Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-3397-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3397-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Implementation of an interconnected fault system in probabilistic seismic hazard assessment (PSHA): the Levant fault system
Sarah El Kadri
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France
National Council for Scientific Research, CNRS-L, P.O. Box 16-5432, Achrafyeh, 1100-2040 Beirut, Lebanon
Céline Beauval
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France
Marlène Brax
National Council for Scientific Research, CNRS-L, P.O. Box 16-5432, Achrafyeh, 1100-2040 Beirut, Lebanon
Yann Klinger
Université de Paris Cité, Institut de physique du globe de Paris, CNRS, 1, rue Jussieu, Paris, France
Related authors
No articles found.
Bénédicte Donniol Jouve, Anne Socquet, Céline Beauval, Jesus Piña Valdès, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 25, 1789–1809, https://doi.org/10.5194/nhess-25-1789-2025, https://doi.org/10.5194/nhess-25-1789-2025, 2025
Short summary
Short summary
We investigate how geodetic monitoring enhances accuracy in seismic hazard assessment. By utilizing geodetic strain rate maps for Europe and the European Seismic Hazard Model 2020 source model, we compare geodetic and seismic moment rates across the continent while addressing associated uncertainties. Our analysis reveals primary compatibility in high-activity zones. In well-constrained regions of lower activity, we also observed an overlap in the distribution of seismic and geodetic moments.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stéphane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci., 24, 3945–3976, https://doi.org/10.5194/nhess-24-3945-2024, https://doi.org/10.5194/nhess-24-3945-2024, 2024
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John F. Schneider, Céline Beauval, António A. Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 291–307, https://doi.org/10.5194/nhess-24-291-2024, https://doi.org/10.5194/nhess-24-291-2024, 2024
Short summary
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
Cited articles
Akkar, S., Sandikkaya, M. A., and Bommer, J. J.: Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East, B. Earthq. Eng., 12, 359–387, https://doi.org/10.1007/s10518-013-9461-4, 2014.
Al Tarazi, E., Abu Rajab, J., Gomez, F., Cochran, W., Jaafar, R., and Ferry, M.: GPS measurements of near-field deformation along the southern Dead Sea Fault System, Geochem. Geophys. Geosyst., 12, Q12021, https://doi.org/10.1029/2011GC003736, 2011.
Ambraseys, N. N. and Jackson, J. A.: Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region, Geophys. J. Int., 133, 390–406, 1998.
Beauval, C., Mariniére, J., Yepes, H., Audin, L., Nocquet, J.-M., Alvarado, A., Baize, S., Aguilar, J., Singaucho, J.-C., and Jomard, H.: A new seismic hazard model for Ecuador, Bull. Seismol. Soc. Am., 108, 1443–1464, https://doi.org/10.1785/0120170259, 2018.
Brax, M., Albini, P., Beauval, C., Jomaa, R., and Sursock, A.: An earthquake catalog for the Lebanese region, Seismol. Res. Lett., 90, 2236–2249, https://doi.org/10.1785/0220180292, 2019.
Chartier, T., Scotti, O., Lyon-Caen, H., and Boiselet, A.: Methodology for earthquake rupture rate estimates of fault networks: example for the western Corinth rift, Greece, Nat. Hazards Earth Syst. Sci., 17, 1857–1869, https://doi.org/10.5194/nhess-17-1857-2017, 2017.
Chartier, T., Scotti, O., and Lyon-Caen, H.: SHERIFS: Open-source code for computing earthquake rates in fault systems and constructing hazard models, Seismol. Res. Lett., 90, 1678–1688, 2019 (code available at: https://github.com/tomchartier/SHERIFS, last access: September 2025).
Cheng, J., Xu, X., Ren, J., Zhang, S., and Wu, X.: Probabilistic multi-segment rupture seismic hazard along the Xiaojiang fault zone, southeastern Tibetan Plateau, J. Asian Earth Sci., 221, 104940, https://doi.org/10.1016/j.jseaes.2021.104940, 2021.
