Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-2981-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-2981-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of active and capable faults structural complexity on seismic hazard assessment for the design of linear infrastructures
Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, 40126, Bologna, Italy
Riccardo Asti
Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, 40126, Bologna, Italy
Giulio Viola
Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, 40126, Bologna, Italy
Giulia Tartaglia
ITALFERR S.p.A., Gruppo Ferrovie dello Stato Italiane – Architecture, Environment & Territory Department – Geology Division, Via Galati 87, 00155, Roma, Italy
Stefano Rodani
ITALFERR S.p.A., Gruppo Ferrovie dello Stato Italiane – Architecture, Environment & Territory Department – Geology Division, Via Galati 87, 00155, Roma, Italy
Gianluca Benedetti
ITALFERR S.p.A., Gruppo Ferrovie dello Stato Italiane – Architecture, Environment & Territory Department – Geology Division, Via Galati 87, 00155, Roma, Italy
Massimo Comedini
ITALFERR S.p.A., Gruppo Ferrovie dello Stato Italiane – Architecture, Environment & Territory Department – Geology Division, Via Galati 87, 00155, Roma, Italy
Gianluca Vignaroli
Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, 40126, Bologna, Italy
Related authors
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
Solid Earth, 15, 1525–1551, https://doi.org/10.5194/se-15-1525-2024, https://doi.org/10.5194/se-15-1525-2024, 2024
Short summary
Short summary
This study addresses the tectonic evolution of the seismogenic Monti Martani Fault System (northern Apennines, Italy). By applying a field-based structural geology approach, we reconstruct the evolution of the stress field and we challenge the current interpretation of the fault system in terms of both geometry and state of activity. We stress that the peculiar behavior of this system during post-orogenic extension is still significantly influenced by the pre-orogenic structural template.
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
Solid Earth, 15, 1525–1551, https://doi.org/10.5194/se-15-1525-2024, https://doi.org/10.5194/se-15-1525-2024, 2024
Short summary
Short summary
This study addresses the tectonic evolution of the seismogenic Monti Martani Fault System (northern Apennines, Italy). By applying a field-based structural geology approach, we reconstruct the evolution of the stress field and we challenge the current interpretation of the fault system in terms of both geometry and state of activity. We stress that the peculiar behavior of this system during post-orogenic extension is still significantly influenced by the pre-orogenic structural template.
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024, https://doi.org/10.5194/se-15-589-2024, 2024
Short summary
Short summary
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting from tectonic activity. This study uses a multiple-method approach to unravel Smøla's tectonic history. We found five different phases of deformation related to various fracture geometries and minerals dating back hundreds of millions of years. 3D models of these features visualise these structures in space. This approach may help us to understand offshore oil and gas reservoirs hosted in the basement.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Giulio Viola, Giovanni Musumeci, Francesco Mazzarini, Lorenzo Tavazzani, Manuel Curzi, Espen Torgersen, Roelant van der Lelij, and Luca Aldega
Solid Earth, 13, 1327–1351, https://doi.org/10.5194/se-13-1327-2022, https://doi.org/10.5194/se-13-1327-2022, 2022
Short summary
Short summary
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By mapping its internal structure and dating some of its fault rocks, we constrained a deformation history lasting 20 Myr starting at ca. 22 Ma. Such long activity is recorded by now tightly juxtaposed brittle structural facies, i.e. different types of fault rocks. Our results also have implications on the regional evolution of the northern Apennines, of which the Zuccale Fault is an important structure.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Cited articles
Acocella, V., Gudmundsson, A., and Funiciello, R.: Interaction and linkage of extension fractures and normal faults: examples from the rift zone of Iceland, J. Struct. Geol., 22, 1233–1246, 2000.
An, L.-J.: Maximum link distance between strike-slip faults: observations and constraints, Pure Appl. Geophys., 150, 19–36, 1997.
Arrowsmith, J. R. and Zielke, O.: Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment, Geomorphology, 113, 70–81, https://doi.org/10.1016/j.geomorph.2009.01.002, 2009.
Axen, G. J., Fletcher, J. M., Cowgill, E., Murphy, M., Kapp, P., MacMillan, I., Ramos-Velàzquez, E., and Aranda-Gomez, J.: Range-front fault scarps of the Sierra El Mayor, Baja California: Formed above an active low-angle normal fault?, Geology, 27, 247–250, 1999.
Barnett, J. A. M., Mortimer, J., Rippon, J. J., Walsh, J. J., and Watterson, J.: Displacement Geometry in the Volume Containing a Single Normal Fault, Am. Assoc. Petr. Geol. B., 71, 925–937, 1987.
Barnhart, W. D., Briggs, R. W., Reitman, N. G., Gold, R. D., and Hayes, G. P.: Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake, Earth Planet Sci Lett, 420, 1–11, https://doi.org/10.1016/j.epsl.2015.03.027, 2015.
Bastesen, E. and Braathen, A.: Extensional faults in fine grained carbonates – analysis of fault core lithology and thickness–displacement relationships, J. Struct. Geol., 32, 1609–1628, https://doi.org/10.1016/J.JSG.2010.09.008, 2010.
