Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-3027-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3027-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Failure of Marmolada Glacier (Dolomites, Italy) in 2022: data-based back analysis of possible collapse mechanisms
Roberto Giovanni Francese
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
National Institute of Oceanography and Applied Geophysics – OGS, Sgonico, 34010, Italy
Roberto Valentino
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
Wilfried Haeberli
Department of Geography, University of Zurich, Zurich, 8057, Switzerland
Aldino Bondesan
CORRESPONDING AUTHOR
Department of Historical and Geographic Sciences and the Ancient World, University of Padova, Padova, 35122, Italy
Department of Military Geography, University of Stellenbosch, Stellenbosch, 7602, South Africa
Massimo Giorgi
National Institute of Oceanography and Applied Geophysics – OGS, Sgonico, 34010, Italy
Stefano Picotti
National Institute of Oceanography and Applied Geophysics – OGS, Sgonico, 34010, Italy
Franco Pettenati
National Institute of Oceanography and Applied Geophysics – OGS, Sgonico, 34010, Italy
Denis Sandron
National Institute of Oceanography and Applied Geophysics – OGS, Sgonico, 34010, Italy
Gianni Ramponi
Department of Engineering and Architecture, University of Trieste, Trieste, 34127, Italy
Mauro Valt
Environmental Protection Agency of Veneto, Centro Valanghe di Arabba, Arabba, 32020, Italy
Related authors
No articles found.
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
Nat. Hazards Earth Syst. Sci., 25, 1207–1228, https://doi.org/10.5194/nhess-25-1207-2025, https://doi.org/10.5194/nhess-25-1207-2025, 2025
Short summary
Short summary
We describe in detail the most recent large landslide-triggered glacial lake outburst flood (GLOF) in the Peruvian Andes (the 2023 Rasac GLOF), analysing its preconditions and consequences, as well as the role of the changing climate. Our study contributes to understanding GLOF occurrence patterns in space and time and corroborates reports detailing the increasing frequency of such events in changing mountains.
Andrea Securo, Costanza Del Gobbo, Giovanni Baccolo, Carlo Barbante, Michele Citterio, Fabrizio De Blasi, Marco Marcer, Mauro Valt, and Renato R. Colucci
The Cryosphere, 19, 1335–1352, https://doi.org/10.5194/tc-19-1335-2025, https://doi.org/10.5194/tc-19-1335-2025, 2025
Short summary
Short summary
We have reconstructed the multi-decadal (1980s–2023) ice mass changes for all the current mountain glaciers in the Dolomites. We used historical aerial photographs, drone surveys, and lidar to fill the glaciological data gap for the region. We observed an alarming decline in both glacier area and volume, with some of the glaciers showing smaller losses due to local topography and debris cover feedback. We strongly recommend more specific monitoring of these glaciers.
Julie Wee, Sebastián Vivero, Tamara Mathys, Coline Mollaret, Christian Hauck, Christophe Lambiel, Jan Beutel, and Wilfried Haeberli
The Cryosphere, 18, 5939–5963, https://doi.org/10.5194/tc-18-5939-2024, https://doi.org/10.5194/tc-18-5939-2024, 2024
Short summary
Short summary
This study highlights the importance of a multi-method and multi-disciplinary approach to better understand the influence of the internal structure of the Gruben glacier-forefield-connected rock glacier and adjacent debris-covered glacier on their driving thermo-mechanical processes and associated surface dynamics. We were able to discriminate glacial from periglacial processes as their spatio-temporal patterns of surface dynamics and geophysical signatures are (mostly) different.
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Laura Peruzza, Alessandra Schibuola, Maria Adelaide Romano, Marco Garbin, Mariangela Guidarelli, Denis Sandron, and Enrico Priolo
Solid Earth, 12, 2021–2039, https://doi.org/10.5194/se-12-2021-2021, https://doi.org/10.5194/se-12-2021-2021, 2021
Short summary
Short summary
In weakly seismic or poorly monitored areas, the uncritical use of earthquake catalogues can be misleading. This is the case for a central sector in the Po Valley, where the Northern Apennines and Southern Alps collide. We collect and reprocess the available instrumental data of about 300 earthquakes from 1951 to 2019. The seismicity is weak, deeper than expected, and far from some existing human activities carried out underground. The potential tectonic causative sources are still unknown.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Giuliana Rossi, Gualtiero Böhm, Angela Saraò, Diego Cotterle, Lorenzo Facchin, Paolo Giurco, Renata Giulia Lucchi, Maria Elena Musco, Francesca Petrera, Stefano Picotti, and Stefano Salon
Geosci. Commun., 3, 381–392, https://doi.org/10.5194/gc-3-381-2020, https://doi.org/10.5194/gc-3-381-2020, 2020
Short summary
Short summary
We organized an exhibition on the climate crisis using high-quality images shot by scientists, who are amateur photographers, during their campaigns in glacier regions. Working-age people, attracted by the gorgeous images, received the message that such beauty is in danger of vanishing. Twice, the visitors could talk directly with the experts to discuss geoscience, photography, and aesthetic choices and, of course, climate change, a problem that each of us has to play a part in to solve.
