Articles | Volume 24, issue 3
https://doi.org/10.5194/nhess-24-1065-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-1065-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Added value of seasonal hindcasts to create UK hydrological drought storylines
Department of Meteorology, University of Reading, Reading, UK
UK Centre for Ecology & Hydrology (UKCEH), Wallingford, UK
Nigel W. Arnell
Department of Meteorology, University of Reading, Reading, UK
Geoff Darch
Anglian Water, Peterborough, UK
Katie Facer-Childs
UK Centre for Ecology & Hydrology (UKCEH), Wallingford, UK
Theodore G. Shepherd
Department of Meteorology, University of Reading, Reading, UK
Maliko Tanguy
UK Centre for Ecology & Hydrology (UKCEH), Wallingford, UK
Related authors
Jamie Hannaford, Stephen Turner, Amulya Chevuturi, Wilson Chan, Lucy J. Barker, Maliko Tanguy, Simon Parry, and Stuart Allen
Hydrol. Earth Syst. Sci., 29, 4371–4394, https://doi.org/10.5194/hess-29-4371-2025, https://doi.org/10.5194/hess-29-4371-2025, 2025
Short summary
Short summary
This extended review asks whether hydrological (river flow) droughts have become more severe over time in the UK based on literature review and original analyses. The UK is a good international exemplar, given the richness of available data. We find that there is little compelling evidence for a trend towards worsening river flow droughts, at odds with future climate change projections. We outline reasons for this discrepancy and make recommendations to guide researchers and policymakers.
Wilson Chan, Katie Facer-Childs, Maliko Tanguy, Eugene Magee, Burak Bulut, Nicky Stringer, Jeff Knight, and Jamie Hannaford
EGUsphere, https://doi.org/10.5194/egusphere-2025-2369, https://doi.org/10.5194/egusphere-2025-2369, 2025
Short summary
Short summary
The UK Hydrological Outlook river flow forecasting system recently implemented the Historic Weather Analogues method. The method improves winter river flow forecast skill across the UK, especially in upland, fast-responding catchments with low catchment storage. Forecast skill is highest in winter due to accurate prediction of atmospheric circulation patterns like the North Atlantic Oscillation. The Ensemble Streamflow prediction method remains a robust benchmark, especially for other seasons.
Wilson C. H. Chan, Theodore G. Shepherd, Katie Facer-Childs, Geoff Darch, and Nigel W. Arnell
Hydrol. Earth Syst. Sci., 26, 1755–1777, https://doi.org/10.5194/hess-26-1755-2022, https://doi.org/10.5194/hess-26-1755-2022, 2022
Short summary
Short summary
We select the 2010–2012 UK drought and investigate an alternative unfolding of the drought from changes to its attributes. We created storylines of drier preconditions, alternative seasonal contributions, a third dry winter, and climate change. Storylines of the 2010–2012 drought show alternative situations that could have resulted in worse conditions than observed. Event-based storylines exploring plausible situations are used that may lead to high impacts and help stress test existing systems.
Jamie Hannaford, Stephen Turner, Amulya Chevuturi, Wilson Chan, Lucy J. Barker, Maliko Tanguy, Simon Parry, and Stuart Allen
Hydrol. Earth Syst. Sci., 29, 4371–4394, https://doi.org/10.5194/hess-29-4371-2025, https://doi.org/10.5194/hess-29-4371-2025, 2025
Short summary
Short summary
This extended review asks whether hydrological (river flow) droughts have become more severe over time in the UK based on literature review and original analyses. The UK is a good international exemplar, given the richness of available data. We find that there is little compelling evidence for a trend towards worsening river flow droughts, at odds with future climate change projections. We outline reasons for this discrepancy and make recommendations to guide researchers and policymakers.
Srinidhi Jha, Lucy J. Barker, Jamie Hannaford, and Maliko Tanguy
EGUsphere, https://doi.org/10.5194/egusphere-2025-4096, https://doi.org/10.5194/egusphere-2025-4096, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The influence of climate change on drought in the UK has gained attention recently. However, a probabilistic assessment of temperature’s nonstationary influences on hydrological drought characteristics, which could provide key insights into future risks and uncertainties, has not been conducted. This study evaluates changes across seasons and warming scenarios, finding that rare droughts may become more severe, while frequent summer droughts are shorter but more intense.
Burak Bulut, Eugene Magee, Rachael Armitage, Opeyemi E. Adedipe, Maliko Tanguy, Lucy J. Barker, and Jamie Hannaford
EGUsphere, https://doi.org/10.5194/egusphere-2025-3176, https://doi.org/10.5194/egusphere-2025-3176, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study developed a generic machine learning model to forecast drought impacts, with the UK as the main focus. The same model was successfully validated in Germany, showing potential for use in other regions. It captured local patterns of past drought impacts, matching observed events. Using weather and soil data, the model supports early warning and drought risk management. Results are promising, though testing in more climates and conditions would strengthen confidence.