Bello, S., Perna, M. G., Consalvo, A., Brozzetti, F., Galli, P., Cirillo, D., Andrenacci, C., Tangari, A. C., Carducci, A., Menichetti, M., Lavecchia, G., Stoppa, F., and Rosatelli, G.: Coupling rare earth element analyses and high-resolution topography along fault scarps to investigate past earthquakes: A case study from the Southern Apennines (Italy), Geosphere, 19, 1348–1371, https://doi.org/10.1130/GES02627.1, 2023.
Benavente, C., Zerathe, S., Audin, L., Hall, S. R., Robert, X., Delgado, F., Carcaillet, J., and Team, A.: Active transpressional tectonics in the Andean forearc of southern Peru quantified by 10Be surface exposure dating of an active fault scarp, Tectonics, 36, 1662–1678, https://doi.org/10.1002/2017TC004523, 2017.
Ben-Zion, Y. and Sammis, C. G.: Characterization of Fault Zones, Pure Appl. Geophys., 160, 677–715, https://doi.org/10.1007/PL00012554, 2003.
Berg, S. S. and Skar, T.: Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah, J. Struct. Geol., 27, 1803–1822, https://doi.org/10.1016/j.jsg.2005.04.012, 2005.
Bihong, F. and Yasuo, A.: Displacement and timing of left-lateral faulting in the Kunlun Fault Zone, northern Tibet, inferred from geologic and geomorphic features, J. Asian Earth Sci., 29, 253–265, https://doi.org/10.1016/j.jseaes.2006.03.004, 2007.
Billi, A., Salvini, F., and Storti, F.: The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability, J. Struct. Geol., 25, 1779–1794, https://doi.org/10.1016/S0191-8141(03)00037-3, 2003.
Bott, M. H. P.: The Mechanics of Oblique Slip Faulting, Geol. Mag., 96, 109–117, https://doi.org/10.1017/S0016756800059987, 1959.
Bray, J. D., Seed, R. B., Cluff, L. S., and Seed, H. B.: Earthquake Fault Rupture Propagation through Soil, J. Geotech. Eng., 120, 543–561, https://doi.org/10.1061/(ASCE)0733-9410(1994)120:3(543), 1994.
Bruhn, R. L., Parry, W. T., Yonkee, W. A., and Thompson, T.: Fracturing and hydrothermal alteration in normal fault zones, Pure Appl. Geophys., 142, 609–644, https://doi.org/10.1007/BF00876057, 1994.
Brunori, C. A., Civico, R., Cinti, F. R., and Ventura, G.: Characterization of active fault scarps from LiDAR data: A case study from Central Apennines (Italy), Int. J. Geogr. Inf. Sci., 27, 1405–1416, https://doi.org/10.1080/13658816.2012.684385, 2013.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architecture and permeability structure, Geology, 24, 1025–1028, 1996.
Cartwright, J. A., Trudgill, B. D., and Mansfield, C. S.: Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah, J. Struct. Geol., 17, 1319–1326, https://doi.org/10.1016/0191-8141(95)00033-A, 1995.
Cello, G., Deiana, G., Ferelli, L., Marchegiani, L., Maschio, L., Mazzoli, S., Michetti, A., Serva, L., Tondi, E., and Vittori, T.: Geological constraints for earthquake faulting studies in the Colfiorito area (central Italy), J. Seismol., 4, 357–364, https://doi.org/10.1023/A:1026525302837, 2000.
Chester, F. M. and Logan, J. M.: Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California, Pure Appl. Geophys., 124, 79–106, https://doi.org/10.1007/BF00875720, 1986.
Chester, F. M. and Logan, J. M.: Composite planar fabric of gouge from the Punchbowl Fault, California, J. Struct. Geol., 9, 621-IN6, https://doi.org/10.1016/0191-8141(87)90147-7, 1987.
Chester, F. M., Evans, J. P., and Biegel, R. L.: Internal structure and weakening mechanisms of the San Andreas Fault, J. Geophys. Res.-Sol. Ea., 98, 771–786, https://doi.org/10.1029/92JB01866, 1993.
Childs, C., Nicol, A., Walsh, J. J., and Watterson, J.: Growth of vertically segmented normal faults, J. Struct. Geol., 18, 1389–1397, https://doi.org/10.1016/S0191-8141(96)00060-0, 1996.
Childs, C., Manzocchi, T., Walsh, J. J., Bonson, C. G., Nicol, A., and Schöpfer, M. P. J.: A geometric model of fault zone and fault rock thickness variations, J. Struct. Geol., 31, 117–127, https://doi.org/10.1016/j.jsg.2008.08.009, 2009.
Clark, D. J., Brennand, S., Brenn, G., Garthwaite, M. C., Dimech, J., Allen, T. I., and Standen, S.: Surface deformation relating to the 2018 Lake Muir earthquake sequence, southwest Western Australia: new insight into stable continental region earthquakes, Solid Earth, 11, 691–717, https://doi.org/10.5194/se-11-691-2020, 2020.
Cowie, P. A. and Roberts, G. P.: Constraining slip rates and spacings for active normal faults, J. Struct. Geol., 23, 1901–1915, https://doi.org/10.1016/S0191-8141(01)00036-0, 2001.
Cowie, P. A. and Shipton, Z. K.: Fault tip displacement gradients and process zone dimensions, J. Struct. Geol., 20, 983–997, https://doi.org/10.1016/S0191-8141(98)00029-7, 1998.
