Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-3309-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3309-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
What if extreme droughts occur more frequently? Mechanisms and limits of forest adaptation in pine monocultures and mixed forests in Berlin–Brandenburg, Germany
Jamir Priesner
CORRESPONDING AUTHOR
Theoretical Ecology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 2/4, Gartenhaus, 14195 Berlin, Germany
Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegraphenberg A31, 14473 Potsdam, Germany
Boris Sakschewski
Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegraphenberg A31, 14473 Potsdam, Germany
Maik Billing
Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegraphenberg A31, 14473 Potsdam, Germany
Werner von Bloh
Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegraphenberg A31, 14473 Potsdam, Germany
Sebastian Fiedler
Theoretical Ecology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 2/4, Gartenhaus, 14195 Berlin, Germany
Department of Plant Ecology, Technische Universität Berlin, Berlin, Germany
Sarah Bereswill
Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegraphenberg A31, 14473 Potsdam, Germany
Kirsten Thonicke
Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegraphenberg A31, 14473 Potsdam, Germany
Britta Tietjen
Theoretical Ecology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 2/4, Gartenhaus, 14195 Berlin, Germany
Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
Related authors
No articles found.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
Jéssica Schüler, Sarah Bereswill, Werner von Bloh, Maik Billing, Boris Sakschewski, Luke Oberhagemann, Kirsten Thonicke, and Mercedes M. C. Bustamante
EGUsphere, https://doi.org/10.5194/egusphere-2025-2225, https://doi.org/10.5194/egusphere-2025-2225, 2025
Short summary
Short summary
We introduced a new plant type into a global vegetation model to better represent the ecology of the Cerrado, South America's second largest biome. This improved the model’s ability to simulate vegetation structure, root systems, and fire dynamics, aligning more closely with observations. Our results enhance understanding of tropical savannas and provide a stronger basis for studying their responses to fire and climate change at regional and global scales.
Marie Brunel, Stephen Wirth, Markus Drüke, Kirsten Thonicke, Henrique Barbosa, Jens Heinke, and Susanne Rolinski
EGUsphere, https://doi.org/10.5194/egusphere-2025-922, https://doi.org/10.5194/egusphere-2025-922, 2025
Short summary
Short summary
Farmers often use fire to clear dead pasture biomass, impacting vegetation and soil nutrients. This study integrates fire management into a DGVM to assess its effects, focusing on Brazil. The results show that combining grazing and fire management reduces vegetation carbon and soil nitrogen over time. The research highlights the need to include these practices in models to improve pasture management assessments and calls for better data on fire usage and its long-term effects.
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
Geosci. Model Dev., 18, 2021–2050, https://doi.org/10.5194/gmd-18-2021-2025, https://doi.org/10.5194/gmd-18-2021-2025, 2025
Short summary
Short summary
Under climate change, the conditions necessary for wildfires to form are occurring more frequently in many parts of the world. To help predict how wildfires will change in future, global fire models are being developed. We analyze and further develop one such model, SPITFIRE. Our work identifies and corrects sources of substantial bias in the model that are important to the global fire modelling field. With this analysis and these developments, we help to provide a basis for future improvements.
Felix Nößler, Thibault Moulin, Oksana Buzhdygan, Britta Tietjen, and Felix May
EGUsphere, https://doi.org/10.5194/egusphere-2024-3798, https://doi.org/10.5194/egusphere-2024-3798, 2024
Short summary
Short summary
To predict the response of grassland plant communities to management and climate change, we developed the computer model GrasslandTraitSim.jl. Unlike other models, it uses measurable plant traits such as height, leaf thinness, and root structure as inputs, rather than hard-to-measure species data. This allows realistic simulation of many species. The model tracks daily changes in above- and below-ground biomass, plant height, and soil water, linking plant community composition to biomass supply.
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024, https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Short summary
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
Markus Drüke, Wolfgang Lucht, Werner von Bloh, Stefan Petri, Boris Sakschewski, Arne Tobian, Sina Loriani, Sibyll Schaphoff, Georg Feulner, and Kirsten Thonicke
Earth Syst. Dynam., 15, 467–483, https://doi.org/10.5194/esd-15-467-2024, https://doi.org/10.5194/esd-15-467-2024, 2024
Short summary
Short summary
The planetary boundary framework characterizes major risks of destabilization of the Earth system. We use the comprehensive Earth system model POEM to study the impact of the interacting boundaries for climate change and land system change. Our study shows the importance of long-term effects on carbon dynamics and climate, as well as the need to investigate both boundaries simultaneously and to generally keep both boundaries within acceptable ranges to avoid a catastrophic scenario for humanity.
Stephen Björn Wirth, Arne Poyda, Friedhelm Taube, Britta Tietjen, Christoph Müller, Kirsten Thonicke, Anja Linstädter, Kai Behn, Sibyll Schaphoff, Werner von Bloh, and Susanne Rolinski
Biogeosciences, 21, 381–410, https://doi.org/10.5194/bg-21-381-2024, https://doi.org/10.5194/bg-21-381-2024, 2024
Short summary
Short summary
In dynamic global vegetation models (DGVMs), the role of functional diversity in forage supply and soil organic carbon storage of grasslands is not explicitly taken into account. We introduced functional diversity into the Lund Potsdam Jena managed Land (LPJmL) DGVM using CSR theory. The new model reproduced well-known trade-offs between plant traits and can be used to quantify the role of functional diversity in climate change mitigation using different functional diversity scenarios.