Chiou, B. S. J. and Youngs, R. R.: Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra, Earthq. Spectra, 30, 1117–1153, 2014.
Daëron, M.: Rôle, cinématique et comportement sismique à long terme de la faille de Yammouneh, Thèse de doctorat, Inst. De Phys. du Globe de Paris, Paris, 178 pp., https://theses.fr/2005GLOB0022 (last access: September 2025), 2005.
Daëron, M., Benedetti, L., Tapponnier, P., Sursock, A., and Finkel, R. C.: Constraints on the post ∼ 25-ka slip rate of the Yammouneh fault (Lebanon) using in situ cosmogenic 36Cl dating of offset limestone clast fans, Earth Planet. Sci. Lett., 227, 105–119, https://doi.org/10.1016/j.epsl.2004.07.014, 2004.
Daëron, M., Klinger, Y., Tapponnier, P., Elias, A., Jacques, E., and Sursock, A.: Sources of the large AD 1202 and 1759 Near East earthquakes, Geology, 33, 529–532, https://doi.org/10.1130/G21352.1, 2005.
Daëron, M., Klinger, Y., Tapponnier, P., Elias, A., Jacques, E., and Sursock, A.: 12 000-year-long record of 10 to 13 paleoearthquakes on the Yammouneh fault, Levant fault system, Lebanon, B. Seismol. Soc. Am., 97, 749–771, https://doi.org/10.1785/0120060106, 2007.
Danciu, L., Giardini, D., Weatherill, G., Basili, R., Nandan, S., Rovida, A., Beauval, C., Bard, P.-Y., Pagani, M., Reyes, C. G., Sesetyan, K., Vilanova, S., Cotton, F., and Wiemer, S.: The 2020 European Seismic Hazard Model: overview and results, Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, 2024.
Eberhart-Phillips, D., Haeussler, P. J., Freymueller, J. T., Franckel, A. D., Rubin, C. M., Craw, P., Ratchkovski, N. A., Anderson, G., Carver, G. A., Crone, A. J., Dawsson, T. E., Fletcher, H., Hansen, R., Harp, E. L., Harris, R. A., Hill, D. P., Hreinsdottiir, S., Jibson, R. W., Jones, L. M., Kayen, R., Keefer, D. K., Larsen, C. F., Moran, S. C., Personius, S. F., Plafker, G., Sherrod, B., Sieh, K., Sitar, N., and Wallace, W. K.: The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event, Science, 300, 1113–1118, 2003.
Ekström, G., Nettles, M., and Dziewoński, A. M.: The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. In., 200, 1–9, 2012.
Elias, A., Tapponnier, P., Singh, S. C., King, G. C. P., Briais, A., Daëron, M., Carton, H., Sursock, A., Jacques, E., Jomaa, R., and Klinger, Y.: Active thrusting offshore Mount Lebanon: Source of the tsunamigenic A.D. 551 Beirut-Tripoli earthquake, Geology, 35, 755–758, https://doi.org/10.1130/G23631A.1, 2007.
El Kadri, S., Beauval, C., Brax, M., Bard, P. Y., Vergnolle, M., and Klinger, Y.: A fault-based probabilistic seismic hazard model for Lebanon, controlling parameters and hazard levels, B. Earthq. Eng., 21, 3163–3197, https://doi.org/10.1007/s10518-023-01631-z, 2023.
Ellsworth, W. L., Matthews, M. V., Nadeau, R. M., Nishenko, S. P., Reasenberg, P. A., and Simpson, R. A.: A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities. Workshop on earthquake recurrence: state of the art and directions for the future, Istituto Nazionale de Geofisica, Rome, Italy, 22–25 February 1999, proceeding, 22 pp., https://doi.org/10.3133/ofr99522, 1999.