Eleyna L. McGrady, Stephen J. Birkinshaw, Elizabeth Lewis, Ben A. Smith, Claire L. Walsh, Geoff Darch, and Jeremy Dearlove
EGUsphere, https://doi.org/10.5194/egusphere-2025-1824, https://doi.org/10.5194/egusphere-2025-1824, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We developed a method to improve a complex hydrological model that simulates how rivers respond to rainfall across the UK. By automatically adjusting the model’s settings, we made it more accurate at predicting river flows in almost 700 locations. Our method also helps ensure the model reflects real-world conditions. Results provide evidence that detailed hydrological models can now be used at a national scale, which is important for managing water and planning for future climate changes.
Wilson Chan, Katie Facer-Childs, Maliko Tanguy, Eugene Magee, Burak Bulut, Nicky Stringer, Jeff Knight, and Jamie Hannaford
EGUsphere, https://doi.org/10.5194/egusphere-2025-2369, https://doi.org/10.5194/egusphere-2025-2369, 2025
Short summary
Short summary
The UK Hydrological Outlook river flow forecasting system recently implemented the Historic Weather Analogues method. The method improves winter river flow forecast skill across the UK, especially in upland, fast-responding catchments with low catchment storage. Forecast skill is highest in winter due to accurate prediction of atmospheric circulation patterns like the North Atlantic Oscillation. The Ensemble Streamflow prediction method remains a robust benchmark, especially for other seasons.
Maliko Tanguy, Michael Eastman, Amulya Chevuturi, Eugene Magee, Elizabeth Cooper, Robert H. B. Johnson, Katie Facer-Childs, and Jamie Hannaford
Hydrol. Earth Syst. Sci., 29, 1587–1614, https://doi.org/10.5194/hess-29-1587-2025, https://doi.org/10.5194/hess-29-1587-2025, 2025
Short summary
Short summary
Our research compares two techniques, bias correction (BC) and data assimilation (DA), for improving river flow forecasts across 316 UK catchments. BC, which corrects errors after simulation, showed broad improvements, while DA, adjusting model states before forecast, excelled under specific conditions like snowmelt and high baseflows. Each method's unique strengths suit different scenarios. These insights can enhance forecasting systems, offering reliable and user-friendly hydrological predictions.
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 29, 1295–1317, https://doi.org/10.5194/hess-29-1295-2025, https://doi.org/10.5194/hess-29-1295-2025, 2025
Short summary
Short summary
The study provides a detailed characterisation of flash drought in the UK for 1969–2021. The spatio-temporal distribution and trends of flash droughts are highly variable, with important regional and seasonal contrasts. In the UK, flash drought development responds primarily to precipitation variability, while the atmospheric evaporative demand plays a secondary role. We also found that the North Atlantic Oscillation is the main circulation pattern controlling flash drought development.
Fiona Raphaela Spuler, Marlene Kretschmer, Magdalena Alonso Balmaseda, Yevgeniya Kovalchuk, and Theodore G. Shepherd
EGUsphere, https://doi.org/10.5194/egusphere-2024-4115, https://doi.org/10.5194/egusphere-2024-4115, 2025
Short summary
Short summary
Large-scale atmospheric dynamics modulate the occurrence of extreme events and can be leveraged to improve their predictability. In this paper, we introduce a generative machine learning method to identify dynamical drivers of a relevant impact variable in the form of targeted circulation regimes. Applying the method to study extreme precipitation over Morocco, we show that these regimes are more predictive of the impact while maintaining their own predictability and physical consistency.
Ed Hawkins, Nigel Arnell, Jamie Hannaford, and Rowan Sutton
Geosci. Commun., 7, 161–165, https://doi.org/10.5194/gc-7-161-2024, https://doi.org/10.5194/gc-7-161-2024, 2024
Short summary
Short summary
Climate change can often seem rather remote, especially when the discussion is about global averages which appear to have little relevance to local experiences. But those global changes are already affecting people, even if they do not fully realise it, and effective communication of this issue is critical. We use long observations and well-understood physical principles to visually highlight how global emissions influence local flood risk in one river basin in the UK.
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Maliko Tanguy, Michael Eastman, Eugene Magee, Lucy J. Barker, Thomas Chitson, Chaiwat Ekkawatpanit, Daniel Goodwin, Jamie Hannaford, Ian Holman, Liwa Pardthaisong, Simon Parry, Dolores Rey Vicario, and Supattra Visessri
Nat. Hazards Earth Syst. Sci., 23, 2419–2441, https://doi.org/10.5194/nhess-23-2419-2023, https://doi.org/10.5194/nhess-23-2419-2023, 2023
Short summary
Short summary
Droughts in Thailand are becoming more severe due to climate change. Understanding the link between drought impacts on the ground and drought indicators used in drought monitoring systems can help increase a country's preparedness and resilience to drought. With a focus on agricultural droughts, we derive crop- and region-specific indicator-to-impact links that can form the basis of targeted mitigation actions and an improved drought monitoring and early warning system in Thailand.