Jenny Niebsch, Werner von Bloh, Kirsten Thonicke, and Ronny Ramlau
Geosci. Model Dev., 16, 17–33, https://doi.org/10.5194/gmd-16-17-2023, https://doi.org/10.5194/gmd-16-17-2023, 2023
Short summary
Short summary
The impacts of climate change require strategies for climate adaptation. Dynamic global vegetation models (DGVMs) are used to study the effects of multiple processes in the biosphere under climate change. There is a demand for a better computational performance of the models. In this paper, the photosynthesis model in the Lund–Potsdam–Jena managed Land DGVM (4.0.002) was examined. We found a better numerical solution of a nonlinear equation. A significant run time reduction was possible.
Phillip Papastefanou, Christian S. Zang, Zlatan Angelov, Aline Anderson de Castro, Juan Carlos Jimenez, Luiz Felipe Campos De Rezende, Romina C. Ruscica, Boris Sakschewski, Anna A. Sörensson, Kirsten Thonicke, Carolina Vera, Nicolas Viovy, Celso Von Randow, and Anja Rammig
Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, https://doi.org/10.5194/bg-19-3843-2022, 2022
Short summary
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
Boris Sakschewski, Werner von Bloh, Markus Drüke, Anna Amelia Sörensson, Romina Ruscica, Fanny Langerwisch, Maik Billing, Sarah Bereswill, Marina Hirota, Rafael Silva Oliveira, Jens Heinke, and Kirsten Thonicke
Biogeosciences, 18, 4091–4116, https://doi.org/10.5194/bg-18-4091-2021, https://doi.org/10.5194/bg-18-4091-2021, 2021
Short summary
Short summary
This study shows how local adaptations of tree roots across tropical and sub-tropical South America explain patterns of biome distribution, productivity and evapotranspiration on this continent. By allowing for high diversity of tree rooting strategies in a dynamic global vegetation model (DGVM), we are able to mechanistically explain patterns of mean rooting depth and the effects on ecosystem functions. The approach can advance DGVMs and Earth system models.
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Short summary
In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
Yvonne Jans, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Hydrol. Earth Syst. Sci., 25, 2027–2044, https://doi.org/10.5194/hess-25-2027-2021, https://doi.org/10.5194/hess-25-2027-2021, 2021
Short summary
Short summary
Growth of and irrigation water demand on cotton may be challenged by future climate change. To analyze the global cotton production and irrigation water consumption under spatially varying present and future climatic conditions, we use the global terrestrial biosphere model LPJmL. Our simulation results suggest that the beneficial effects of elevated [CO2] on cotton yields overcompensate yield losses from direct climate change impacts, i.e., without the beneficial effect of [CO2] fertilization.
Cited articles
Aiba, M. and Nakashizuka, T.: Architectural differences associated with adult stature and wood density in 30 temperate tree species, Funct. Ecol., 23, 265–273, https://doi.org/10.1111/j.1365-2435.2008.01500.x, 2009.
Ali, A. and Yan, E.-R.: Relationships between biodiversity and carbon stocks in forest ecosystems: a systematic literature review, Trop. Ecol., 58, 1–14, 2017.
Ammer, C.: Unraveling the Importance of Inter- and Intraspecific Competition for the Adaptation of Forests to Climate Change, in: Progress in Botany, edited by: Cánovas, F. M., Lüttge, U., and Matyssek, R., Springer International Publishing, Cham, vol. 78, 345–367, https://doi.org/10.1007/124_2016_14, 2017.
Copernicus: Europe experiences widespread flooding and severe heatwaves in 2023, Copernicus, https://climate.copernicus.eu/europe-experiences-widespread-flooding-and-severe-heatwaves-2023 (last access: 12 August 2024), 2023.
Astigarraga, J., Esquivel-Muelbert, A., Ruiz-Benito, P., Rodríguez-Sánchez, F., Zavala, M. A., Vilà-Cabrera, A., Schelhaas, M.-J., Kunstler, G., Woodall, C. W., Cienciala, E., Dahlgren, J., Govaere, L., König, L. A., Lehtonen, A., Talarczyk, A., Liu, D., and Pugh, T. A. M.: Relative decline in density of Northern Hemisphere tree species in warm and arid regions of their climate niches, P. Natl. Acad. Sci. USA, 121, e2314899121, https://doi.org/10.1073/pnas.2314899121, 2024.
Austerlitz, F. and Garnier-Géré, P. H.: Modelling the impact of colonisation on genetic diversity and differentiation of forest trees: interaction of life cycle, pollen flow and seed long-distance dispersal, Heredity, 90, 282–290, https://doi.org/10.1038/sj.hdy.6800243, 2003.
Barredo, J. I., Brailescu, C., Teller, A., Sabatini, F. M., Mauri, A., and Janouskova, K.: Mapping and assessment of primary and old-growth forests in Europe, Publications Office of the European Union, https://doi.org/10.2760/797591, 2021.
Bart, F., Schmidt, B., Wang, X., Holtmann, A., Meier, F., Otto, M., and Scherer, D.: The Central Europe Refined analysis version 2 (CER v2): Evaluating three decades of high-resolution precipitation data for the Berlin-Brandenburg metropolitan region, Meteorol. Z., 339–363, https://doi.org/10.1127/metz/2024/1233, 2025.
Bauhus, J., Dieter, M., Farwig, N., Hafner, A., Kätzel, R., Kleinschmit, B., Lang, F., Lindner, M., Möhring, B., Müller, J., Niekisch, M., Richter, K., Schraml, U., and Seeling, U.: Die Anpassung von Wäldern und Waldwirtschaft an den Klimawandel: Gutachten des Wissenschaftlichen Beirates für Waldpolitik, Bundesministerium für Ernährung und Landwirtschaft, Berlin, ISBN 978-3-00-070408-6, 2021.
Bengtsson, J., Nilsson, S. G., Franc, A., and Menozzi, P.: Biodiversity, disturbances, ecosystem function and management of European forests, For. Ecol. Manag., 132, 39–50, https://doi.org/10.1016/S0378-1127(00)00378-9, 2000.
