Articles | Volume 25, issue 4
https://doi.org/10.5194/nhess-25-1543-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-1543-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying economic risks to dairy farms from volcanic hazards in Taranaki, Aotearoa / New Zealand
Nicola J. McDonald
CORRESPONDING AUTHOR
ME Research, Market Economics Ltd, Takapuna, Tāmaki Makaurau / Auckland, Aotearoa / New Zealand
Leslie Dowling
ME Research, Market Economics Ltd, Takapuna, Tāmaki Makaurau / Auckland, Aotearoa / New Zealand
Emily P. Harvey
ME Research, Market Economics Ltd, Takapuna, Tāmaki Makaurau / Auckland, Aotearoa / New Zealand
Alana M. Weir
School of Earth and Environment, Faculity of Science, University of Canterbury, Ōtautahi / Christchurch, Aotearoa / New Zealand
Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Mark S. Bebbington
Volcanic Risk Solutions, Massey University, Te Papaioea / Palmerston North, Aotearoa / New Zealand
Nam Bui
ME Research, Market Economics Ltd, Takapuna, Tāmaki Makaurau / Auckland, Aotearoa / New Zealand
Christina Magill
Risk Science, GNS Science, Te Whanganui-a-Tara / Wellington, Aotearoa / New Zealand
Heather M. Craig
School of Earth and Environment, Faculity of Science, University of Canterbury, Ōtautahi / Christchurch, Aotearoa / New Zealand
Garry W. McDonald
ME Research, Market Economics Ltd, Takapuna, Tāmaki Makaurau / Auckland, Aotearoa / New Zealand
Juan J. Monge
ME Research, Market Economics Ltd, Takapuna, Tāmaki Makaurau / Auckland, Aotearoa / New Zealand
Shane J. Cronin
School of Environment, University of Auckland, Tāmaki Makaurau / Auckland, Aotearoa / New Zealand
Thomas M. Wilson
School of Earth and Environment, Faculity of Science, University of Canterbury, Ōtautahi / Christchurch, Aotearoa / New Zealand
Duncan Walker
Perrin Ag Consultants Ltd, Te Rotorua-nui-a-Kahumatamomoe / Rotorua, Aotearoa / New Zealand
Related authors
No articles found.
Mark S. Bebbington, Melody G. Whitehead, and Gabor Kereszturi
Nat. Hazards Earth Syst. Sci., 25, 3455–3460, https://doi.org/10.5194/nhess-25-3455-2025, https://doi.org/10.5194/nhess-25-3455-2025, 2025
Short summary
Short summary
In volcanic fields, the location of an eruptive vent controls the hazards, their intensities, and ultimately the impact of the eruption. Estimates of where future eruptions are likely to occur inform evacuation plans, the (re)location of vital infrastructure, and the placement of early-warning monitoring equipment. Current estimates assume that locations with more past-vents are more likely to produce future-vents. We provide the formulae for an alternative hypothesis of magma depletion.
Lucia Dominguez, Sébastien Biass, Corine Frischknecht, Alana Weir, Maria Paz Reyes-Hardy, Luigia Sara Di Maio, Nemesio Pérez, and Costanza Bonadonna
EGUsphere, https://doi.org/10.5194/egusphere-2025-986, https://doi.org/10.5194/egusphere-2025-986, 2025
Short summary
Short summary
This study assess the cascading impacts of the 2021 Tajogaite eruption on La Palma, Spain. By combining forensic techniques with network analysis, this research quantifies the effects of physical damage on the road network as well as the cascading loss of functionality and systemic disruptions to emergency services, health centers, agriculture and education. Result show the relevance of redundant infrastructure and landuse on effective risk management and mitigation of future volcanic impacts.
Melody Gwyneth Whitehead and Mark Stephen Bebbington
Nat. Hazards Earth Syst. Sci., 24, 1929–1935, https://doi.org/10.5194/nhess-24-1929-2024, https://doi.org/10.5194/nhess-24-1929-2024, 2024
Short summary
Short summary
Precipitation-driven hazards including floods, landslides, and lahars can be catastrophic and difficult to forecast due to high uncertainty around future weather patterns. This work presents a stochastic weather model that produces statistically similar (realistic) rainfall over long time periods at minimal computational cost. These data provide much-needed inputs for hazard simulations to support long-term, time and spatially varying risk assessments.