Cox, S. J. D. and Scholz, C. H.: On the formation and growth of faults: an experimental study, J. Struct. Geol., 10, 413–430, https://doi.org/10.1016/0191-8141(88)90019-3, 1988.
Cunningham, D., Grebby, S., Tansey, K., Gosar, A., and Kastelic, V.: Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL027014, 2006.
Dai, X., Liu, X., Liu, R., Song, M., Zhu, G., Chang, X., and Guo, J.: Coseismic Slip Distribution and Coulomb Stress Change of the 2023 MW 7.8 Pazarcik and MW 7.5 Elbistan Earthquakes in Turkey, Remote Sens., 16, 240, https://doi.org/10.3390/rs16020240, 2024.
DeLong, S. B., Hilley, G. E., Rymer, M. J., and Prentice, C.: Fault zone structure from topography: Signatures of en echelon fault slip at Mustang Ridge on the San Andreas Fault, Monterey County, California, Tectonics, 29, https://doi.org/10.1029/2010TC002673, 2010.
Evans, J. P.: Thickness-displacement relationships for fault zones, J. Struct. Geol., 12, 1061–1065, https://doi.org/10.1016/0191-8141(90)90101-4, 1990.
Faulkner, D. R., Lewis, A. C., and Rutter, E. H.: On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain, Tectonophysics, 367, 235–251, https://doi.org/10.1016/S0040-1951(03)00134-3, 2003.
Faulkner, D. R., Mitchell, T. M., Rutter, E. H., and Cembrano, J.: On the structure and mechanical properties of large strike-slip faults, Geol. Soc. Spec. Publ., 299, 139–150, https://doi.org/10.1144/SP299.9, 2008.
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., and Withjack, M. O.: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 32, 1557–1575, https://doi.org/10.1016/j.jsg.2010.06.009, 2010.
Faulkner, D. R., Mitchell, T. M., Jensen, E., and Cembrano, J.: Scaling of fault damage zones with displacement and the implications for fault growth processes, J. Geophys. Res.-Sol. Ea., 116, https://doi.org/10.1029/2010JB007788, 2011.
Ferrater, M., Ortuño, M., Masana, E., Pallàs, R., Perea, H., Baize, S., García-Meléndez, E., Martínez-Díaz, J. J., Echeverria, A., Rockwell, T. K., Sharp, W. D., Medialdea, A., and Rhodes, E. J.: Refining seismic parameters in low seismicity areas by 3D trenching: The Alhama de Murcia fault, SE Iberia, Tectonophysics, 680, 122–128, https://doi.org/10.1016/j.tecto.2016.05.020, 2016.
Ferrill, D. A., Morris, A. P., Sims, D. W., Waiting, D. J., and Hasegawa, S.: Development of synthetic layer dip adjacent to normal faults, American Association of Petroleum Geologists Memoir, 85, 125–138, 2005.
Ferrill, D. A., Smart, K. J., and Necsoiu, M.: Displacement-length scaling for single-event fault ruptures: insights from Newberry Springs Fault Zone and implications for fault zone structure, Geol. Soc. Spec. Publ., 299, 113–122, https://doi.org/10.1144/SP299.7, 2008.
Fletcher, J. M. and Spelz, R. M.: Patterns of Quaternary deformation and rupture propagation associated with an active low-angle normal fault, Laguna Salada, Mexico: Evidence of a rolling hinge?, Geosphere, 5, 385–407, https://doi.org/10.1130/GES00206.1, 2009.
Fossen, H. and Rotevatn, A.: Fault linkage and relay structures in extensional settings – A review, Earth Sci. Rev., 154, 14–28, https://doi.org/10.1016/j.earscirev.2015.11.014, 2016.
Fossen, H., Schulz, R. A., Shipton, Z. K., and Mair, K.: Deformation bands in sandstone, a review, Journal of Geological Society of London, 164, 755–769, 2007.
Foxford, K. A., Walsh, J. J., Watterson, J., Garden, I. R., Guscott, S. C., and Burley, S. D.: Structure and content of the Moab Fault Zone, Utah, USA, and its implications for fault seal prediction, Geol. Soc. Spec. Publ., 147, 87–103, https://doi.org/10.1144/GSL.SP.1998.147.01.06, 1998.
Galadini, F. and Galli, P.: The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (central Italy): implications for active tectonics in the central Apennines, Tectonophysics, 308, 143–170, https://doi.org/10.1016/S0040-1951(99)00091-8, 1999.
Galli, P., Bosi, V., Piscitelli, S., Giocoli, A., and Scionti, V.: Late Holocene earthquakes in southern Apennine: paleoseismology of the Caggiano fault, Int. J. Earth Sci., 95, 855–870, https://doi.org/10.1007/s00531-005-0066-2, 2006.
Galli, P., Galadini, F., and Pantosti, D.: Twenty years of paleoseismology in Italy, Earth Sci. Rev., 88, 89–117, https://doi.org/10.1016/j.earscirev.2008.01.001, 2008.
Giba, M., Walsh, J. J., and Nicol, A.: Segmentation and growth of an obliquely reactivated normal fault, J. Struct. Geol., 39, 253–267, https://doi.org/10.1016/j.jsg.2012.01.004, 2012.