Ferry, M., Meghraoui, M., Abou Karaki. N., Al-Taj, M., and Khalil, L.: Episodic behavior of the Jordan Valley section of the Dead Sea fault inferred from a 14-ka-long integrated catalog of large earthquakes episodic behavior of the Jordan Valley section of the Dead Sea fault, B. Seismol. Soc. Am., 101, 39–67, https://doi.org/10.1785/0120100097, 2011.
Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K. R., Page, M. T., Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon, R. J., and Zeng, Y.: Uniform California earthquake rupture forecast, version 3 (UCERF3) – The time-independent model, B. Seismol. Soc. Am., 104, 1122–1180, https://doi.org/10.1785/0120130164, 2014.
Fletcher, J., Teran, O. J., Rockwell, T. K., Oskin, M. E., Hudnut, K. W., Mueller, K. J., Spelz, R. M., Akciz, S. O., Masana, E., Faneros, G., Fielding, E. J., Leprince, S., Morelan, A. E., Stock, J., Lynch, D. K., Elliott, A. J., Gold, P., Liu-Zeng, J., González-Ortega, A., Hinojosa-Corona, A., and González-García, J.: Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor-Cucapah (Mexico) Mw 7.2 earthquake, Geosphere, 10, 797–827, https://doi.org/10.1130/ges00933.1, 2014.
Geist, E. L. and ten Brink, U. S.: Earthquake magnitude distributions on northern Caribbean faults from combinatorial optimization models, J. Geophys. Res.-Sol. Ea., 126, e2021JB022050, https://doi.org/10.1029/2021JB022050, 2021.
Gomez, F., Meghraoui, M., Darkal, A. N., Hijazi, F., Mouty, M., Suleiman, Y., Sbeinati, R., Darawcheh, R., Al-Ghazzi, R., and Barazangi, M.: Holocene faulting and earthquake recurrence along the Serghaya branchof the Dead Sea fault system in Syria and Lebanon, Geophys. J. Int., 153, 658–674, https://doi.org/10.1046/j.1365-246X.2003.01933.x, 2003.
Gomez, F., Karam, G., Khawlie, M., McClusky, S., Vernant, P., Reilinger, R., Jaafar, R., Tabet, C., Khair, K. and Barazangi, M.: Global Positioning System measurements of strain accumulation and slip transfer through the restraining bend along the Dead Sea fault system in Lebanon, Geophys. J. Int., 168, 1021–1028, https://doi.org/10.1111/j.1365-246X.2006.03328.x, 2007a.
Gomez, F., Nemer, T., Tabet, C., Khawlie, M., Meghraoui, M., and Barazangi, M.: Strain partitioning of active transpression within the Lebanese restraining bend of the Dead Sea Fault (Lebanon and SW Syria), Geol. Soc. Spec. Publ., 290, 285–303, 2007b.
Gómez-Novell, O., García-Mayordomo, J., Ortuño, M., Masana, E. and Chartier, T.: Fault System-Based Probabilistic Seismic Hazard Assessment of a Moderate Seismicity Region: The Eastern Betics Shear Zone (SE Spain), Front. Earth Sci., 8, 579398, https://doi.org/10.3389/feart.2020.579398, 2020.
Gupta, A. and Scholz, C. H.: A model of normal fault interaction based on observations and theory, J. Struct. Geol., 22, 865–879, 2000.
Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright, T. J., D'Anastasio, E., Bannister, S., Burbridge, D., Denys, P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C., Power, W., Barnes, P., Barrell, D., Van Dissen, R., Langridge, R., Little, T., Nicol, A., Pettinga, J., Rowland, J. and Stirling, M.: Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand, Science, 356, eaam7194, https://doi.org/10.1126/science.aam7194, 2017.
Harrichhausen, N., Audin, L., Baize, S., Johnson, K. L., Beauval, C., Jarrin, P., Marconato, L., Rolandone, F., Jomard, H., Nocquet, J.-M., Alvarado, A., and Mothes, P. A.: Fault source models show slip rates measured across the width of the entire fault zone best represent the observed seismicity of the Pallatanga–Puna Fault, Ecuador, Seismol. Res. Lett., 95, 95–112, 2024.