Bennett, A. C., McDowell, N. G., Allen, C. D., and Anderson-Teixeira, K. J.: Larger trees suffer most during drought in forests worldwide, Nat. Plants, 1, 1–5, https://doi.org/10.1038/nplants.2015.139, 2015.
Bigler, C. and Veblen, T. T.: Increased early growth rates decrease longevities of conifers in subalpine forests, Oikos, 118, 1130–1138, https://doi.org/10.1111/j.1600-0706.2009.17592.x, 2009.
Billing, M., Thonicke, K., Sakschewski, B., von Bloh, W., and Walz, A.: Future tree survival in European forests depends on understorey tree diversity, Sci. Rep., 12, 20750, https://doi.org/10.1038/s41598-022-25319-7, 2022.
Billing, M., Sakschewski, B., von Bloh, W., Vogel, J., and Thonicke, K.: “How to adapt forests?” – Exploring the role of leaf trait diversity for long-term forest biomass under new climate normals, Glob. Change Biol., 30, e17258, https://doi.org/10.1111/gcb.17258, 2024.
Black, B. A., Colbert, J. J., and Pederson, N.: Relationships between radial growth rates and lifespan within North American tree species, Écoscience, 15, 349–357, https://doi.org/10.2980/15-3-3149, 2008.
Bonebrake, T. C., Brown, C. J., Bell, J. D., Blanchard, J. L., Chauvenet, A., Champion, C., Chen, I.-C., Clark, T. D., Colwell, R. K., Danielsen, F., Dell, A. I., Donelson, J. M., Evengård, B., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B., Hobday, A. J., Jarzyna, M. A., Lee, E., Lenoir, J., Linnetved, H., Martin, V. Y., McCormack, P. C., McDonald, J., McDonald-Madden, E., Mitchell, N., Mustonen, T., Pandolfi, J. M., Pettorelli, N., Possingham, H., Pulsifer, P., Reynolds, M., Scheffers, B. R., Sorte, C. J. B., Strugnell, J. M., Tuanmu, M.-N., Twiname, S., Vergés, A., Villanueva, C., Wapstra, E., Wernberg, T., and Pecl, G. T.: Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science, Biol. Rev., 93, 284–305, https://doi.org/10.1111/brv.12344, 2018.
Brockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I., Gardiner, B., González-Olabarria, J. R., Lyver, P. O., Meurisse, N., Oxbrough, A., Taki, H., Thompson, I. D., van der Plas, F., and Jactel, H.: Forest biodiversity, ecosystem functioning and the provision of ecosystem services, Biodivers. Conserv., 26, 3005–3035, https://doi.org/10.1007/s10531-017-1453-2, 2017.
Bundesministerium für Ernährung und Landwirtschaft: Ergebnisse der Waldzustandserhebung 2021, Bundesministerium für Ernährung und Landwirtschaft, 2021.
Büntgen, U., Urban, O., Krusic, P. J., Rybníček, M., Kolář, T., Kyncl, T., Ač, A., Koňasová, E., Čáslavský, J., Esper, J., Wagner, S., Saurer, M., Tegel, W., Dobrovolný, P., Cherubini, P., Reinig, F., and Trnka, M.: Recent European drought extremes beyond Common Era background variability, Nat. Geosci., 14, 190–196, https://doi.org/10.1038/s41561-021-00698-0, 2021.
Buras, A. and Menzel, A.: Projecting Tree Species Composition Changes of European Forests for 2061–2090 Under RCP 4.5 and RCP 8.5 Scenarios, Front. Plant Sci., 9, 88–100, https://doi.org/10.3389/fpls.2018.01986, 2019.
Buras, A., Rammig, A., and Zang, C. S.: Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003, Biogeosciences, 17, 1655–1672, https://doi.org/10.5194/bg-17-1655-2020, 2020.
Chakraborty, D., Ciceu, A., Ballian, D., Benito Garzón, M., Bolte, A., Bozic, G., Buchacher, R., Čepl, J., Cremer, E., Ducousso, A., Gaviria, J., George, J. P., Hardtke, A., Ivankovic, M., Klisz, M., Kowalczyk, J., Kremer, A., Lstibůrek, M., Longauer, R., Mihai, G., Nagy, L., Petkova, K., Popov, E., Schirmer, R., Skrøppa, T., Solvin, T. M., Steffenrem, A., Stejskal, J., Stojnic, S., Volmer, K., and Schueler, S.: Assisted tree migration can preserve the European forest carbon sink under climate change, Nat. Clim. Change, 14, 845–852, https://doi.org/10.1038/s41558-024-02080-5, 2024.
Charru, M., Seynave, I., Hervé, J.-C., Bertrand, R., and Bontemps, J.-D.: Recent growth changes in Western European forests are driven by climate warming and structured across tree species climatic habitats, Ann. For. Sci., 74, 1–34, https://doi.org/10.1007/s13595-017-0626-1, 2017.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne, A. E.: Towards a worldwide wood economics spectrum, Ecol. Lett., 12, 351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x, 2009.
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., and Thomas, C. D.: Rapid Range Shifts of Species Associated with High Levels of Climate Warming, Science, 333, 1024–1026, https://doi.org/10.1126/science.1206432, 2011.
Cheng, J., Zhang, M., Yan, X., Zhang, C., Zhang, J., and Luo, Y.: Effects of Seed Size and Frequency on Seed Dispersal and Predation by Small Mammals, Biology, 13, 353, https://doi.org/10.3390/biology13050353, 2024.
Chisholm, R. A. and Dutta Gupta, T.: A critical assessment of the biodiversity–productivity relationship in forests and implications for conservation, Oecologia, 201, 887–900, https://doi.org/10.1007/s00442-023-05363-4, 2023.