Giocoli, A., Burrato, P., Galli, P., Lapenna, V., Piscitelli, S., Rizzo, E., Romano, G., Siniscalchi, A., Magrí, C., and Vannoli, P.: Using the ERT method in tectonically active areas: hints from Southern Apennine (Italy), Adv. Geosci., 19, 61–65, https://doi.org/10.5194/adgeo-19-61-2008, 2008.
Goddard, J. V. and Evans, J. P.: Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, U.S.A., J. Struct. Geol., 17, 533–547, https://doi.org/10.1016/0191-8141(94)00068-B, 1995.
Haddad, D. E., Akciz, S. O., Arrowsmith, J. R., Rhodes, D. D., Oldow, J. S., Zielke, O., Toke, N. A., Haddad, A. G., Mauer, J., and Shilpakar, P.: Applications of airborne and terrestrial laser scanning to paleoseismology, Geosphere, 8, 771–786, https://doi.org/10.1130/GES00701.1, 2012.
Hocking, E. P., Garrett, E., and Cisternas, M.: Modern diatom assemblages from Chilean tidal marshes and their application for quantifying deformation during past great earthquakes, J. Quat. Sci., 32, 396–415, https://doi.org/10.1002/jqs.2933, 2017.
Horsfield, W. T.: An experimental approach to basement-controlled faulting, Geologie en Mijbouw, 56, https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM7820241418 (last access: 31 January 2025), 1977.
Huang, W. and Johnson, A. M.: Quantitative description and analysis of earthquake-induced deformation zones along strike-slip and dip-slip faults, J. Geophys. Res.-Sol. Ea., 115, https://doi.org/10.1029/2009JB006361, 2010.
Iezzi, F., Francescone, M., Pizzi, A., Blumetti, A., Boncio, P., Di Manna, P., Pace, B., Piacentini, T., Papasodaro, F., Morelli, F., Caciagli, M., Chiappini, M., D'Ajello Caracciolo, F., Materni, V., Nicolosi, I., Sapia, V., and Urbini, S.: Slip localization on multiple fault splays accommodating distributed deformation across normal fault complexities, Tectonophysics, 868, https://doi.org/10.1016/j.tecto.2023.230075, 2023.
International Atomic Energy Agency: Seismic Hazards in Site Evaluation for Nuclear Installations, Specific Safety Guide No. SSG-9, Vienna, ISBN 978–92–0–102910–2, 2010.
Irvine, P. J. and Hill, R. L.: Surface rupture along a portion of the Emerson fault, Landers earthquake of June 28, 1992, California, Geology, 46, 23–26, 1993.
ITHACA (ITaly HAzard from CApable faulting): A database of active capable faults of the Italian territory, http://sgi2.isprambiente.it/ithacaweb/Mappatura.aspx, last access: 9 October 2024.
Johannessen, M. U.: Fault core and its geostatistical analysis: Insight into the fault core thickness and fault displacement, Thesis for Master's degree, University of Bergen, https://hdl.handle.net/1956/16394 (last access: 31 January 2025), 2017.
Johnson, A. M., Fleming, R. W., Cruikshank, K. M., Martosudarmo, S. Y., Johnson, N. A., Johnson, K. M., and Wei, W.: Analecta of structures formed during the 28 June 1992 Landers-Big Bear, California, earthquake sequence, 94–97, https://doi.org/10.3133/ofr9794, 1997.
Kim, Y. S. and Sanderson, D. J.: The relationship between displacement and length of faults: A review, Earth Sci. Rev., 68, 317–334, https://doi.org/10.1016/j.earscirev.2004.06.003, 2005.
Kim, Y. S. and Sanderson, D. J.: Structural similarity and variety at the tips in a wide range of strike-slip faults: A review, Terra Nova, 18, 330–344, https://doi.org/10.1111/j.1365-3121.2006.00697.x, 2006.
Kim, Y.-S., Andrews, J. R., and Sanderson, D. J.: Damage zones around strike-slip fault systems and strike-slip fault evolution, Crackington Haven, southwest England, Geosci. J., 4, 53–72, https://doi.org/10.1007/BF02910127, 2000.
Kim, Y.-S., Peacock, D. C. P., and Sanderson, D. J.: Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta, J. Struct. Geol., 25, 793–812, https://doi.org/10.1016/S0191-8141(02)00200-6, 2003.
Kim, Y. S., Peacock, D. C. P., and Sanderson, D. J.: Fault damage zones, J. Struct. Geol., 26, 503–517, https://doi.org/10.1016/j.jsg.2003.08.002, 2004.
Klinger, Y., Xu, X., Tapponnier, P., Van Der Woerd, J., Lasserre, C., and King, G.: High-Resolution Satellite Imagery Mapping of the Surface Rupture and Slip Distribution of the Mw 7.8, 14 November 2001 Kokoxili Earthquake, Kunlun Fault, Northern Tibet, China, B. Seismol. Soc. Am., 95, 1970–1987, https://doi.org/10.1785/0120040233, 2005.
Lasserre, C., Peltzer, G., Crampé, F., Klinger, Y., Van der Woerd, J., and Tapponnier, P.: Coseismic deformation of the 2001 Mw = 7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry, J. Geophys. Res.-Sol. Ea., 110, https://doi.org/10.1029/2004JB003500, 2005.
Lazarte, C. A., Bray, J. D., Johnson, A. M., and Lemmer, R. E.: Surface breakage of the 1992 Landers earthquake and its effects on structures, B. Seismol. Soc. Am., 84, 547–561, https://doi.org/10.1785/BSSA0840030547, 1994.