Jamie Hannaford, Jonathan D. Mackay, Matthew Ascott, Victoria A. Bell, Thomas Chitson, Steven Cole, Christian Counsell, Mason Durant, Christopher R. Jackson, Alison L. Kay, Rosanna A. Lane, Majdi Mansour, Robert Moore, Simon Parry, Alison C. Rudd, Michael Simpson, Katie Facer-Childs, Stephen Turner, John R. Wallbank, Steven Wells, and Amy Wilcox
Earth Syst. Sci. Data, 15, 2391–2415, https://doi.org/10.5194/essd-15-2391-2023, https://doi.org/10.5194/essd-15-2391-2023, 2023
Short summary
Short summary
The eFLaG dataset is a nationally consistent set of projections of future climate change impacts on hydrology. eFLaG uses the latest available UK climate projections (UKCP18) run through a series of computer simulation models which enable us to produce future projections of river flows, groundwater levels and groundwater recharge. These simulations are designed for use by water resource planners and managers but could also be used for a wide range of other purposes.
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-2023, https://doi.org/10.5194/hess-27-1151-2023, 2023
Short summary
Short summary
In an analysis of future drought projections for Great Britain based on the Standardised Precipitation Index and the Standardised Precipitation Evapotranspiration Index, we show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought characteristics, although both result in increased drying. This highlights the need to understand the interplay between increasing atmospheric evaporative demand and drought impacts under a changing climate.
Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd
Weather Clim. Dynam., 4, 39–47, https://doi.org/10.5194/wcd-4-39-2023, https://doi.org/10.5194/wcd-4-39-2023, 2023
Short summary
Short summary
Accurately predicting the response of the midlatitude jet stream to climate change is very important, but models show a variety of possible scenarios. Previous work identified a relationship between climatological jet latitude and future jet shift in the southern hemispheric winter. We show that the relationship does not hold in separate sectors and propose that zonal asymmetries are the ultimate cause in the zonal mean. This questions the usefulness of the relationship.
Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd
Weather Clim. Dynam., 3, 645–658, https://doi.org/10.5194/wcd-3-645-2022, https://doi.org/10.5194/wcd-3-645-2022, 2022
Short summary
Short summary
Understanding how the mid-latitude jet stream will respond to a changing climate is highly important. Unfortunately, climate models predict a wide variety of possible responses. Theoretical frameworks can link an internal jet variability timescale to its response. However, we show that stratospheric influence approximately doubles the internal timescale, inflating predicted responses. We demonstrate an approach to account for the stratospheric influence and recover correct response predictions.
Wilson C. H. Chan, Theodore G. Shepherd, Katie Facer-Childs, Geoff Darch, and Nigel W. Arnell
Hydrol. Earth Syst. Sci., 26, 1755–1777, https://doi.org/10.5194/hess-26-1755-2022, https://doi.org/10.5194/hess-26-1755-2022, 2022
Short summary
Short summary
We select the 2010–2012 UK drought and investigate an alternative unfolding of the drought from changes to its attributes. We created storylines of drier preconditions, alternative seasonal contributions, a third dry winter, and climate change. Storylines of the 2010–2012 drought show alternative situations that could have resulted in worse conditions than observed. Event-based storylines exploring plausible situations are used that may lead to high impacts and help stress test existing systems.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Linda van Garderen, Frauke Feser, and Theodore G. Shepherd
Nat. Hazards Earth Syst. Sci., 21, 171–186, https://doi.org/10.5194/nhess-21-171-2021, https://doi.org/10.5194/nhess-21-171-2021, 2021
Short summary
Short summary
The storyline method is used to quantify the effect of climate change on a particular extreme weather event using a global atmospheric model by simulating the event with and without climate change. We present the method and its successful application for the climate change signals of the European 2003 and the Russian 2010 heatwaves.
Marlene Kretschmer, Giuseppe Zappa, and Theodore G. Shepherd
Weather Clim. Dynam., 1, 715–730, https://doi.org/10.5194/wcd-1-715-2020, https://doi.org/10.5194/wcd-1-715-2020, 2020
Short summary
Short summary
The winds in the polar stratosphere affect the weather in the mid-latitudes, making it important to understand potential changes in response to global warming. However, climate model projections disagree on how this so-called polar vortex will change in the future. Here we show that sea ice loss in the Barents and Kara (BK) seas plays a central role in this. The time when the BK seas become ice-free differs between models, which explains some of the disagreement regarding vortex projections.