Cited articles
Aggarwal, A., Jain, S. K., Lohani, A. K., and Jain, N.: Glacial lake outburst flood risk assessment using combined approaches of remote sensing, GIS and dam break modelling, Geomat. Nat. Haz. Risk, 7, 18–36, https://doi.org/10.1080/19475705.2013.862573, 2016.
Alean, J.: Avalanches de glace, Alpen, 61, 121–132, 1985.
Allen, S., Frey, H., Haeberli, W., Huggel, C., Chiarle, M., and Geertsema, M.: Assessment principles for glacier and permafrost hazards in mountain regions, Oxford Res. Encyc. Nat. Haz. Sci., https://doi.org/10.1093/acrefore/9780199389407.013.356, 2022.
Antonelli, R., Barbieri, G., Dal Piaz, G. V., Dal Pra, A., De Zanche, V., Grandesso, P., Mietto, P., Sedea, R., and Zanferrari, A.: Carta geologica del Veneto 1: 250.000 – Una storia di cinquecento milioni di anni, Geological Map of the Veneto Region 1:250,000, 32 pp., 1990.
ARPAV: Dati Storici [data set], https://www.arpa.veneto.it/dati-ambientali/dati-storici, last access: 30 May 2025.
Aubry-Wake, C., Baraer, M., McKenzie, J. M., Mark, B. G., Wigmore, O., Hellström, R. A., and Lautz, L.: Measuring glacier surface temperatures with ground-based thermal infrared imaging, Geophys. Res. Lett., 42, 8489–8497, https://doi.org/10.1002/2015GL065321, 2015.
Bessette-Kirton, E. K. and Coe, J. A.: A 36-Year Record of Rock Avalanches in the Saint Elias Mountains of Alaska, With Implications for Future Hazards, Front. Earth Sci., 8, 293, https://doi.org/10.3389/feart.2020.00293, 2020.
Bieniawski, Z. T.: Engineering rock mass classifications, John Wiley & Sons, New York, 251 pp., ISBN-13 9780471601720, 1989.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Bodin, X., Krysiecki, J. M., Schoeneich, P., Le Roux, O., Lorier, L., Echelard, T., Peyron, M., and Walpersdorf, A.: The 2006 collapse of the Bérard rock glacier (Southern French Alps), Permafrost Periglac., 209–223, https://doi.org/10.1002/ppp.1887, 2017.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012.
Bohleber, P.: Alpine Ice Cores as Climate and Environmental Archives, The Oxford Encyclopedia of Climate Science, https://doi.org/10.1093/acrefore/9780190228620.013.743, 2019.
Bondesan, A. and Francese, R. G.: The climate-driven disaster of the Marmolada Glacier (Italy), Geomorphology, 431, 108687, https://doi.org/10.1016/j.geomorph.2023.108687, 2023.
Bondesan, A., Carton, A., and Laterza, V.: Leo Handl and the ice city (Marmolada Glacier, Italy), Rendiconti Online della Società Geologica Italiana, 36, 31–34, https://doi.org/10.3301/ROL.2015.137, 2015.
Bosellini, A.: Geologia delle Dolomiti, Athesia, ISBN-13 9788870148893, 1996.
Carton, A., Bondesan, A., and Benetton, S.: Marmolada, la regina delle Dolomiti, Itinerari Glaciologici sulle Montagne Italiane 3, Itinerari 19A e 19B, Comitato Glaciologico Italiano, 89–212 pp., 2017.
Chen, W., Yao, T., Zhang, G., Woolway, R. I., Yang, W., Xu, F., and Zhou, T.: Glacier surface heatwaves over the Tibetan Plateau, Geophys. Res. Lett., 50, e2022GL101115, https://doi.org/10.1029/2022GL101115, 2023.
Chiarle, M., Viani, C., Mortara, G., Deline, P., Tamburini, A., and Nigrelli, G.: Large glacier failures in the Italian Alps over the last 90 years, Geogr. Fis. Din. Quat., 45, 19–40, https://doi.org/10.4461/GFDQ.2022.45.2, 2022.
Church, G., Bauder, A., Grab, M., and Maurer, H.: Ground-penetrating radar imaging reveals glacier's drainage network in 3D, The Cryosphere, 15, 3975–3988, https://doi.org/10.5194/tc-15-3975-2021, 2021.
Clifton, A., Manes, C., Rüedi, J-D., Guala, M., and Lehning, M.: On Shear-Driven Ventilation of Snow, Bound.-Lay. Meteorol., 126, 249–261, https://doi.org/10.1007/s10546-007-9235-0, 2007.