Leonard, M.: Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release, B. Seismol. Soc. Am., 100, 1971–1988, https://doi.org/10.1785/0120090189, 2010.
Lienkaemper, J. J., Baker, B., and McFarland, F. S.: Surface Slip Associated with the 2004 Parkfield, California, Earthquake Measured on Alinement Arrays, B. Seismol. Soc. Am., 96, S239–S249, https://doi.org/10.1785/0120050806, 2006.
Liner, C. L. and Liner, J. L.: Application of GPR to a site investigation involving shallow faults, Leading Edge, 16, 1649–1651, https://doi.org/10.1190/1.1437545, 1997.
Liu, B. J., Chai, C. Z., Feng, S. Y., Zhao, C. Bin, and Yuan, H. K.: Seismic exploration method for buried fault and its up-breakpoint in Quaternary sediment area – An example of Yinchuan buried active fault, Acta Geophys. Sinica, 51, 1475–1483, https://doi.org/10.1002/cjg2.1298, 2008.
Ma, S.: Distinct asymmetry in rupture-induced inelastic strain across dipping faults: An off-fault yielding model, Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL040666, 2009.
McCalpin, J. P.: Paleoseismology, 2nd edn., https://doi.org/10.2113/gseegeosci.18.3.311, 2009.
McCalpin, J. P.: Statistic of paleoseismic data. Program Element III: Understanding earthquake processes, Contract 1434-HQ-96-GR02752, GEO-HAZ Consulting, Inc., Estes Park, 2013.
McGrath, A. G. and Davison, I.: Damage zone geometry around fault tips, J. Struct. Geol., 17, 1011–1024, 1995.
Melissianos, V. E., Danciu, L., Vamvatsikos, D., and Basili, R.: Fault displacement hazard estimation at lifeline–fault crossings: A simplified approach for engineering applications, B. Earthq. Eng., 21, 4821–4849, https://doi.org/10.1007/s10518-023-01710-1, 2023.
Morley, C. K., Nelson, R. A., Patton, T. L., and Munn, S. G.: Transfer Zones in the East African Rift System and Their Relevance to Hydrocarbon Exploration in Rifts (1), Am. Assoc. Petr. Geol. B., 74, 1234–1253, https://doi.org/10.1306/0C9B2475-1710-11D7-8645000102C1865D, 1990.
Moss, R. E. S. and Ross, Z. E.: Probabilistic Fault Displacement Hazard Analysis for Reverse Faults, B. Seismol. Soc. Am., 101, 1542–1553, https://doi.org/10.1785/0120100248, 2011.
Mozafari, N., Tikhomirov, D., Sumer, Ö., Özkaymak, Ç., Uzel, B., Yeşilyurt, S., Ivy-Ochs, S., Vockenhuber, C., Sözbilir, H., and Akçar, N.: Dating of active normal fault scarps in the Büyük Menderes Graben (western Anatolia) and its implications for seismic history, Quat. Sci. Rev., 220, 111–123, https://doi.org/10.1016/j.quascirev.2019.07.002, 2019.
Naylor, M. A., Mandl, G., and Supesteijn, C. H. K.: Fault geometries in basement-induced wrench faulting under different initial stress states, J. Struct. Geol., 8, 737–752, https://doi.org/10.1016/0191-8141(86)90022-2, 1986.
Nissen, E., Walker, R., Molor, E., Fattahi, M., and Bayasgalan, A.: Late Quaternary rates of uplift and shortening at Baatar Hyarhan (Mongolian Altai) with optically stimulated luminescence, Geophys. J. Int., 177, 259–278, https://doi.org/10.1111/j.1365-246X.2008.04067.x, 2009.
Nissen, E., Krishnan, A. K., Arrowsmith, J. R., and Saripalli, S.: Three-dimensional surface displacements and rotations from differencing pre- and post-earthquake LiDAR point clouds, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL052460, 2012.
Nurminen, F., Baize, S., Boncio, P., Blumetti, A. M., Cinti, F. R., Civico, R., and Guerrieri, L.: SURE 2.0 – New release of the worldwide database of surface ruptures for fault displacement hazard analyses, Sci Data, 9, 729, https://doi.org/10.1038/s41597-022-01835-z, 2022.
Odling, N. E., Harris, S. D., and Knipe, R. J.: Permeability scaling properties of fault damage zones in siliclastic rocks, J. Struct. Geol., 26, 1727–1747, https://doi.org/10.1016/j.jsg.2004.02.005, 2004.
Pantosti, D., Schwartz, D. P., and Valensise, G.: Paleoseismology along the 1980 surface rupture of the Irpinia Fault: Implications for earthquake recurrence in the southern Apennines, Italy, J. Geophys. Res.-Sol. Ea., 98, 6561–6577, https://doi.org/10.1029/92JB02277, 1993.
Peacock, D. C. P.: Propagation, interaction and linkage in normal fault systems, Earth Sci. Rev., 58, 121–142, https://doi.org/10.1016/S0012-8252(01)00085-X, 2002.
Peacock, D. C. P. and Sanderson, D. J.: Displacements, segment linkage and relay ramps in normal fault zones, J. Struct. Geol., 13, 721–733, https://doi.org/10.1016/0191-8141(91)90033-F, 1991.