Harris, R. A. and Day, S. M.: Dynamics of fault interaction: Parallel strike-slip faults, J. Geophys. Res.-Sol. Ea., 98, 4461–4472, 1993.
Kagan, Y. Y.: Seismic moment distribution revisited: I. Statistical results, Geophys. J. Int., 148, 520–541, https://doi.org/10.1046/j.1365-246x.2002.01594.x, 2002.
Klinger, Y., Xu, X., Tapponnier, P., Van der Woerd, J., Lasserre, C., and King, G.: High-resolution satellite imagery mapping of the surface rupture and slip distribution of the Mw ∼ 7.8, 14 November 2001 Kokoxili earthquake, Kunlun fault, northern Tibet, China, B. Seismol. Soc. Am., 95, 1970–1987, 2005.
Klinger, Y., Le Béon, M., and Al-Qaryouti, M.: 5000 yr of paleoseismicity along the southern Dead Sea fault, Geophys. J. Int., 202, 313–327, 2015.
Klinger, Y., Okubo, K., Vallage, A., Champenois, J., Delorme, A., Rougier, E., Lei, Z., Knight, E. E., Munjiza, A., Satriano, C., Baize, S., Langridge, R., and Bhat, H. S.: Earthquake damage patterns resolve complex rupture processes, Geophys. Res. Lett., 45, 10279–10287, https://doi.org/10.1029/2018GL078842, 2018.
Kotha, S. R., Weatherill, G., Bindi, D., and Cotton, F.: A regionally-adaptable ground-motion model for shallow crustal earthquakes in Europe, B. Earthq. Eng., 18, 4091–4125, https://doi.org/10.1007/s10518-020-00869-1, 2020.
Lefevre, M., Klinger, Y., Al-Qaryouti, M., Le Béon, M., and Moumani, K.: Slip deficit and temporal clustering along the Dead Sea fault from paleoseismological investigations, Sci. Rep., 8, 4511, https://doi.org/10.1038/s41598-018-22627-9, 2018.
Leonard, M.: Self-consistent earthquake fault-scaling relations: update and extension to stable continental strike-slip faults, B. Seismol. Soc. Am., 104, 2953–2965, https://doi.org/10.1785/0120140087, 2014.
Li, X., Jonsson, S., Liu, S., Ma, Z., Castro-Perdomo, N., Cesca, S., Masson, F., and Klinger, Y.: Resolving the slip-rate inconsistency of the northern Dead Sea fault, Sci. Adv., 10, eadj8408, https://doi.org/10.1126/sciadv.adj8408, 2024.
Lolli, B., Gasperini, P., and Vannucci, G.: Empirical conversion between teleseismic magnitudes (mb and Ms) and moment magnitude (Mw) at the Global, Euro-Mediterranean and Italian scale, Geophys. J. Int. 199, 805–828, 2014.
Lu, Y., Wetzler, N., Waldmann, N., Agnon, A., Biasi, G. P., and Marco, S.: A 220,000-year-long continuous large earthquake record on a slow-slipping plate boundary, Sci. Adv., 6, eaba4170, https://doi.org/10.1126/sciadv.aba4170, 2020.
Meghraoui, M.: Paleoseismic history of the Dead Sea fault zone, in: Encyclopedia of Earthquake Engineering, edited by: Beer, M., Kougioumtzoglou, I., Patelli, E., and Au, I. K., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-36197-5_40-1, 2015.
Meghraoui, M., Gomez, F., Sbeinati, R., Van der Woerd, J., Mouty, M., Darkal, A. N., Radwan, Y., Layyous, I., Al Najjar, H., Darawcheh, R., Hijazi, F., Al-Ghazzi, R., and Barazangi, M.: Evidence for 830 years of seismic quiescence from palaeoseismology, archaeoseismology and historical seismicity along the Dead Sea fault in Syria, Earth Planet. Sci. Lett., 210, 35–52, https://doi.org/10.1016/S0012-821X(03)00144-4, 2003.