CGI – Comitato Glaciologico Italiano, CNR – Consiglio Nazionale delle Ricerche: Catasto dei Ghiacciai Italiani, Anno Geofisico Internazionale 1957–1958 – Ghiacciai delle Tre Venezie e dell'Appennino, Comitato Glaciologico Italiano, Torino, 4, 309 pp., 1962.
Crepaz, A., Baldo, M., Frigerio, S., Gabrieli, J., Galuppo, A., Magnabosco, L., Mantovani, M., and Pasuto, A.: Permafrost in Veneto Region: distribution, analysis and potential environmental effects, PERMANET Project-Alpine Space Programme, Regione del Veneto, Technical Report, 100 pp., 2011.
Crepaz, A., Cagnati, A., and De Luca, G.: The evolution of Dolomitic glacier during the last century, Mountains Under Watch, Forte di Bard, Aosta, February, 20–21, 2013.
CRS – Centro Ricerche Sismologiche, National Institute of Oceanography and of Applied Geophysics – OGS, Real Time Seismic Network, https://rts.crs.ogs.it/en/home.html (last access: 4 July 2022), 2024.
D'Alessandro, A., Luzio, D., D'Anna, G., and Mangano, G.: Seismic Network evaluation through simulation: an application to the Italian national Seismic Network, B. Seismol. Soc. Am., 101, 1213–1232, https://doi.org/10.1785/0120100066, 2011.
Davies, M. C. R., Hamza, O., and Harris, C.: The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities, Permafrost Periglac., 12, 69–77, https://doi.org/10.1002/ppp.376, 2001.
Dutto, F., Godone, F., and Mortara, G.: L'écroulement du glacier supérieur de Coolidge (Paroi nord du Mont Viso, Alpes occidentales), Rev. Géogr. Alp., 79, 7–18, https://doi.org/10.3406/rga.1991.3597, 1991.
Dyurgerov, M. B. and Meier, M. F.: Glaciers and the Changing Earth System: A 2004 Snapshot, 58 pp., Inst. Arct. Alp. Res., Univ. Colorado, https://lccn.loc.gov/2007361917 (last access: 30 May 2025), 2004.
Etzelmüller, B., Guglielmin, M., Hauck, C., Hilbich, C., Hoelzle, M., Isaksen, K., Noetzli, J., Oliva, M., and Ramos, M.: Twenty years of European mountain permafrost dynamics – the PACE legacy, Environ. Res. Lett., 15, 104070, https://doi.org/10.1088/1748-9326/abae9d, 2020.
Faillettaz, J., Funk, M., and Vincent, C.: Avalanching glacier instabilities: review on processes and early warning perspectives, Rev. Geophys., 53, 203–224, https://doi.org/10.1002/2014RG000466, 2015.
Faillettaz, J., Sornette, D., and Funk, M.: Numerical modeling of a gravity-driven instability of a cold hanging glacier: reanalysis of the 1895 break-off of Altelsgletscher, Switzerland, J. Glaciol., 57, 205, 817–831, https://doi.org/10.3189/002214311798043852, 2011.
Falaschi, D., Kääb, A., Paul, F., Tadono, T., Rivera, J. A., and Lenzano, L. E.: Brief communication: Collapse of 4 Mm3 of ice from a cirque glacier in the Central Andes of Argentina, The Cryosphere, 13, 997–1004, https://doi.org/10.5194/tc-13-997-2019, 2019.
Fischer, A., Stocker-Waldhuber, M., Frey, M., and Bohleber, P.: Contemporary mass balance on a cold Eastern Alpine ice cap as a potential link to the Holocene climate, Sci. Rep., 12, 1331, https://doi.org/10.1038/s41598-021-04699-2, 2022.
Francese, R. G., Bondesan, A., Giorgi, M., Picotti, S., Carcione, J., Salvatore, M. C., Nicolis, F., and Baroni, C.: Geophysical signature of a World War I tunnel-like anomaly in the Forni Glacier (Punta Linke, Italian Alps), J. Glaciol., 65, 253, 798–812, https://doi.org/10.1017/jog.2019.59, 2019.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Fujita, K., Inoue, H., Izumi, T., Yamaguchi, S., Sadakane, A., Sunako, S., Nishimura, K., Immerzeel, W. W., Shea, J. M., Kayastha, R. B., Sawagaki, T., Breashears, D. F., Yagi, H., and Sakai, A.: Anomalous winter-snow-amplified earthquake-induced disaster of the 2015 Langtang avalanche in Nepal, Nat. Hazards Earth Syst. Sci., 17, 749–764, https://doi.org/10.5194/nhess-17-749-2017, 2017.
Gascoin, S. and Berthier, E.: Remote sensing analysis of Marmolada (Italy) and Juuku pass (Kyrgyzstan) glacier collapses, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14011, https://doi.org/10.5194/egusphere-egu23-14011, 2023.