Decarsin, R., Guillemot, J., le Maire, G., Blondeel, H., Meredieu, C., Achard, E., Bonal, D., Cochard, H., Corso, D., Delzon, S., Doucet, Z., Druel, A., Grossiord, C., Torres-Ruiz, J. M., Bauhus, J., Godbold, D. L., Hajek, P., Jactel, H., Jensen, J., Mereu, S., Ponette, Q., Rewald, B., Ruffault, J., Sandén, H., Scherer-Lorenzen, M., Serrano-León, H., Simioni, G., Verheyen, K., Werner, R., and Martin-StPaul, N.: Tree drought–mortality risk depends more on intrinsic species resistance than on stand species diversity, Glob. Change Biol., 30, e17503, https://doi.org/10.1111/gcb.17503, 2024.
Dittmann, D., Seelig, A. H., Thalmann, M., Wilkes, T., Junghans, V., Zahn, D., Klitzke, S., Peters, A., Haberkamp, J., Reemtsma, T., and Ruhl, A. S.: Potential and risks of water reuse in Brandenburg (Germany) – an interdisciplinary case study, Water Reuse, 14, 1–15, https://doi.org/10.2166/wrd.2024.081, 2024.
FAO and IIASA: Harmonized World Soil Database version 2.0, FAO, International Institute for Applied Systems Analysis (IIASA), ISBN 978-92-5-137499-3, 2023.
Fei, S., Desprez, J. M., Potter, K. M., Jo, I., Knott, J. A., and Oswalt, C. M.: Divergence of species responses to climate change, Sci. Adv., 3, e1603055, https://doi.org/10.1126/sciadv.1603055, 2017.
Fei, S., Jo, I., Guo, Q., Wardle, D. A., Fang, J., Chen, A., Oswalt, C. M., and Brockerhoff, E. G.: Impacts of climate on the biodiversity-productivity relationship in natural forests, Nat. Commun., 9, 5436, https://doi.org/10.1038/s41467-018-07880-w, 2018.
Forrester, D. I., Bonal, D., Dawud, S., Gessler, A., Granier, A., Pollastrini, M., and Grossiord, C.: Drought responses by individual tree species are not often correlated with tree species diversity in European forests, J. Appl. Ecol., 53, 1725–1734, https://doi.org/10.1111/1365-2664.12745, 2016.
Förster, A., Culmsee, H., and Leuschner, C.: Thinned northern German Scots pine forests have a low carbon storage and uptake potential in comparison to naturally developing beech forests, For. Ecol. Manag., 479, 118575, https://doi.org/10.1016/j.foreco.2020.118575, 2021.
Galván, J. D., Camarero, J. J., and Gutiérrez, E.: Seeing the trees for the forest: drivers of individual growth responses to climate in pinus uncinata mountain forests, J. Ecol., 102, 1244–1257, https://doi.org/10.1111/1365-2745.12268, 2014.
Gerber, S., Chadœuf, J., Gugerli, F., Lascoux, M., Buiteveld, J., Cottrell, J., Dounavi, A., Fineschi, S., Forrest, L. L., Fogelqvist, J., Goicoechea, P. G., Jensen, J. S., Salvini, D., Vendramin, G. G., and Kremer, A.: High Rates of Gene Flow by Pollen and Seed in Oak Populations across Europe, PLOS ONE, 9, e85130, https://doi.org/10.1371/journal.pone.0085130, 2014.
Granda, E., Gazol, A., and Camarero, J. J.: Functional diversity differently shapes growth resilience to drought for co-existing pine species, J. Veg. Sci., 29, 265–275, https://doi.org/10.1111/jvs.12617, 2018.
Greenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., and Jump, A. S.: Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area, Ecol. Lett., 20, 539–553, https://doi.org/10.1111/ele.12748, 2017.
Gregor, K., Knoke, T., Krause, A., Reyer, C. P. O., Lindeskog, M., Papastefanou, P., Smith, B., Lansø, A.-S., and Rammig, A.: Trade-Offs for Climate-Smart Forestry in Europe Under Uncertain Future Climate, Earths Future, 10, e2022EF002796, https://doi.org/10.1029/2022EF002796, 2022.
Gutsch, M., Lasch-Born, P., Kollas, C., Suckow, F., and Reyer, C. P. O.: Balancing trade-offs between ecosystem services in Germany's forests under climate change, Environ. Res. Lett., 13, 045012, https://doi.org/10.1088/1748-9326/aab4e5, 2018.
Haberstroh, S., Werner, C., Grün, M., Kreuzwieser, J., Seifert, T., Schindler, D., and Christen, A.: Central European 2018 hot drought shifts scots pine forest to its tipping point, Plant Biol., 24, 1186–1197, https://doi.org/10.1111/plb.13455, 2022.
Hanewinkel, M., Lessa Derci Augustynczik, A., and Yousefpour, R.: Climate-Smart Forestry Case Study: Germany, in: Forest Bioeconomy and Climate Change, edited by: Hetemäki, L., Kangas, J., and Peltola, H., Springer International Publishing, Cham, 197–209, https://doi.org/10.1007/978-3-030-99206-4_12, 2022.
Hannerz, M., Ekberg, I., and Norell, L.: Variation in Chilling Requirements for Completing Bud Rest Between Provenances of Norway Spruce, Silvae Genetica 52, 161–168, 2003.
Hisano, M., Chen, H. Y. H., Searle, E. B., and Reich, P. B.: Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century, Ecol. Lett., 22, 999–1008, https://doi.org/10.1111/ele.13259, 2019.