Meletti, C., Marzocchi, W., D'Amico, V., Lanzano, G., Luzi, L., Martinelli, F., Pace, B., Rovida, A., Taroni, M., and Visini, F.: The new Italian seismic hazard model (MPS19), Ann. Geophys., 64, SE112, https://doi.org/10.4401/ag-8579, 2021.
Milner, K., Page, M. T., Field, E. H., Parsons, T., Biasi, G., and Shaw, B. E.: Defining the inversion rupture set via plausibility filters, U.S.G.S Open-File Report 2013-1165, Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) – The Time-Independent Model, Appendix T, 14 pp., https://pubs.usgs.gov/of/2013/1165/ (last access: September 2025), 2013.
Milner, K. R., Shaw, B. E., and Field, E. H.: Enumerating Plausible Multifault Ruptures in Complex Fault Systems with Physical Constraints, B. Seismol. Soc. Am., 112, 1806–1824, https://doi.org/10.1785/0120210322, 2022.
Moratto, L., Santulin, M., Tamaro, A., Saraò, A., Vuan, A., and Rebez, A.: Near-source ground motion estimation for assessing the seismic hazard of critical facilities in central Italy, B. Earthq. Eng., 21, 53–75, https://doi.org/10.1007/s10518-022-01555-0, 2023.
Nemer, B.: Time-dependent models for on-fault earthquakes in a PSHA study, Grenoble Alpes University, Master in Natural Geological Hazards and Risks, internship report, 31 pp., 2023.
Nemer, T. and Meghraoui, M.: Evidence of coseismic ruptures along the Roum fault (Lebanon): a possible source for the AD 1837 earthquake, J. Struct. Geol., 28, 1483–1495, https://doi.org/10.1016/j.jsg.2006.03.038, 2006.
Nemer, T., Meghraoui, M., and Khair, K.: The Rachaya-Serghaya fault system (Lebanon): evidence of coseismic ruptures, and the AD 1759 earthquake sequence, J. Geophys. Res.-Sol. Ea., 113, 1–12, https://doi.org/10.1029/2007JB005090, 2008a.
Nemer, T., Gomez, F., Al Haddad, S., and Tabet, C.: Coseismic growth of sedimentary basins along the Yammouneh strike-slip fault (Lebanon), Geophys. J. Int., 175, 1023–1039, https://doi.org/10.1111/j.1365-246X.2008.03889.x, 2008b.
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., and Vigano, D.: OpenQuake-engine: an open hazard (and risk) software for the global earthquake model, Seismol. Res. Lett., 85, 692–702, https://doi.org/10.1785/0220130087, 2014.
Page, M. T., Field, E. H., Milner, K. R., and Powers, P. M.: The UCERF3 grand inversion: Solving for the long-term rate of ruptures in a fault system, B. Seismol. Soc. Am., 104, 1181–1204, 2014.
Sbeinati, M. R., Meghraoui, M., Suleyman, G., Gomez, F., Grootes, P., Nadeau, M., Al Najjar, H., and Al-Ghazzi, R.: Timing of earthquake ruptures at the Al Harif Roman Aqueduct (Dead Sea fault, Syria) from archeoseismology and paleoseismology, Special volume “Archaeoseismology and paleoseismology, in: Ancient earthquakes: geological society of America special paper, edited by: Sintubin, M., Stewart, I. S., Niemi, T. M., and Altunel, E., 471, 243–267, https://doi.org/10.1130/2010.2471(20), 2010.
Scholz, C. H. and Gupta, A.: Fault interactions and seismic hazard, J. Geodyn., 29, 459–467, 2000.
Sesetyan, K., Demircioglu, M. B., Duman, T. Y., Çan, T., Tekin, S., Azak, T. E., and Fercan, Ö. Z.: A probabilistic seismic hazard assessment for the Turkish territory – part I: the area source model, B. Earthq. Eng., 16, 3367–3397, 2018.