Gentili, S., Sugan, M., Peruzza, L., and Schorlemmer, D.: Probabilistic completeness assessment of the past 30 years of seismic monitoring in north-eastern Italy, Phys. Earth Planet. In., 186, 81–96, https://doi.org/10.1016/j.pepi.2011.03.005, 2011.
Gibbons, S. J. and Ringdal, F.: The detection of low magnitude seismic events using array-based waveform correlation, Geophys. J. Int., 165, 149–166, 2006.
Gilbert, A., Vincent, C., Gagliardini, O., Krug, J., and Berthier, E.: Assessment of thermal change in cold avalanching glaciers in relation to climate warming, Geophys. Res. Lett., 42, 6382–6390, https://doi.org/10.1002/2015GL064838, 2015.
Gilbert, A., Wagnon, P., Vincent, C., Ginot, P., and Funk, M.: Atmospheric warming at a high elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16° S, 67° W), J. Geophys. Res., 115, D10109, https://doi.org/10.1029/2009JD012961, 2010.
Gilbert, A., Sinisalo, A., Gurung, T. R., Fujita, K., Maharjan, S. B., Sherpa, T. C., and Fukuda, T.: The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier, The Cryosphere, 14, 1273–1288, https://doi.org/10.5194/tc-14-1273-2020, 2020.
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res., 112, F02S18, https://doi.org/10.1029/2006JF000547, 2007.
Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221–233, https://doi.org/10.5194/tc-6-221-2012, 2012.
Haeberli, W. and Alean, J.: Temperature and accumulation of high-altitude firn in the Alps, Ann. Glaciol., 6, 161–163, 1985.
Haeberli, W. and Hoelzle, M.: Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps, Ann. Glaciol., 21, 206–212, 1995.
Haeberli, W., Frauenfelder R., Kääb, A., and Wagner, S.: Characteristics and potential climatic significance of “miniature ice caps” (crest- and cornice-type low-altitude ice archives), J. Glaciol., 50, 168, 129–136, https://doi.org/10.3189/172756504781830330, 2004a.
Haeberli, W., Huggel, C., Kääb, A., Zgraggen-Oswald, S., Polkvoj, A., Galushkin, I., Zotikov, I., and Osokin, N.: The Kolka-Karmadon rock/ice slide of 20 September 2002: An extraordinary event of historical dimensions in North Ossetia, Russian Caucasus, J. Glaciol., 50, 533–546, https://doi.org/10.3189/172756504781829710, 2004b.
Haeberli, W., Schaub, Y., and Huggel, C.: Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges, Geomorphology, 293, 405–417, https://doi.org/10.1016/j.geomorph.2016.02.009, 2017.
Hess, H.: Leo Handl's Temperatur-Messungen des Eises und der Luft in den Stollen des Marmolata-Gletschers und denen des Ortlergebietes, Z. Gletscherkd., 27, 168–171, 1940.
Hock, R., Bliss, A., Giesen, R., Marzeion, B., Hirabayashi, Y., Huss, M., Radic, V., and Slangen, A.: GlacierMIP – A model intercomparison of global-scale glacier mass-balance models and projections, J. Glaciol., 65, 453–467, https://doi.org/10.1017/jog.2019.22, 2019.
Hooke, R. L. B. and Hudleston, P.: Origin of foliation in glaciers, J. Glaciol., 20, 285–299, https://doi.org/10.3189/S0022143000013848, 1978.
Huang, D., Meng, Q., Songa, Y., Guc, D., Cend, D., and Zhonge, Z.: Experimental study on the shear mechanical behavior of ice-rich debris–rock interface: effects of temperature, stress, and ice content, Can. Geotech. J., 61, 1051–1072, https://doi.org/10.1139/cgj-2023-0375, 2024.
Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., and Paul, F.: Remote sensing-based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps, Can. Geotech. J., 39, 316–330, 2002.
Hutter, K.: Snow and Glacier Rheology, Appl. Rheol., 7, 266–276, https://doi.org/10.3933/ApplRheol-7-266, 1997.
Irvine-Fynn, T. D. L., Hodson, A. J., Moorman, B. J., Vatne, G., and Hubbard, A. L.: Polythermal glacier hydrology: a review, Rev. Geophys., 49, RG4002, https://doi.org/10.3189/172756501781831972, 2011.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and & Kääb, A.: Accelerated global glacier mass loss in the early twenty-first century, Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021.
Janbu, N.: Application of composite slip surface for stability analysis, Proceedings of European conference on stability of earth slopes, Stockholm, 3, 43–49, 1954.
Janbu, N., Bjerrum, L., and Kjaernsli, B.: Soil mechanics applied to some engineering problems, Norwegian Geotechnical Institute Publication 16, Oslo, Norway, 1956.
Janbu, N.: Slope stability computations, in: Embankment Dam Engineering, Casagrande Memorial Volume, edited by: Hirsch-Field, E. and Poulos, S., 47–86, New York, Wiley, 1973.