Houšková, K., Klepárník, J., and Mauer, O.: How to accelerate the germination of Scots pine and Norway spruce seeds?, J. For. Sci., 67, 134–142, https://doi.org/10.17221/133/2020-JFS, 2021.
Húdoková, H., Petrik, P., Petek-Petrik, A., Konôpková, A., Leštianska, A., Střelcová, K., Kmeť, J., and Kurjak, D.: Heat-stress response of photosystem II in five ecologically important tree species of European temperate forests, Biologia (Bratisl.), 77, 671–680, https://doi.org/10.1007/s11756-021-00958-9, 2022.
Johnson, S. E. and Abrams, M. D.: Age class, longevity and growth rate relationships: protracted growth increases in old trees in the eastern United States, Tree Physiol., 29, 1317–1328, https://doi.org/10.1093/treephys/tpp068, 2009.
Kallarackal, J. and Ramírez, F.: Functional Correlations of Wood Density, in: Wood Density: Functional Trait in Plants, edited by: Kallarackal, J. and Ramírez, F., Springer International Publishing, Cham, 21–40, https://doi.org/10.1007/978-3-031-61030-1_3, 2024.
Kim, M., Lee, S., Lee, S., Yi, K., Kim, H.-S., Chung, S., Chung, J., Kim, H. S., and Yoon, T. K.: Seed Dispersal Models for Natural Regeneration: A Review and Prospects, Forests, 13, 659, https://doi.org/10.3390/f13050659, 2022.
Lamentowicz, M., Marcisz, K., Guzowski, P., Gałka, M., Diaconu, A.-C., and Kołaczek, P.: How Joannites' economy eradicated primeval forest and created anthroecosystems in medieval Central Europe, Sci. Rep., 10, 18775, https://doi.org/10.1038/s41598-020-75692-4, 2020.
Land Brandenburg: Waldprogramm 2011, Land Brandenburg, 2011.
Land Brandenburg: WALDZUSTANDSBERICHT 2023 DES LANDES BRANDENBURG, Land Brandenburg, 2023.
Landeskompetenzentrum Forst Eberswalde: Waldbrandstatistik 2018, Landeskompetenzentrum Forst Eberswalde, 2018.
Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., Condit, R., D'Angelo, S., and Andrade, A.: Inferred longevity of Amazonian rainforest trees based on a long-term demographic study, For. Ecol. Manag., 190, 131–143, https://doi.org/10.1016/j.foreco.2003.09.011, 2004.
Lehsten, V., Mischurow, M., Lindström, E., Lehsten, D., and Lischke, H.: LPJ-GM 1.0: simulating migration efficiently in a dynamic vegetation model, Geosci. Model Dev., 12, 893–908, https://doi.org/10.5194/gmd-12-893-2019, 2019.
Lenoir, J. and Svenning, J.-C.: Climate-related range shifts – a global multidimensional synthesis and new research directions, Ecography, 38, 15–28, https://doi.org/10.1111/ecog.00967, 2015.
LfU Brandenburg: Klimawandelmonitoring im Land Brandenburg – Aktualisierungsbericht, LfU Brandenburg, 2021.
LfU Brandenburg: Klimawandel in Brandenburg, LfU Brandenburg, 2022.
Martinez del Castillo, E., Zang, C. S., Buras, A., Hacket-Pain, A., Esper, J., Serrano-Notivoli, R., Hartl, C., Weigel, R., Klesse, S., Resco de Dios, V., Scharnweber, T., Dorado-Liñán, I., van der Maaten-Theunissen, M., van der Maaten, E., Jump, A., Mikac, S., Banzragch, B.-E., Beck, W., Cavin, L., Claessens, H., Čada, V., Čufar, K., Dulamsuren, C., Gričar, J., Gil-Pelegrín, E., Janda, P., Kazimirovic, M., Kreyling, J., Latte, N., Leuschner, C., Longares, L. A., Menzel, A., Merela, M., Motta, R., Muffler, L., Nola, P., Petritan, A. M., Petritan, I. C., Prislan, P., Rubio-Cuadrado, Á., Rydval, M., Stajić, B., Svoboda, M., Toromani, E., Trotsiuk, V., Wilmking, M., Zlatanov, T., and de Luis, M.: Climate-change-driven growth decline of European beech forests, Commun. Biol., 5, 1–9, https://doi.org/10.1038/s42003-022-03107-3, 2022.
Milad, M., Schaich, H., and Konold, W.: How is adaptation to climate change reflected in current practice of forest management and conservation? A case study from Germany, Biodivers. Conserv., 22, 1181–1202, https://doi.org/10.1007/s10531-012-0337-8, 2013.
Mori, A. S., Furukawa, T., and Sasaki, T.: Response diversity determines the resilience of ecosystems to environmental change, Biol. Rev., 88, 349–364, https://doi.org/10.1111/brv.12004, 2013.
Morin, X., Fahse, L., Scherer-Lorenzen, M., and Bugmann, H.: Tree species richness promotes productivity in temperate forests through strong complementarity between species, Ecol. Lett., 14, 1211–1219, https://doi.org/10.1111/j.1461-0248.2011.01691.x, 2011.
Nabais, C., Hansen, J. K., David-Schwartz, R., Klisz, M., López, R., and Rozenberg, P.: The effect of climate on wood density: What provenance trials tell us?, For. Ecol. Manag., 408, 148–156, https://doi.org/10.1016/j.foreco.2017.10.040, 2018.
Nelson, R. A., Francis, E. J., Berry, J. A., Cornwell, W. K., and Anderegg, L. D. L.: The Role of Climate Niche, Geofloristic History, Habitat Preference, and Allometry on Wood Density within a California Plant Community, Forests, 11, 105, https://doi.org/10.3390/f11010105, 2020.