Peacock, D. C. P. and Sanderson, D. J.: Geometry and Development of Relay Ramps in Normal Fault Systems, Am. Assoc. Petr. Geol. B., 78, 147–165, https://doi.org/10.1306/BDFF9046-1718-11D7-8645000102C1865D, 1994.
Peacock, D. C. P., Dimmen, V., Rotevatn, A., and Sanderson, D. J.: A broader classification of damage zones, J. Struct. Geol., 102, 179–192, https://doi.org/10.1016/j.jsg.2017.08.004, 2017.
Petersen, M. D., Dawson, T. E., Chen, R., Cao, T., Wills, C. J., Schwartz, D. P., and Frankel, A. D.: Fault Displacement Hazard for Strike-Slip Faults, B. Seismol. Soc. Am., 101, 805–825, https://doi.org/10.1785/0120100035, 2011.
Philip, H., Rogozhin, E., Cisternas, A., Bousquet, J. C., Borisov, B., and Karakhanian, A.: The Armenian earthquake of 1988 December 7: faulting and folding, neotectonics and palaeoseismicity, Geophys. J. Int., 110, 141–158, https://doi.org/10.1111/j.1365-246X.1992.tb00718.x, 1992.
Porat, N., Amit, R., Zilberman, E., and Enzel, Y.: Luminescence dating of fault-related alluvial fan sediments in the southern Arava Valley, Israel, Quat. Sci. Rev., 16, 397–402, https://doi.org/10.1016/S0277-3791(96)00101-1, 1997.
Porat, N., Duller, G. A. T., Amit, R., Zilberman, E., and Enzel, Y.: Recent faulting in the southern Arava, Dead Sea Transform: Evidence from single grain luminescence dating, Quatern. Int., 199, 34–44, https://doi.org/10.1016/j.quaint.2007.08.039, 2009.
Prentice, C. S. and Ponti, D. J.: Coseismic deformation of the Wrights tunnel during the 1906 San Francisco earthquake: A key to understanding 1906 fault slip and 1989 surface ruptures in the southern Santa Cruz Mountains, California, J. Geophys. Res.-Sol. Ea., 102, 635–648, https://doi.org/10.1029/96jb02934, 1997.
Quigley, M., Van Dissen, R., Litchfield, N., Villamor, P., Duffy, B., Barrell, D., Furlong, K., Stahl, T., Bilderback, E., and Noble, D.: Surface rupture during the 2010 Mw 7.1 Darfield (Canterbury) earthquake: Implications for fault rupture dynamics and seismic-hazard analysis, Geology, 40, 55–58, https://doi.org/10.1130/G32528.1, 2012.
Reid, H. F.: Report of the State Earthquake Investigation Commission, II: The mechanics of the earthquake, Washington, D.C., https://doi.org/10.1086/621732, 1910.
Ritz, J.-F., Baize, S., Ferry, M., Larroque, C., Audin, L., Delouis, B., and Mathot, E.: Surface rupture and shallow fault reactivation during the 2019 Mw 4.9 Le Teil earthquake, France, Commun. Earth Environ., 1, 10, https://doi.org/10.1038/s43247-020-0012-z, 2020.
Rockwell, T., Fonseca, J., Madden, C., Dawson, T., Owen, L. A., Vilanova, S., and Figueiredo, P.: Palaeoseismology of the Vilariça Segment of the Manteigas-Bragança Fault in northeastern Portugal, Geol. Soc. Spec. Publ., 316, 237–258, https://doi.org/10.1144/SP316.15, 2009.
Rockwell, T. K., Lindvall, S., Dawson, T., Langridge, R., Lettis, W., and Klinger, Y.: Lateral offsets on surveyed cultural features resulting from the 1999 İzmit and Düzce earthquakes, Turkey, B. Seismol. Soc. Am., 92, 79–94, https://doi.org/10.1785/0120000809, 2002.
Salvi, S., Cinti, F. R., Colini, L., D'Addezio, G., Doumaz, F., and Pettinelli, E.: Investigation of the active Celano-L'Aquila fault system, Abruzzi (central Apennines, Italy) with combined ground-penetrating radar and palaeoseismic trenching, Geophys. J. Int., 155, 805–818, https://doi.org/10.1111/j.1365-246X.2003.02078.x, 2003.
Sarmiento, A., Madugo, D., Shen, A., Dawson, T., Madugo, C., Thompson, S., Bozorgnia, Y., Baize, S., Boncio, P., Kottke, A., Lavrentiadis, G., Mazzoni, S., Milliner, C., Nurminen, F., and Visini, F.: Database for the Fault Displacement Hazard Initiative Project, Earthq. Spectra, https://doi.org/10.1177/87552930241262766, 2024.
Schimmelpfennig, I., Benedetti, L., Finkel, R., Pik, R., Blard, P.-H., Bourlès, D., Burnard, P., and Williams, A.: Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates, Quat. Geochronol., 4, 441–461, https://doi.org/10.1016/j.quageo.2009.06.003, 2009.
Schlische, R. W., Withjack, M. O., and Eisenstadt, G.: An experimental study of the secondary deformation produced by oblique-slip normal faulting, Am. Assoc. Petr. Geol. B., 86, 885–906, https://doi.org/10.1306/61EEDBCA-173E-11D7-8645000102C1865D, 2002.