Storchak, D. A., Di Giacomo, D., Engdahl, E. R., Harris, J., Bondár, I., Lee, W. H. K., Bormann, P., and Villaseñor, A.: The ISC-GEM Global Instrumental Earthquake Catalog (1900–2009): Introduction, Phys. Earth Planet. In., 239, 48–63, https://doi.org/10.1016/j.pepi.2014.06.009, 2015.
Storchak, D. A., Harris, J., Brown, L., Lieser, K., Shumba, B., and Di Giacomo, D.: Rebuild of the Bulletin of the International Seismological Centre (ISC) – part 2: 1980–2010, Geoscience Letters, 7, 1–21, 2020.
Visini, F., Valentini, A., Chartier, T., Scotti, O., and Pace, B.: Computational tools for relaxing the fault segmentation in probabilistic seismic hazard modelling in complex fault systems, Pure Appl. Geophys., 177, 1855–1877, 2020.
Visini, F., Pace, B., Meletti, C., Marzocchi, W., Akinci, A., Azzaro, R., Barani, S., Barberi, G., Barreca, G., and Basili, R.: Earthquake Rupture Forecasts for the MPS19 Seismic Hazard Model of Italy, Ann. Geophys., 64, SE220, https://doi.org/10.4401/ag-8608, 2021.
Wang, Y. J., Chan, C. H., Lee, Y. T., Ma, K. F., Shyu, J. B. H., Rau, R. J., and Cheng, C. T.: Probabilistic seismic hazard assessment for Taiwan, Terr. Atmos. Ocean. Sci, 27, 325–340, 2016.
Wechsler, N., Rockwell, T. K., Klinger, Y., Štěpančíková, P., Kanari, M., Marco, S., and Agnon, A.: A paleoseismic record of earthquakes for the Dead Sea transform fault between the first and seventh centuries CE: nonperiodic behavior of a plate boundary fault, B. Seismol. Soc. Am., 104, 1329–1347, https://doi.org/10.1785/0120130304, 2014.
Wechsler, N., Rockwell, T. K., and Klinger, Y.: Variable slip-rate and slip-per-event on a plate boundary fault: The Dead Sea fault in northern Israel, Tectonophysics, 722, 210–226, 2018.
Wesnousky, S. G.: Predicting the endpoints of earthquake ruptures, Nature, 444, 358–360, 2006.
Yeats, R. S., Sieh, K. E., and Allen, C. R.: The geology of earthquakes, New York, Oxford University Press, 568 pp., ISBN 0 19 507827 6, 1997.
Youngs, R. R. and Coppersmith, K. J.: Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates, B. Seismol. Soc. Am., 75, 939–964, 1985.
Zare, M., Amini, H., Yazdi, P., Sesetyan, K., Demircioglu, M. B., Kalafat, D., Erdik, M., Giardini, D., Khan, M. A., and Tsereteli, N.: Recent developments of the Middle East catalog, J. Seismol., 18, 749–772, 2014.
Zhang, Y., Tang, X., Liu, D., Taymaz, T., Eken, T., Guo, R., Zheng, Y., Wang, J., and Sun, H.: Geometric controls on cascading rupture of the 2023 Kahramanmaraş earthquake doublet, Nat. Geosci., https://doi.org/10.1038/s41561-023-01283-3, 2023.
Short summary
Seismic hazard evaluation is required for establishing earthquake-resistant building codes. Our aim is to improve the quantification of seismic hazard in the Levant by including our knowledge on how faults may be interconnected. We build an earthquake forecast by redistributing the energy stored in the fault system over all possible earthquake ruptures. This interconnected fault model leads to seismic hazard maps where hazard is as high on secondary fault branches as on main branches.
Seismic hazard evaluation is required for establishing earthquake-resistant building codes. Our...
Altmetrics
Final-revised paper
Preprint