Niedertscheider, M., Kuemmerle, T., Müller, D., and Erb, K.-H.: Exploring the effects of drastic institutional and socio-economic changes on land system dynamics in Germany between 1883 and 2007, Glob. Environ. Change Hum. Policy Dimens., 28, 98–108, https://doi.org/10.1016/j.gloenvcha.2014.06.006, 2014.
Ostberg, S., Müller, C., Heinke, J., and Schaphoff, S.: LandInG 1.0: a toolbox to derive input datasets for terrestrial ecosystem modelling at variable resolutions from heterogeneous sources, Geosci. Model Dev., 16, 3375–3406, https://doi.org/10.5194/gmd-16-3375-2023, 2023.
Pardos, M., del Río, M., Pretzsch, H., Jactel, H., Bielak, K., Bravo, F., Brazaitis, G., Defossez, E., Engel, M., Godvod, K., Jacobs, K., Jansone, L., Jansons, A., Morin, X., Nothdurft, A., Oreti, L., Ponette, Q., Pach, M., Riofrío, J., Ruíz-Peinado, R., Tomao, A., Uhl, E., and Calama, R.: The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe, For. Ecol. Manag., 481, 118687, https://doi.org/10.1016/j.foreco.2020.118687, 2021.
Parmesan, C. and Yohe, G.: A globally coherent fingerprint of climate change impacts across natural systems, Nature, 421, 37–42, https://doi.org/10.1038/nature01286, 2003.
Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A., Niu, G.-Y., Williams, Z., Brunke, M. A., and Gochis, D.: A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling, J. Adv. Model. Earth Syst., 8, 41–65, https://doi.org/10.1002/2015MS000526, 2016.
Piovesan, G., Biondi, F., Filippo, A. D., Alessandrini, A., and Maugeri, M.: Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy, Glob. Change Biol., 14, 1265–1281, https://doi.org/10.1111/j.1365-2486.2008.01570.x, 2008.
Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J.-C., Peña-Claros, M., Sterck, F., Villegas, Z., and Sass-Klaassen, U.: The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species, New Phytol., 185, 481–492, https://doi.org/10.1111/j.1469-8137.2009.03092.x, 2010.
Pradhan, P., Seydewitz, T., Zhou, B., Lüdeke, M. K. B., and Kropp, J. P.: Climate Extremes are Becoming More Frequent, Co-occurring, and Persistent in Europe, Anthr. Sci., 1, 264–277, https://doi.org/10.1007/s44177-022-00022-4, 2022.
Pretzsch, H. and Biber, P.: Tree species mixing can increase maximum stand density, Can. J. For. Res., 46, 1179–1193, https://doi.org/10.1139/cjfr-2015-0413, 2016.
Pretzsch, H. and Forrester, D. I.: Stand Dynamics of Mixed-Species Stands Compared with Monocultures, in: Mixed-Species Forests: Ecology and Management, edited by: Pretzsch, H., Forrester, D. I., and Bauhus, J., Springer, Berlin, Heidelberg, 117–209, https://doi.org/10.1007/978-3-662-54553-9_4, 2017.
Pretzsch, H. and Schütze, G.: Effect of tree species mixing on the size structure, density, and yield of forest stands, Eur. J. For. Res., 135, 1–22, https://doi.org/10.1007/s10342-015-0913-z, 2016.
Pretzsch, H., Schütze, G., and Uhl, E.: Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation, Plant Biol., 15, 483–495, https://doi.org/10.1111/j.1438-8677.2012.00670.x, 2013.
Pretzsch, H., Biber, P., Schütze, G., Uhl, E., and Rötzer, T.: Forest stand growth dynamics in Central Europe have accelerated since 1870, Nat. Commun., 5, 4967, https://doi.org/10.1038/ncomms5967, 2014.
Pretzsch, H., Hilmers, T., Biber, P., Avdagić, A., Binder, F., Bončina, A., Bosela, M., Dobor, L., Forrester, D. I., Lévesque, M., Ibrahimspahić, A., Nagel, T. A., del Río, M., Sitkova, Z., Schütze, G., Stajić, B., Stojanović, D., Uhl, E., Zlatanov, T., and Tognetti, R.: Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries, Can. J. For. Res., 50, 689–703, https://doi.org/10.1139/cjfr-2019-0368, 2020.
Pretzsch, H., del Río, M., Arcangeli, C., Bielak, K., Dudzinska, M., Forrester, D. I., Klädtke, J., Kohnle, U., Ledermann, T., Matthews, R., Nagel, J., Nagel, R., Ningre, F., Nord-Larsen, T., and Biber, P.: Forest growth in Europe shows diverging large regional trends, Sci. Rep., 13, 15373, https://doi.org/10.1038/s41598-023-41077-6, 2023.
Rabasa, S. G., Granda, E., Benavides, R., Kunstler, G., Espelta, J. M., Ogaya, R., Peñuelas, J., Scherer-Lorenzen, M., Gil, W., Grodzki, W., Ambrozy, S., Bergh, J., Hódar, J. A., Zamora, R., and Valladares, F.: Disparity in elevational shifts of European trees in response to recent climate warming, Glob. Change Biol., 19, 2490–2499, https://doi.org/10.1111/gcb.12220, 2013.
Rampart, M.: Thermal time models and predictions for germination of six provenances of Scots pine (Pinus sylvestris) in southern England, University of Tlemcen – ALGERIA: Agriculture and Forestry Journal, 2, 81–88, E-ISSN 2602-5795, 2018.
Reinermann, S., Gessner, U., Asam, S., Kuenzer, C., and Dech, S.: The Effect of Droughts on Vegetation Condition in Germany: An Analysis Based on Two Decades of Satellite Earth Observation Time Series and Crop Yield Statistics, Remote Sens., 11, 1783, https://doi.org/10.3390/rs11151783, 2019.