Scholz, C. H.: Permeability of faults, in: The Mechanical involvement of Fluids in Faulting, edited by: Hickman, S., Bruhn, R. L., and Sibson, R., U.S. Geological Survey Open-File Report 94-228, 132–137, https://doi.org/10.1029/94EO01059, 1994.
Schultz, R. A.: Understanding the process of faulting: selected challenges and opportunities at the edge of the 21st century, J. Struct. Geol., 21, 985–993, https://doi.org/10.1016/S0191-8141(99)00025-5, 1999.
Schultz, R. A., Soliva, R., Fossen, H., Okubo, C. H., and Reeves, D. M.: Dependence of displacement–length scaling relations for fractures and deformation bands on the volumetric changes across them, J. Struct. Geol., 30, 1405–1411, https://doi.org/10.1016/j.jsg.2008.08.001, 2008.
Schwartz, D. P. and Coppersmith, K. J.: Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones (USA), J. Geophys. Res., 89, 5681–5698, https://doi.org/10.1029/JB089iB07p05681, 1984.
Shinoda, M., Yoshida, I., Watanabe, K., Nakajima, S., Nakamura, S., and Miyata, Y.: Seismic probabilistic risk estimation of Japanese railway embankments and risk-based design strength of soil and reinforcement, Soil Dyn. Earthq. Eng., 163, 107507, https://doi.org/10.1016/j.soildyn.2022.107507, 2022.
Shipton, Z., Evans, J., and Thompson, L.: The geometry and thickness of deformation-band fault core and its influence on sealing characteristics of deformation-band fault zones, The American Association of Petroleum Geologists Memoir, 85, 181–195, 2005.
Shipton, Z. K., Soden, A. M., Kirkpatrick, J. D., Bright, A. M., and Lunn, R. J.: How thick is a fault? Fault displacement-thickness scaling revisited, Geophysical Monograph Series, edited by: Abercrombie R., McGarr A., Toro G. D., Kanamori H., 193–198, https://doi.org/10.1029/170GM19, 2006.
Sibson, R. H.: Fault rocks and fault mechanisms, J. Geol. Soc. London, 133, 191–213, https://doi.org/10.1144/gsjgs.133.3.0191, 1977.
Smith, L., Foster, C. B., and Evans, J. P.: Interaction Between Fault Zones, Fluid Flow and Heat Transfer at the Basin Scale, in: Hydrogeology of Low Permeability Environments, vol. 2, edited by: Newman, S. P. and Neretnieks, I., International Association of Hydrological Sciences selected papers in Hydrogeology, 41–67, 1990.
Sperrevik, S., Gillespie, P. A., Fisher, Q. J., Halvorsen, T., and Knipe, R. J.: Empirical estimation of fault rock properties, Norwegian Petroleum Society Special Publications, 11, 109–125, 2002.
Storz, H., Storz, W., and Jacobs, F.: Electrical resistivity tomography to investigate geological structures of the earth's upper crust, Geophys. Prospect., 48, 455–471, https://doi.org/10.1046/j.1365-2478.2000.00196.x, 2000.
Suzuki, K., Toda, S., Kusunoki, K., Fujimitsu, Y., Mogi, T., and Jomori, A.: Case studies of electrical and electromagnetic methods applied to mapping active faults beneath the thick quaternary, Developments in Geotechnical Engineering, 84, 29–45, https://doi.org/10.1016/S0165-1250(00)80005-X, 2000.
Tchalenko, J. S.: Similarities between shear zones of different magnitudes, Geol. Soc. Am. Bull., 81, 1625–1640, 1970.
Technical Commission on Seismic Microzonation: Land use guidelines for areas with active and capable faults (ACF), Conference of the Italian Regions and Autonomous Provinces – Rome, https://www.centromicrozonazionesismica.it/documents/23/FAC_ing.pdf (last access: 31 January 2025), 2015.
Torabi, A. and Berg, S. S.: Scaling of fault attributes: A review, Mar. Pet. Geol., 28, 1444–1460, 2011.
Torabi, A., Johannessen, M. U., and Ellingsen, T. S. S.: Fault Core Thickness: Insights from Siliciclastic and Carbonate Rocks, Geofluids, 2019, 1–24, https://doi.org/10.1155/2019/2918673, 2019.
Torabi, A., Ellingsen, T. S. S., Johannessen, M. U., Alaei, B., Rotevatn, A., and Chiarella, D.: Fault zone architecture and its scaling laws: where does the damage zone start and stop?, Geol. Soc. Spec. Publ., 496, 99–124, https://doi.org/10.1144/SP496-2018-151, 2020.
Treiman, J. A.: Fault Rupture and Surface Deformation: Defining the Hazard, Environ. Eng. Geosci., 16, 19–30, https://doi.org/10.2113/gseegeosci.16.1.19, 2010.
Trudgill, B. and Cartwright, J.: Relay-ramp forms and normal-fault linkages, Canyonlands National Park, Utah, Geol. Soc. Am. Bull., 106, 1143–1157, 1994.
Tsakalos, E., Lin, A., Kazantzaki, M., Bassiakos, Y., Nishiwaki, T., and Filippaki, E.: Absolute Dating of Past Seismic Events Using the OSL Technique on Fault Gouge Material – A Case Study of the Nojima Fault Zone, SW Japan, J. Geophys. Res.-Sol. Ea., 125, https://doi.org/10.1029/2019JB019257, 2020.
