-9012-4
https://doi.org/10.1785/0120210244
https://doi.org/10.1007/s11069-022-05746-5
https://doi.org/10.1093/gji/ggad384
https://doi.org/10.1109/72.870050
https://doi.org/10.1016/j.soildyn.2022.107505
https://doi.org/10.1002/eqe.4075
https://doi.org/10.1016/j.cageo.2022.105034
https://doi.org/10.3389/fcomm.2022.939242
https://doi.org/10.1016/j.tecto.2011.08.019
https://earthquake.usgs.gov/earthquakes/search/
https://earthquake.usgs.gov/earthquakes/search/
https://doi.org/10.1785/0119990114
https://doi.org/10.1098/rspa.2003.1221


3736 S. S. Shukla et al.: Seismic energy forecasting

Wu, Z. and Huang, N. E.: Ensemble empirical mode decomposition:
a noise-assisted data analysis method, Advances in adaptive data
analysis, 1, 1–41, https://doi.org/10.1142/S1793536909000047,
2009.

Xie, Y., Ebad Sichani, M., Padgett, J. E., and DesRoches, R.: The
promise of implementing machine learning in earthquake engi-
neering: A state-of-the-art review, Earthq. Spectra, 36, 1769–
1801, https://doi.org/10.1177/8755293020919419, 2020.
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