Sébastien Biass, Susanna F. Jenkins, William H. Aeberhard, Pierre Delmelle, and Thomas Wilson
Nat. Hazards Earth Syst. Sci., 22, 2829–2855, https://doi.org/10.5194/nhess-22-2829-2022, https://doi.org/10.5194/nhess-22-2829-2022, 2022
Short summary
Short summary
We present a methodology that combines big Earth observation data and interpretable machine learning to revisit the impact of past volcanic eruptions recorded in archives of multispectral satellite imagery. Using Google Earth Engine and dedicated numerical modelling, we revisit and constrain processes controlling vegetation vulnerability to tephra fallout following the 2011 eruption of Cordón Caulle volcano, illustrating how this approach can inform the development of risk-reduction policies.
Cited articles
Barker, S. J., Eaton, A. R. V., Mastin, L. G., Wilson, C. J. N., Thompson, M. A., Wilson, T. M., Davis, C., and Renwick, J. A.: Modeling ash dispersal from future eruptions of Taupo supervolcano, Geochem. Geophy. Geosy., 20, 3456–3475, https://doi.org/10.1029/2018GC008152, 2019. a
Bebbington, M. S., Stirlin, M., Cronin, S. J., Wang, T., and Jolly, G.: National-level long-term eruption forecasts by expert elicitation, B. Volcanol., 80, 1–22, 2018. a
Brown, C., McDonald, G., Uma, S., Smith, N., Sadashiva, V., Buxton, R., Grace, E., Seville, E., and Daly, M.: From physical disruption to community impact: Modelling a Wellington Fault earthquake, Australasian Journal of Disaster and Trauma Studies, 23, 65–75, 2019a. a
Brown, C., Seville, E., Hatton, T., Stevenson, J., Smith, N., and Vargo, J.: Accounting for business adaptations in economic disruption models, J. Infrastruct. Syst., 25, 04019001, https://doi.org/10.1061/(ASCE)IS.1943-555X.0000470, 2019b. a, b, c, d
Cardwell, R. J., McDonald, N. J., and McDonald, G. W.: Development of a Regional Social Accounting Framework for New Zealand, Tech. rep., Market Economics Ltd, Takapuna, 2023. a
Choumert-Nkolo, J., Lamour, A., and Phélinas, P.: The economics of volcanoes, Economics of Disasters and Climate Change, 5, 277–299, 2021. a
Colliers International: New Zealand Dairy Property Market Update, https://image.realestate.colliers.com/lib/fe2b117371640479761c79/m/1/c5bfb74a-3543-41ca-b299-5ee20fb5e1c4.pdf (last access: 12 November 2024), 2023. a
Crittenden, K. S., Lamug, C. B., and Nelson, G. L.: Socioeconomic Influences on Livelihood Recovery of Filipino Families Experiencing Recurrent Lahars, Philipp. Sociol. Rev., 51, 115–134, 2003. a
Cronin, S. J., Zernack, A. V., Ukstins, I. A., Turner, M. B., Torres-Orozco, R., Stewart, R. B., Smith, I. E. M., Procter, J. N., Price, R., Platz, T., Petterson, M., Neall, V. E., McDonald, G. W., Lerner, G. A., Damaschcke, M., and Beggington, M. S.: The geological history and hazards of a long-lived stratovolcano, Mt. Taranaki, New Zealand, New Zeal. J. Geol. Geop., 64, 456–478, 2021. a, b, c
Dale, V. H. and Crisafulli, C. M.: Ecological responses to the 1980 eruption of mount St. Helens: key lessons and remaining questions, in: Ecological responses at mount St. Helens: Revisited 35 years after the 1980 Eruption, 1–18, https://doi.org/10.1007/978-1-4939-7451-1_1, 2018. a, b
del Moral, R. and Grishin, S. Y.: chap. Volcanic Disturbances and Ecosystem Recovery, in: Ecosystems of Distrubed Ground, Elseveir, ISBN 0 444 82420 0, 1999. a
Deligne, N. I., Jenkins, S. F., Meredith, E. S., Williams, G. T., Leonard, G. S., Stewart, C., Wilson, T. M., Biass, S., Blake, D. M., Blong, R. J., Bonadonna, C., Calderon B, R., Hayes, J. L., Johnston, D. M., Kennedy, B. M., Magill, C. R., Spence, R., Wallace, K. L., Wardman, J., Weir, A. M., Wilson, G., and Zuccaro, G.: From anecdotes to quantification: advances in characterizing volcanic eruption impacts on the built environment, B. Volcanol., 84, https://doi.org/10.1007/s00445-021-01506-8, 2022. a