Jennings, S. J. A. and Hambrey, M. J.: Structures and deformation in glaciers and ice sheets, Rev. Geophys., 59, e2021RG000743, https://doi.org/10.1029/2021RG000743, 2021.
Jouvet, G., Picasso, M., Rappaz, J., Huss, M., and Funk, M.: Modelling and Numerical Simulation of the Dynamics of Glaciers Including Local Damage Effects, Math. Model. Nat. Pheno., 6, 263–280, https://doi.org/10.1051/mmnp/20116510, 2011.
Kargel, J. S., Leonard, G. J., Shugar, D. H., Haritashya, U. K., Bevington, A., Fielding, E .J., Fujita, K., Geertsema, M., Miles, E. S., Steiner, J., and Anderson, E.: Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake, Science, 351, aac8353, https://doi.org/10.1126/science.aac8353, 2016.
Kavanaugh, J. L. and Clarke, G. K. C.: Abrupt glacier motion and reorganisation of basal shear stress following the establishment of a connected drainage system, J. Glaciol., 47, 472–480, https://doi.org/10.3189/172756501781831972, 2001.
Lee W. H. and Lahr, J. C.: Hypo71 (revised): a computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern of local earthquakes, US Geol. Survey Open-file Report, 75–311, https://doi.org/10.3133/ofr75311, 1975.
Löfgren, A., Zwinger, T., Råback, P., Helanow, C., and Ahlkrona, J.: Increasing numerical stability of mountain valley glacier simulations: implementation and testing of free-surface stabilization in Elmer/Ice, The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024, 2024.
Logan, L. C., Lavier, L. L., Choi, E., Tan, E., and Catania, G. A.: Semi-brittle rheology and ice dynamics in DynEarthSol3D, The Cryosphere, 11, 117–132, https://doi.org/10.5194/tc-11-117-2017, 2017.
Lomax, A., Satriano, C., and Vassallo, M.: Automatic picker developments and optimization: FilterPicker–a robust, broadband picker for real-time seismic monitoring and earthquake early warning, Seismol. Res. Lett., 83, 3, 531–540, https://doi.org/10.1785/gssrl.83.3.531, 2012.
Longo, E.: La determinazione della resistenza a compressione uniassiale nelle rocce: un confronto tra i principali metodi applicati alla serie dolomitica, MSc Thesis, University of Padova, 133 pp., https://thesis.unipd.it/retrieve/c493339d-f298-47dd-a687-21f850ef905b/TESI_Longo.pdf (last access: 30 May 2025), 2018.
Lützow, N., Veh, G., and Korup, O.: A global database of historic glacier lake outburst floods, Earth Syst. Sci. Data, 15, 2983–3000, https://doi.org/10.5194/essd-15-2983-2023, 2023.
Madhukar, B. N. and Narendra, R.: Lanczos Resampling for the Digital Processing of Remotely Sensed Images, Proceedings of VCASAN-2013, Lecture Notes in Electrical Engineering, Springer, 258, 403–411, 2013.
Margreth, S., Faillettaz, J., Funk, M., Vagliasindi, M., Diotri, F., and Broccolato, M.: Safety concept for hazards caused by ice avalanches from the Whymper hanging glacier in the Mont Blanc Massif, Cold Reg. Sci. Technol., 69, 194–201, 2011.
Margreth, S., Funk, M., Tobler, D., Dalban, P., Meier, L., and Lauper, J.: Analysis of the hazard caused by ice avalanches from the hanging glacier on the Eiger west face, Cold Reg. Sci. Technol., 144, 63–72, https://doi.org/10.1016/j.coldregions.2017.05.012, 2017.
Marta, S., Azzoni, R. S., Fugazza, D., Tielidze, L., Chand, P., Sieron, K., Almond, P., Ambrosini, R., Anthelme, F., Gazitúa, P. A., Bhambri, R., Bonin, A., Caccianiga, M., Cauvy-Fraunié, S., Lievano, J. L. C., Clague, J., Rapre, J. A. C., Dangles, O., Deline, P., Eger, A., Encarnación, R. C., Erokhin, S., Franzetti, A., Gielly, L., Gili, F., Gobbi, M., Guerrieri, A., Hågvar, S., Khedim, N., Kinyanjui, R., Messager, E., Morales-Martínez, M.A., Peyre, G., Pittino, F., Poulenard, J., Seppi, R., Sharma, M. C., Urseitova, N., Weissling, B., Yang, Y., Zaginaev, V., Zimmer, A., Diolaiuti, G. A., Rabatel, A., and Ficetola, G. F.: The Retreat of Mountain Glaciers since the Little Ice Age: A Spatially Explicit Database, Data, 6, 107, https://doi.org/10.3390/data6100107, 2021.
Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K., Huss, M., Immerzeel, W. W., Kraaijenbrink, P., Malles, J-H., Maussion, F., Radić, V., Rounce, D. R., Sakai, A., Shannon, S., van de Wal, R., and Zekollari H.: Partitioning the uncertainty of ensemble projections of global glacier mass change, Earth's Future, 8, e2019EF001470, https://doi.org/10.1029/2019EF001470, 2020.
McFeeters, S. K.: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, Int. J. Remote Sens., 17, 1425–1432, 1996.
Mikesell, T., van Wijk, K., Haney, M. M., Bradford, J. H., Marshall, H.-P., and Harper, J. T.: Monitoring glacier surface seismicity in time and space using Rayleigh waves, J. Geophys. Res.-Earth, 117, F02020, https://doi.org/10.1029/2011JF002259, 2012.
Mortara, G. and Dutto, F.: A case of sudden evolution of Monviso glaciers: the ice avalanche of Upper Coolidge Glacier, Geogr. Fis. Din. Quat., 13, 187–189, 1990.
Morgenstern, N. R. and Price, V. E.: The analysis of the stability of general slip surfaces, Geotechnique, 15, 79–93, 1965.
Noetzli, J., Isaksen, K., Barnett, J., Christiansen, H. H., Delaloye, R., Etzelmüller, B., Farinotti, D., Gallemann, T., Guglielmin, M., Hauck, C., Hilbich, C., Hoelzle, M., Lambiel, C., Magnin, F., Oliva, M., Paro, L., Pogliotti, P., Riedl, C., Schoeneich, P., Valt, M., Vieli, A., and Phillips, M.: Enhanced warming of European mountain permafrost in the early 21st century, Nat. Commun., 15, 10508, https://doi.org/10.1038/s41467-024-54831-9, 2024.
Noetzli, J. and Gruber, S.: Transient thermal effects in Alpine permafrost, The Cryosphere, 3, 85–99, https://doi.org/10.5194/tc-3-85-2009, 2009.
Noetzli, J., Gruber, S., Kohl, T., Salzmann, N., and Haeberli, W.: Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography, J. Geophys. Res., 112, F02S13, https://doi.org/10.1029/2006JF000545, 2007.
Noetzli, J., Huggel, C., Hoelzle, M., and Haeberli, W.: GIS-based modelling of rock-ice avalanches from Alpine permafrost areas, Comput. Geosci., 10, 161–178, https://doi.org/10.1007/s10596-005-9017-z, 2006.
Olivieri, L. and Bettanini, C.: Preliminary observation of Marmolada glacier collapse of July 2022 with space-based cameras, Remote Sens. Lett., 14, 21–29, https://doi.org/10.1080/2150704X.2022.2152754, 2022.
Pasta, M.: Esecuzione ed interpretazione di misure georadar sul ghiacciaio della Marmolada e studi di fattibilità su ghiacciai del Fradusta e dell'Antelao Superiore, Univ. Genova, DipTeRis, Technical Report, 20 pp., 2004.
Pasta, M., Pavan, M., Sonda, D., Carollo, F., and Cagnati, A.: Prospezione di alcuni ghiacciai dolomitici tramite tecniche GPR e GPS, Neve e Valanghe, 56, 50–59, 2005.
Paterson, W. S. B.: The Physics of Glaciers, 3rd ed., Pergamon, Oxford, U.K., 480 pp., ISBN-13 9780080379457, 1994.
Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W.: Rapid disintegration of Alpine glaciers observed with satellite data, Geophys. Res. Lett., 31, L21402, https://doi.org/10.1029/2004GL020816, 2004.
Pelto, M.: WGMS Network: Alpine glaciers, in State of the Climate in 2019, B. Am. Meteor. Soc., 101, S37–S38, https://doi.org/10.1175/2020BAMSStateoftheClimate.1, 2020
Pettenati, F., Maharjan, D. K., Paudyal, S., Sandron, D., Wagle, S., Cravos, C., Giorgi, M., and Shrestha, S. N.: Structure of the Kathmandu basin inferred from microtremor measurements: a preliminary study, Geophys. J. Int., 233, 420–435, https://doi.org/10.1093/gji/ggac465, 2023.
Picotti, S., Francese, R., Giorgi, M., Pettenati, F., and Carcione, J. M.: Estimation of glaciers thicknesses and basal properties using the horizontal-to-vertical component spectral ratio (HVSR) technique from passive seismic data, J. Glaciol., 63, 229–248, https://doi.org/10.1017/jog.2016.135, 2017.
Podolskiy, E. A., Nishimura, K., Abe, O., and Chernous, P. A.: Earthquake-induced snow avalanches: I. Historical case studies, J. Glaciol., 56, 431–446, https://doi.org/10.3189/002214310792447815, 2010.
Pralong, A. and Funk, M.: On the instability of avalanching glaciers, J. Glaciol., 52, 31–48, https://doi.org/10.3189/172756506781828980, 2006.