Richards, A. E., Forrester, D. I., Bauhus, J., and Scherer-Lorenzen, M.: The influence of mixed tree plantations on the nutrition of individual species: a review, Tree Physiol., 30, 1192–1208, https://doi.org/10.1093/treephys/tpq035, 2010.
Rubenstein, M. A., Weiskopf, S. R., Carter, S. L., Eaton, M. J., Johnson, C., Lynch, A. J., Miller, B. W., Morelli, T. L., Rodriguez, M. A., Terando, A., and Thompson, L. M.: Do empirical observations support commonly-held climate change range shift hypotheses? A systematic review protocol, Environ. Evid., 9, 10, https://doi.org/10.1186/s13750-020-00194-9, 2020.
Rubenstein, M. A., Weiskopf, S. R., Bertrand, R., Carter, S. L., Comte, L., Eaton, M. J., Johnson, C. G., Lenoir, J., Lynch, A. J., Miller, B. W., Morelli, T. L., Rodriguez, M. A., Terando, A., and Thompson, L. M.: Climate change and the global redistribution of biodiversity: substantial variation in empirical support for expected range shifts, Environ. Evid., 12, 7, https://doi.org/10.1186/s13750-023-00296-0, 2023.
Ryan, M. G. and Yoder, B. J.: Hydraulic Limits to Tree Height and Tree Growth, BioScience, 47, 235–242, https://doi.org/10.2307/1313077, 1997.
Sakschewski, B., von Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L., Peñuelas, J., and Thonicke, K.: Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model, Glob. Change Biol., 21, 2711–2725, https://doi.org/10.1111/gcb.12870, 2015.
Sakschewski, B., von Bloh, W., Drüke, M., Sörensson, A. A., Ruscica, R., Langerwisch, F., Billing, M., Bereswill, S., Hirota, M., Oliveira, R. S., Heinke, J., and Thonicke, K.: Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests, Biogeosciences, 18, 4091–4116, https://doi.org/10.5194/bg-18-4091-2021, 2021.
Schaphoff, S., Forkel, M., Müller, C., Knauer, J., von Bloh, W., Gerten, D., Jägermeyr, J., Lucht, W., Rammig, A., Thonicke, K., and Waha, K.: LPJmL4 – a dynamic global vegetation model with managed land – Part 2: Model evaluation, Geosci. Model Dev., 11, 1377–1403, https://doi.org/10.5194/gmd-11-1377-2018, 2018.
Schmied, G., Hilmers, T., Mellert, K.-H., Uhl, E., Buness, V., Ambs, D., Steckel, M., Biber, P., Šeho, M., Hoffmann, Y.-D., and Pretzsch, H.: Nutrient regime modulates drought response patterns of three temperate tree species, Sci. Total Environ., 868, 161601, https://doi.org/10.1016/j.scitotenv.2023.161601, 2023.
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T. E. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D. B., Rammig, A., Rigling, A., Rose, L., Ruehr, N. K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C. S., and Kahmen, A.: A first assessment of the impact of the extreme 2018 summer drought on Central European forests, Basic Appl. Ecol., 45, 86–103, https://doi.org/10.1016/j.baae.2020.04.003, 2020.
Serra-Maluquer, X., Gazol, A., Anderegg, W. R. L., Martínez-Vilalta, J., Mencuccini, M., and Camarero, J. J.: Wood density and hydraulic traits influence species' growth response to drought across biomes, Glob. Change Biol., 28, 3871–3882, https://doi.org/10.1111/gcb.16123, 2022.
Spathelf, P. and Ammer, C.: Forest management of scots pine (Pinus sylvestris L) in northern Germany-a brief review of the history and current trends, Forstarchiv, 86, 59–66, https://doi.org/10.4432/0300-4112-86-59, 2015.
Sterk, M., Gort, G., Klimkowska, A., van Ruijven, J., van Teeffelen, A. J. A., and Wamelink, G. W. W.: Assess ecosystem resilience: Linking response and effect traits to environmental variability, Ecol. Indic., 30, 21–27, https://doi.org/10.1016/j.ecolind.2013.02.001, 2013.
Suding, K. N., Lavorel, S., Chapin Iii, F. S., Cornelissen, J. H. C., Díaz, S., Garnier, E., Goldberg, D., Hooper, D. U., Jackson, S. T., and Navas, M.-L.: Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants, Glob. Change Biol., 14, 1125–1140, https://doi.org/10.1111/j.1365-2486.2008.01557.x, 2008.
Swenson, N. G. and Enquist, B. J.: Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation, Am. J. Bot., 94, 451–459, https://doi.org/10.3732/ajb.94.3.451, 2007.
Thompson, P. L. and Fronhofer, E. A.: The conflict between adaptation and dispersal for maintaining biodiversity in changing environments, P. Natl. Acad. Sci. USA, 116, 21061–21067, https://doi.org/10.1073/pnas.1911796116, 2019.
Thonicke, K., Billing, M., von Bloh, W., Sakschewski, B., Niinemets, Ü., Peñuelas, J., Cornelissen, J. H. C., Onoda, Y., van Bodegom, P., Schaepman, M. E., Schneider, F. D., and Walz, A.: Simulating functional diversity of European natural forests along climatic gradients, J. Biogeogr., 47, 1069–1085, https://doi.org/10.1111/jbi.13809, 2020.
Tillman-Sutela, E. and Kauppi, A.: The morphological background to imbibition in seeds ofPinus sylvestris L. of different provenances, Trees, 9, 123–133, https://doi.org/10.1007/BF02418201, 1995.