Uysal, I. T., Feng, Y., Zhao, J., Isik, V., Nuriel, P., and Golding, S. D.: Hydrothermal CO2 degassing in seismically active zones during the late Quaternary, Chem. Geol., 265, 442–454, https://doi.org/10.1016/j.chemgeo.2009.05.011, 2009.
van der Zee, W. and Urai, J. L.: Processes of normal fault evolution in a siliciclastic sequence: a case study from Miri, Sarawak, Malaysia, J. Struct. Geol., 27, 2281–2300, 2005.
Vargas, G., Klinger, Y., Rockwell, T. K., Forman, S. L., Rebolledo, S., Baize, S., Lacassin, R., and Armijo, R.: Probing large intraplate earthquakes at the west flank of the Andes, Geology, 42, 1083–1086, https://doi.org/10.1130/G35741.1, 2014.
Vermilye, J. M. and Scholz, C. H.: The process zone: A microstructural view of fault growth, J. Geophys. Res.-Sol. Ea., 103, 12223–12237, https://doi.org/10.1029/98JB00957, 1998.
Vignaroli, G., Rossetti, F., Petracchini, L., Argante, V., Bernasconi, S. M., Brilli, M., Giustini, F., Yu, T.-L., Shen, C.-C., and Soligo, M.: Middle Pleistocene fluid infiltration with 10–15 ka recurrence within the seismic cycle of the active Monte Morrone Fault System (central Apennines, Italy), Tectonophysics, 827, 229269, https://doi.org/10.1016/j.tecto.2022.229269, 2022.
Wallace, R. E.: Geometry of Shearing Stress and Relation to Faulting, J. Geol., 59, 118–130, https://doi.org/10.1086/625831, 1951.
Walsh, J. J., Nicol, A., and Childs, C.: An alternative model for the growth of faults, J. Struct. Geol., 24, 1669–1675, https://doi.org/10.1016/S0191-8141(01)00165-1, 2002.
Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., and Bonson, C. G.: Formation of segmented normal faults: a 3-D perspective, J. Struct. Geol., 25, 1251–1262, https://doi.org/10.1016/S0191-8141(02)00161-X, 2003.
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, B. Seismol. Soc. Am., 84, 974–1002, https://doi.org/10.1785/BSSA0840040974, 1994.
Wesnousky, S. G.: Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture, B. Seismol. Soc. Am., 98, 1609–1632, https://doi.org/10.1785/0120070111, 2008.
Wibberley, C. A., Yielding, G., and Di Toro, G.: Recent advances in the understanding of fault zone internal structure: a review, Journal of Geological Society of London, Special Publications, 299, 5–33, 2008.
Wilkinson, M., Roberts, G. P., McCaffrey, K., Cowie, P. A., Faure Walker, J. P., Papanikolaou, I., Phillips, R. J., Michetti, A. M., Vittori, E., Gregory, L., Wedmore, L., and Watson, Z. K.: Slip distributions on active normal faults measured from LiDAR and field mapping of geomorphic offsets: an example from L'Aquila, Italy, and implications for modelling seismic moment release, Geomorphology, 237, 130–141, https://doi.org/10.1016/j.geomorph.2014.04.026, 2015.
Wyatt, D. E., Waddell, M. G., and Sexton, G. B.: Geophysics and Shallow Faults in Unconsolidated Sediments, Groundwater, 34, 326–334, https://doi.org/10.1111/j.1745-6584.1996.tb01892.x, 1996.
Youd, T. L.: Ground failure investigations following the 1964 Alaska earthquake, in: NCEE 2014 – 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, https://doi.org/10.4231/D3DN3ZW6P, 2014.
Youngs, R. R., Arabasz, W. J., Anderson, R. E., Ramelli, A. R., Ake, J. P., Slemmons, D. B., McCalpin, J. P., Doser, D. I., Fridrich, C. J., Swan, F. H., Rogers, A. M., Yount, J. C., Anderson, L. W., Smith, K. D., Bruhn, R. L., Knuepfer, P. L. K., Smith, R. B., DePolo, C. M., O'Leary, D. W., Coppersmith, K. J., Pezzopane, S. K., Schwartz, D. P., Whitney, J. W., Olig, S. S., and Toro, G. R.: A methodology for probabilistic fault displacement hazard analysis (PFDHA), Earthq. Spectra, 19, 191–219, https://doi.org/10.1193/1.1542891, 2003.
Zhu, W., Liu, K., Wang, M., and Koks, E. E.: Seismic Risk Assessment of the Railway Network of China's Mainland, Int. J. Disast. Risk Sc., 11, 452–465, https://doi.org/10.1007/s13753-020-00292-9, 2020.
Short summary
Considering the structural complexity related to the internal architecture of active and capable faults, seismic hazard may be linked to different fault attributes depending on the fault domain crossed by a linear infrastructure. We propose a structural geology-based approach for the preliminary study of the area potentially affected by earthquake-induced surface ruptures during infrastructural design, based on the geometric relationships between the active fault and the infrastructure itself.
Considering the structural complexity related to the internal architecture of active and capable...
Altmetrics
Final-revised paper
Preprint