Doole, G. J. and Pannell, D. J.: Empirical evaluation of nonpoint pollution policies under agent heterogeneity: regulating intensive dairy production in the Waikato region of New Zealand, Aust. J. Agr. Resour. Ec., 56, 82–101, 2012. a
Hallegatte, S.: An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina, Risk Anal., 28, 779–799, 2008. a
Hawkes Bay Regional Council: Silt Recovery Taskforce making headway, https://www.hbrc.govt.nz/home/article/1502/silt-recovery-taskforce-making-headway?t=featured&s=1 (last access: 7 November 2024), 2023. a
He Waka Eke Noa: Recommendations for pricing agriculture emissions: Report to Ministers, Tech. rep., He Waka Eke Noa: Primary Sector Climate Action Partnership, ISBN 978-0-473-63459-9, 2022. a
Hedley, P., Kolver, E., Glassey, C., Thorrold, B., Van Bysterveldt, A., Roche, J., and Macdonald, K.: Achieving high performance from a range of farm systems, in: Proceedings of the Dairy3 Conference, Te Rapa Racecourse, Hamilton, New Zealand, 3–5 April 2006, OCLC Number/Unique Identifier: 174102979, vol. 4, 147–166, 2006. a
Jonkeren, O. and Giannopoulos, G.: Analysing Critical Infrastructure Failure with a Resilience Inoperability Input-Output Model, Econonic Systems Research, 26, 39–59, 2014. a
Journeaux, P., Kingi, T., and West, G.: Mitigating Greenhouse Gas Emissions on Māori Farms, Tech. rep., Scion, Rotorua, 2020. a
Land Information New Zealand (LINZ): NZ Road Centrelines (Topo, 1:50k), Shapefile, https://data.linz.govt.nz/layer/50329-nz-road-centrelines-topo-150k/ (last access: 2 February 2024), 2011. a
Lawrence, J., Blackett, P., and Cradock-Henry, N. A.: Cascading climate change impacts and implications, Climate Risk Management, 29, 100234, https://doi.org/10.1016/j.crm.2020.100234, 2020. a
Lerner, G. A., Cronin, S. J., Bebbington, M. S., and Platz, T.: The characteristics of a multi-episode volcanic regime: the post-AD 960 Maero eruptive period of Mt. Taranaki (New Zealand), B. Volcanol., 81, 61, https://doi.org/10.1007/s00445-019-1327-4, 2019. a, b
Lynn, I., Manderson, A., Page, M., Harmsworth, G., Eyles, G., Douglas, G., Mackay, A., and Newsome, P.: Land Use Capability Survey Handbook: A New Zealand handbook for the classification of land, Tech. rep., AgResearch and Landcare Research New Zealand and Institute of Geological and Nuclear Sciences, https://doi.org/10.7931/DL1MG6, 2009. a
Magill, C. R., Jenkins, S., Wilson, T., Miller, V., Stewart, C., Blong, R., Marzocchi, W., Boulton, M., Bonadonna, C., and Costa, A.: Volcanic ash fall hazard and risk, Cambridge University Press, 123–145, https://doi.org/10.1017/CBO9781316276273.008, 2015. a
McDonald, G. W., Cronin, S. J., Kim, J.-H., Smith, N. J., Murray, C. A., and Procter, J. N.: Computable general equilibrium modelling of economic impacts from volcanic event scenarios at regional and national scale, Mt. Taranaki, New Zealand, B. Volcanol., 79, 87, https://doi.org/10.1007/s00445-017-1171-3, 2017. a
Ministry for Primary Industries: Stock Exclusion Costs Report, https://www.mpi.govt.nz/dmsdocument/16537-ministry-for-primary-industries-stock-exclusion-costs-report (last access: 23 September 2024), 2016. a
Ministry for the Environment (MFE): River Environment Classification New Zealand (2010), Shapefile, https://data.mfe.govt.nz/layer/51845-river-environment-classification-new-zealand-2010/ (last access: 20 December 2023), 2010. a