Treydte, K., Liu, L., Padrón, R. S., Martínez-Sancho, E., Babst, F., Frank, D. C., Gessler, A., Kahmen, A., Poulter, B., Seneviratne, S. I., Stegehuis, A. I., Wilson, R., Andreu-Hayles, L., Bale, R., Bednarz, Z., Boettger, T., Berninger, F., Büntgen, U., Daux, V., Dorado-Liñán, I., Esper, J., Friedrich, M., Gagen, M., Grabner, M., Grudd, H., Gunnarsson, B. E., Gutiérrez, E., Hafner, P., Haupt, M., Hilasvuori, E., Heinrich, I., Helle, G., Jalkanen, R., Jungner, H., Kalela-Brundin, M., Kessler, A., Kirchhefer, A., Klesse, S., Krapiec, M., Levanič, T., Leuenberger, M., Linderholm, H. W., McCarroll, D., Masson-Delmotte, V., Pawelczyk, S., Pazdur, A., Planells, O., Pukiene, R., Rinne-Garmston, K. T., Robertson, I., Saracino, A., Saurer, M., Schleser, G. H., Seftigen, K., Siegwolf, R. T. W., Sonninen, E., Stievenard, M., Szychowska-Krapiec, E., Szymaszek, M., Todaro, L., Waterhouse, J. S., Weigl-Kuska, M., Weigt, R. B., Wimmer, R., Woodley, E. J., Vitas, A., Young, G., and Loader, N. J.: Recent human-induced atmospheric drying across Europe unprecedented in the last 400 years, Nat. Geosci., 17, 58–65, https://doi.org/10.1038/s41561-023-01335-8, 2024.
Valladares, F. and Sánchez-Gómez, D.: Ecophysiological Traits Associated with Drought in Mediterranean Tree Seedlings: Individual Responses versus Interspecific Trends in Eleven Species, Plant Biol., 8, 688–697, https://doi.org/10.1055/s-2006-924107, 2006.
van der Wiel, K., Lenderink, G., and de Vries, H.: Physical storylines of future European drought events like 2018 based on ensemble climate modelling, Weather Clim. Extrem., 33, 100350, https://doi.org/10.1016/j.wace.2021.100350, 2021.
Watson, J. E. M., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., Thompson, I., Ray, J. C., Murray, K., Salazar, A., McAlpine, C., Potapov, P., Walston, J., Robinson, J. G., Painter, M., Wilkie, D., Filardi, C., Laurance, W. F., Houghton, R. A., Maxwell, S., Grantham, H., Samper, C., Wang, S., Laestadius, L., Runting, R. K., Silva-Chávez, G. A., Ervin, J., and Lindenmayer, D.: The exceptional value of intact forest ecosystems, Nat. Ecol. Evol., 2, 599–610, https://doi.org/10.1038/s41559-018-0490-x, 2018.
Weigel, R., Bat-Enerel, B., Dulamsuren, C., Muffler, L., Weithmann, G., and Leuschner, C.: Summer drought exposure, stand structure, and soil properties jointly control the growth of European beech along a steep precipitation gradient in northern Germany, Glob. Change Biol., 29, 763–779, https://doi.org/10.1111/gcb.16506, 2023.
Wessely, J., Essl, F., Fiedler, K., Gattringer, A., Hülber, B., Ignateva, O., Moser, D., Rammer, W., Dullinger, S., and Seidl, R.: A climate-induced tree species bottleneck for forest management in Europe, Nat. Ecol. Evol., 8, 1109–1117, https://doi.org/10.1038/s41559-024-02406-8, 2024.
Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-Mayer, H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M., and McDowell, N. G.: Temperature as a potent driver of regional forest drought stress and tree mortality, Nat. Clim. Change, 3, 292–297, https://doi.org/10.1038/nclimate1693, 2013.
Yachi, S. and Loreau, M.: Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis, P. Natl. Acad. Sci. USA, 96, 1463–1468, https://doi.org/10.1073/pnas.96.4.1463, 1999.
Zani, D., Lischke, H., and Lehsten, V.: Climate and dispersal limitation drive tree species range shifts in post-glacial Europe: results from dynamic simulations, Front. Ecol. Evol., 11, 1321104, https://doi.org/10.3389/fevo.2023.1321104, 2023.
Zhang, S.-B., Slik, J. W. F., Zhang, J.-L., and Cao, K.-F.: Spatial patterns of wood traits in China are controlled by phylogeny and the environment, Glob. Ecol. Biogeogr., 20, 241–250, https://doi.org/10.1111/j.1466-8238.2010.00582.x, 2011.
Zhang, Y. and Chen, H. Y. H.: Individual size inequality links forest diversity and above-ground biomass, J. Ecol., 103, 1245–1252, https://doi.org/10.1111/1365-2745.12425, 2015.
Zhu, K., Woodall, C. W., Ghosh, S., Gelfand, A. E., and Clark, J. S.: Dual impacts of climate change: forest migration and turnover through life history, Glob. Change Biol., 20, 251–264, https://doi.org/10.1111/gcb.12382, 2014.
Zscheischler, J. and Fischer, E. M.: The record-breaking compound hot and dry 2018 growing season in Germany, Weather Clim. Extrem., 29, 100270, https://doi.org/10.1016/j.wace.2020.100270, 2020.
Short summary
In our simulations increased drought frequencies lead to a drastic reduction in biomass in temperate pine monoculture and mixed forests. Mixed forests eventually recovered as long as drought frequency was not too high. The higher resilience of mixed forests was due to higher adaptive capacity. After adaptation mixed forests were mainly composed of smaller, broadleaved trees with higher wood density and slower growth. This would have strong implications for forestry and other ecosystem services.
In our simulations increased drought frequencies lead to a drastic reduction in biomass in...
Altmetrics
Final-revised paper
Preprint