Pralong, A., Birrer, C., Stahel, W. A., and Funk, M.: On the predictability of ice avalanches, Nonlin. Processes Geophys., 12, 849–861, https://doi.org/10.5194/npg-12-849-2005, 2005.
Rebez, A., Renner, G., Sandron, D., and Slejko, D.: The eastern Alps earthquake catalogue (1977–2022), Bull. Geophys. Oceanogr., 65, 115–122, https://doi.org/10.4430/bgo00453, 2024.
Richards, K., Sharp, M., Arnold, N., Gurnell, A., Clark, M., Tranter, M., Nienow, P., Brown, G., Willis, I., and Lawson, W.: An integrated approach to modeling hydrology and water quality in glacierized catchments, Hydrol. Process., 10, 479–508, 1996.
Rossi, M., Dal Cin, M., Picotti, S., Gei, D., Isaev, V. S., Pogorelov, A. V., Gorshkov, E. I., Sergeev, D. O., Kotov, P. I., Giorgi, M., and Rainone, M. L.: Active Layer and Permafrost Investigations Using Geophysical and Geocryological Methods – A Case Study of the Khanovey Area, Near Vorkuta, in the NE European Russian Arctic, Front. Earth Sci., 10, 910078, https://doi.org/10.3389/feart.2022.910078, 2022.
Röthlisberger, H. and Lang, H.: Glacial hydrology, in Glacio-Fluvial Sediment Transfer: AnAlpine Perspective, edited by: Gurnell, A. M. and Clark, M. J., John Wiley, Chichester, UK, 207–284, 1987.
Röthlisberger, H.: Eislawinen und Ausbrüche von Gletscherseen, in: Gletscher und Klima – glaciers et climat, edited by: Kasser, P., Jahrbuch der Schweizerischen Naturforschenden Gesellschaft, wissenschaftlicher Teil 1978, Basel, Birkhäuser Verlag, 170–212, 1981.
Rounce, D. R., Hock, R., Maussion, F., Hugonnet, R., Kochtitzky, W., Huss, M., Berthier, E., Brinkerhoff, D., Compagno, L., Copland, L., Farinotti, D., Menounos, B., and McNabb, R. W.: Global glacier change in the 21st century: Every increase in temperature matters, Science, 379, 78–83, https://doi.org/10.1126/science.abo1324, 2023.
Ruols, B., Baron, L., and Irving, J.: Development of a drone-based ground penetrating radar system for efficient and safe 3D and 4D surveying of alpine glaciers, J. Glaciol., 69, 2087–2098, https://doi.org/10.1017/jog.2023.83, 2023.
Saeki, H., Ono, T., En Zong, N., and Nakazawa, N.: Experimental study on direct shear strength of sea ice, Ann. Glaciol., 6, 218–221, 1985.
Saim, N. M. and Kasa, A.: Comparative Analysis of Slope Stability using Finite Element Method (FEM) and Limit Equilibrium Method (LEM), 2023 IEEE 14th Control and System Graduate Research Colloquium, ICSGRC 2023 – Conference Proceeding, Shah Alam, Malaysia, 5 August 2023, 224–229, https://doi.org/10.1109/ICSGRC57744.2023.10215453, 2023.
Santin, I., Colucci, R., Žebre, M., Pavan, M., Cagnati, A., and Forte, E.: Recent evolution of Marmolada glacier (Dolomites, Italy) by means of ground and airborne GPR surveys, Remote Sens. Environ., 235, 111442, https://doi.org/10.1016/j.rse.2019.111442, 2019.
SAT – Società Alpinistica Tridentina, Commissione Glaciologica: Marmolada, le immagini del ghiacciaio dal drone il giorno prima della valanga – UAV video of the marmolada glacier taken the day before the ice-avalanche, https://www.youtube.com/watch?v=QkpvW4L1WJ4&-ab_channel=CorrieredellaSera, last access: 4 July 2022.
Smiraglia, C. and Diolaiuti, G., The New Italian Glacier Inventory, EVK2CNR, 395 pp., https://glaciologia.it/catasto-dei-ghiacciai-italiani-cura-c-smiraglia-g-diolaiuti/ (last access: 30 May 2025), 2016.
Stearns, L. A. and Van Der Veen, C. J.: Friction at the bed does not control fast glacier flow, Science, 361, 273–277, https://doi.org/10.1126/science.aat2217, 2018.
Stockwell, J. W.: Free software in education: a case study of CWP/SU: Seismic Unix, Leading Edge, 61, 759–775, 1999.
Sugan, M., and Peruzza, L.: Distretti sismici del Veneto, Boll. Geofis. Teor. Appl., 52, s3–s90, 2011.
Sugan, M., Kato, A., Miyake, H., Nakagawa, S., and Vuan, A.: The preparatory phase of the 2009 Mw 6.3 L'Aquila earthquake by improving the detection capability of low-magnitude foreshocks, Geophys. Res. Lett., 41, 6137–6144, 2014.