Ministry for the Environment (MFE): LUCAS NZ Land Use Map 2020 v003, Shapefile, https://data.mfe.govt.nz/layer/117733-lucas-nz-land-use-map-2020-v003/ (last access: 20 June 2024), 2020. a
Monge, J. J. and McDonald, G. W.: The economy-wide value-at-risk from the exposure of natural capital to climate change and extreme natural events: The case of wind damage and forest recreational services in New Zealand, Ecol. Econ., 176, 106747, https://doi.org/10.1016/j.ecolecon.2020.106747, 2020. a
Monge, J. J., Dowling, L. J., Wegner, S., Melia, N., Cheon, P. E., Schou, W., McDonald, G. W., Journeaux, P., Wakelin, S. J., and McDonald, N.: Probabilistic Risk Assessment of the Economy-Wide Impacts From a Changing Wildfire Climate on a Regional Rural Landscape, Earths Future, 11, e2022EF003446, https://doi.org/10.1029/2022EF003446, 2023. a
Moran, E., Pearson, L., Couldrey, M., and Eyre, K. e.: The Southland Economic Project: Agriculture and Forestry Technical Report (First Released 2017, re-edited May 2019), Tech. rep., Environment Southland, Invercargill, New Zealand, 2019. a
Neild, J., O'Flaherty, P., Hedley, P., Underwood, R., Johnston, D., Christenson, B., and Brown, P.: Impact of a volcanic eruption on agriculture and forestry in New Zealand, Ministry of Agriculture and Forestry, New Zealand, 99/2, 88 pp., ISBN 0-478-07989-3, 1998. a
Newhall, C. G. and Self, S.: The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism, J. Geophys. Res.-Oceans, 87, 1231–1238, 1982. a
Parsons, O., Doole, G., and Romera, A.: On-farm effects of diverse allocation mechanisms in the Lake Rotorua catchment, Report prepared for the Lake Rotorua Stakeholder Advisory Group, Tech. rep., Bay of Plenty Regional Council, 2015. a
Porter, H.: Volcanic impacts to regional water supply systems and opportunities for resilience in Taranaki, Aotearoa New Zealand, Master's thesis, Faculty of Science, University of Canterbury, https://doi.org/10.26021/12836, 2022. a, b, c
Procter, J., Zernack, A., Mead, S., Morgan, M., and Cronin, S.: A review of lahars; past deposits, historic events and present-day simulations from Mt. Ruapehu and Mt. Taranaki, New Zealand, New Zeal. J. Geol. Geop., https://doi.org/10.1080/00288306.2020.1824999, 2020. a, b
Real Estate Institute of New Zealand: REINZ February Rural Data: Significant Changes in Farm Sales, https://www.reinz.co.nz/Web/Web/News/News-Articles/Market-updates/REINZ_February_rural_data_significant_changes_in_farm_sales.aspx (last access: 9 October 2024), 2024. a
Saputra, D., Sari, R. R., Hairiah, K., Widianto, Suprayogo, D., and van Noordwijk, M.: Recovery after volcanic ash deposition: vegetation effects on soil organic carbon, soil structure and infiltration rates, Plant Soil, 474, 163–179, 2022. a
Smith, N., Brown, C., McDonald, G., Seville, E., Ayers, M., and Kim, J.: Wellington Lifelines Project: Protecting Wellington's Economy Through Accelerated Infrastructure Investment Programme Business Case, Revision 3, chap. Appendix L: Modelling the Economics of Resilient Infrastructure Tool (MERIT) Assumptions Report, Wellington Lifelines, 2019. a, b, c
StatisticsNZ: Regional Councils 2018 (generalised), Shapefile, https://datafinder.stats.govt.nz/layer/92204-regional-council-2018-generalised/ (last access: 22 August 2024), 2018a. a
StatisticsNZ: Functional Urban Area 2018, Shapefile, https://datafinder.stats.govt.nz/layer/105288-functional-urban-area-2018/ (last access: 22 August 2024), 2018b. a
Taddeucci, J., Cimarelli, C., Kueppers, U., Hess, K.-U., Wadsworth, F. B., and Dingwell, D. B.: The thermal stability of Eyjafjallajökull ash versus turbine ingestion test sands, Journal of Applied Volcanology, 3, 1–15, https://doi.org/10.1186/2191-5040-3-4, 2011. a
Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., and Sandri, L.: Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand, Nat. Hazards, 86, 31–56, 2017. a
United Nations Office for Disaster Risk Reduction: Report of teh open-ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction, https://www.undrr.org/terminology/hazard#:~:text=A%20process
%2C%20phenomenon%20or%20human,anthropogenic%20or%20socionatural%20in%20origin. (last access: 2 October 2024), 2016. a
%2C%20phenomenon%20or%20human,anthropogenic%20or%20socionatural%20in%20origin. (last access: 2 October 2024), 2016. a
Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D., Kunz, M., Mohr, S., Muis, S., Riddell, G. A., Schäfer, A., Stanley, T., Veldkamp, T. I. E., and Winsemius, H. C.: Review article: Natural hazard risk assessments at the global scale, Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, 2020. a
Weir, A. M., Mead, S., Bebbington, M. S., Wilson, T. M., Beaven, S., Gordon, T., and Campbell-Smart, C.: A modular framework for the development of multi-hazard, multi-phase volcanic eruption scenario suites, J. Volcanol. Geoth. Res., 427, 107557, https://doi.org/10.1016/j.jvolgeores.2022.107557, 2022. a, b
Weir, A. M., Wilson, T. M., Bebbington, M. S., Beaven, S., Gordon, T., Campbell-Smart, C., Williams, J. H., and Fairclough, R.: Approaching the challenge of multi-phase, multi-hazard volcanic impact assessment through the lens of systemic risk: applicaiton to Taranaki Mounga, Nat. Hazards, 120, 9327–9360, 2024a. a
Weir, A. M., Wilson, T. M., Bebbington, M. S., Campbell-Smart, C., Williams, J. H., and Fairclough, R.: Quantifying Systemic Vulenerability of Interdependent Critical Infrastructure Networks: A Case Study for Volcanic Hazards, Int. J. Disast. Risk Re., 114, 104997, https://doi.org/10.1016/j.ijdrr.2024.104997, 2024b. a
Wild, A.: A volcanic tephra fall hazard evacuation decision support tool for Taranaki dairy livestock using probabilistic modelling, Master's thesis, Faculty of Science, University of Canterbury, https://doi.org/10.26021/7563, 2016. a, b, c
Wild, A. J., Wilson, T. M., Bebbington, M. S., W, C. J., and Craig, H. M.: Probabilistic volcanic impact assessment and cost-benefit analysis on network infrastructure for secondary evacuation of farm livestock: A case study from the dairy industry, Taranaki, New Zealand, J. Volcanol. Geoth. Res., 397, 106670, https://doi.org/10.1016/j.jvolgeores.2019.106670, 2019. a, b, c
Wilson, T., Dantas, A., and Cole, J.: Modelling livestock evacuation following a volcanic eruption: An example from Taranaki volcano, New Zealand, New Zeal. J. Agr. Res., 52, 99–110, 2009. a
Zernack, A. V., Price, R. C., Smith, I. E. M., Cronin, S. J., and Stewart, R. B.: Temporal Evolution of a High-K Andesitic Magmatic System: Taranaki Volcano New Zealand, J. Petrol., 53, 325–363, 2012. a
Short summary
In this paper, we develop a model to quantify the future economic impacts of volcanic events for dairy farms in Taranaki, Aotearoa / New Zealand. We use the model to simulate 10 000 possible volcanic futures and collate results into risk-type metrics. The results highlight the variation in risk exposure across farms and show that volcanic risk should play an important role in shaping the future of Taranaki’s dairy sector. This model could be applied to other hazard and agricultural land use contexts.
In this paper, we develop a model to quantify the future economic impacts of volcanic events for...
Altmetrics
Final-revised paper
Preprint