Suter, S., Laternser, M., Haeberli, W., Frauenfelder, R., and Hoelzle, M.: Cold firn and ice of high-altitude glaciers in the Alps: measurements and distribution modeling, J. Glaciol., 45, 85–96, 2001.
Tang, M., Zhao, H., Xu, Q., Ni, W., Li, G., Zuo, Z., Chen, X., and Zhong, Y.: Experimental study on the shear strength and failure mechanism of mountain glacier ice, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1522, 2024.
Thibert, E., Faug, T., Naaim, M., Bonnefoy-Demongeot, M., Gilbert, A., Vincent, C., Gagliardini, O., and Funk, M.: Retrieving Ice-avalanche basal friction law parameters from a back-analysis of the collapse of Altels glacier (1895, Bernese Alps, Switzerland). Application to Taconnaz glacier instability (French Alps), Int. Snow Sci. Workshop, Innsbruck, Austria, 7–12 October 2018, 66–70, 2018.
Tian, L., Yao, T., Gao, Y., Thompson, L., Mosley-Thompson, E., Muhammad, S., Zong, J., Wang, C., Jin, S., and Li, Z.: Two glaciers collapse in western Tibet, J. Glaciol., 63, 194–197, https://doi.org/10.1017/jog.2016.122, 2017.
Viani, C., Chiarle, M., Paranunzio, R., Merlone, A., Musacchio, C., Coppa, G., and Nigrelli, G.: An integrated approach to investigate climate-driven rockfall occurrence in high alpine slopes: the Bessanese glacial basin, Western Italian Alps, J. Mt. Sci., 17, 2591–2610, https://doi.org/10.1007/s11629-020-6216-y, 2020.
Vincent, C., Thibert, E., Harter, M., Soruco, A., and Gilbert, A.: Volume and frequency of ice avalanches from Taconnaz hanging glacier, French Alps, Ann. Glaciol., 56, 17–25, https://doi.org/10.3189/2015AoG70A017, 2015.
Walter, F., Clinton, J. F., Deichmann, N., Dreger, D. S., Minson, S. E., and Funk, M.: Moment tensor inversions of icequakes on Gornergletscher, Switzerland, B. Seismol. Soc. Am., 99, 852–870, 2009.
Wilson, N. J. and Flowers, G. E.: Environmental controls on the thermal structure of alpine glaciers, The Cryosphere, 7, 167–182, https://doi.org/10.5194/tc-7-167-2013, 2013.
Zekollari, H., Huss, M., Farinotti, D., and Lhermitte, S.: Ice-dynamical glacier evolution modeling–A review, Rev. Geophys., 60, e2021RG000754, https://doi.org/10.1029/2021RG000754, 2022.
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G., Cobos, G., Dávila, L. R., Granados, H. D., Demuth, M. N., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V., Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurđsson, O., Soruco, A., Usubaliev, R., and Vincent, C.: Historically unprecedented global glacier decline in the early 21st century, J. Glaciol., 61, 228, https://doi.org/10.3189/2015JoG15J017, 2015.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R. Huber, J., Barundun, M., Machguth, H., Nussbaumer, D. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. C.: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016, Nature, 568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019.
Zhao, C., Yang, W., Westoby, M., An, B., Wu, G., Wang, W., Wang, Z., Wang, Y., and Dunning, S.: Brief communication: An approximately 50 Mm3 ice-rock avalanche on 22 March 2021 in the Sedongpu valley, southeastern Tibetan Plateau, The Cryosphere, 16, 1333–1340, https://doi.org/10.5194/tc-16-1333-2022, 2022.
Zoet, L. K. and Iverson, N. R.: A slip law for glaciers on deformable beds, Science, 368, 76–78, https://doi.org/10.1126/science.aaz1183, 2020.
Executive editor
The avalanche event of 2022 investigated in this paper is one of the deadliest historically recorded in the Alps. The assessment of the predisposing and triggering factors is of particular relevance in a climate change context, as the occurrence of extremely high temperatures is expected to occur in increasing frequency. The paper provides a numerical simulation approach that can assist a more general risk analysis for this type of natural hazards.
The avalanche event of 2022 investigated in this paper is one of the deadliest historically...
Short summary
The Marmolada Glacier collapse (3 July 2022), one of the deadliest in the Alps, caused 11 fatalities and occurred during an anomalously warm summer. Analysis links the failure to the combined action of permafrost degradation, elevated ice temperatures, hydrostatic pressure, hydraulic jacking and reduced basal friction. No single factor alone explains the failure. The event highlights how climate-driven thermal and hydraulic factors increasingly threaten the stability of cold mountain glaciers.
The Marmolada Glacier collapse (3 July 2022), one of the deadliest in the Alps, caused 11...
Altmetrics
Final-revised paper
Preprint