Cited articles
Anglian Water: Anglian Water Drought Plan 2022, https://www.anglianwater.co.uk/about-us/our-strategies-and-plans/drought-plan/ (last access: 6 March 2023), 2022a.
Anglian Water: When it does rain, it pours, but still more’s needed to boost water supplies in East Anglia for summer, https://www.anglianwater.co.uk/news/when-it-does-rain-it-pours-but-still-mores-needed-to-boost-water-supplies-in-east-anglia-for-summer/ (last access: 6 March 2023), 2022b.
Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., Krzeminski, B., and Pappenberger, F.: Skilful seasonal forecasts of streamflow over Europe?, Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018, 2018.
Barker, L. J., Hannaford, J., Parry, S., Smith, K. A., Tanguy, M., and Prudhomme, C.: Historic hydrological droughts 1891–2015: systematic characterisation for a diverse set of catchments across the UK, Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019, 2019.
Brunner, M. I. and Slater, L. J.: Extreme floods in Europe: going beyond observations using reforecast ensemble pooling, Hydrol. Earth Syst. Sci., 26, 469–482, https://doi.org/10.5194/hess-26-469-2022, 2022.
Brunner, M. I., Slater, L., Tallaksen, L. M., and Clark, M.: Challenges in modeling and predicting floods and droughts: A review, WIREs Water, 8, e1520, https://doi.org/10.1002/wat2.1520, 2021.
Bunting, S. Y., Jackson, C. R., and Mackay, J. D.: AquiMod modelling of groundwater level hydrographs in the Anglian Water Services' area, British Geological Survey, 2020.
Chan, W., Arnell, N., Darch, G., Facer-Childs, K., Shepherd, T., and Tanguy, M.: Storylines of the 2022 UK drought using seasonal hindcasts at Anglian catchments and boreholes, Zenodo [data set], https://doi.org/10.5281/zenodo.7756582, 2023.
Chan, W. C. H., Arnell, N. W., Darch, G., Facer-Childs, K., Shepherd, T. G., Tanguy, M., and van der Wiel, K.: Current and future risk of unprecedented hydrological droughts in Great Britain, J. Hydrol., 625, 130074, https://doi.org/10.1016/j.jhydrol.2023.130074, 2023.
Copernicus Climate Change Service, Climate Data Store: Seasonal forecast daily and subdaily data on single levels, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.181d637e, 2018.
Defra: Drought – how water companies plan for dry weather and drought, https://www.gov.uk/government/publications/drought-managing-water-supply/drought-how-water-companies-plan-for-dry-weather-and-drought (last access: 6 March 2023), 2021.
Donegan, S., Murphy, C., Harrigan, S., Broderick, C., Foran Quinn, D., Golian, S., Knight, J., Matthews, T., Prudhomme, C., Scaife, A. A., Stringer, N., and Wilby, R. L.: Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times, Hydrol. Earth Syst. Sci., 25, 4159–4183, https://doi.org/10.5194/hess-25-4159-2021, 2021.
Emerton, R., Cloke, H. L., Stephens, E. M., Zsoter, E., Woolnough, S. J., and Pappenberger, F.: Complex picture for likelihood of ENSO-driven flood hazard, Nat. Commun., 8, 14796, https://doi.org/10.1038/ncomms14796, 2017.
Environment Agency: Monthly Water Situation Report: November 2022, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1124041/Water_Situation_Report_for_England_November_2022.pdf (last access: 22 February 2024), 2022.
Fan, M. and Schneider, E. K.: Observed Decadal North Atlantic Tripole SST Variability. Part I: Weather Noise Forcing and Coupled Response, J. Atmos. Sci., 69, 35–50, https://doi.org/10.1175/JAS-D-11-018.1, 2012.
Folland, C. K., Hannaford, J., Bloomfield, J. P., Kendon, M., Svensson, C., Marchant, B. P., Prior, J., and Wallace, E.: Multi-annual droughts in the English Lowlands: a review of their characteristics and climate drivers in the winter half-year, Hydrol. Earth Syst. Sci., 19, 2353–2375, https://doi.org/10.5194/hess-19-2353-2015, 2015.
Gudmundsson, L.: qmap: Statistical transformations for post-processing climate model output, R package version 1.0-4, 2016.Please add DOI or link (including last access).
Haiden, T., Janousek, M., Bidlot, J.-R., Buizza, R., Ferranti, L., Prates, F., and Vitart, F.: Evaluation of ECMWF forecasts, including the 2018 upgrade, https://www.ecmwf.int/sites/default/files/elibrary/2018/18746-evaluation-ecmwf-forecasts-including-2018-upgrade.pdf (last access: 22 February 2024), 2018.
Hall, R. J. and Hanna, E.: North Atlantic circulation indices: links with summer and winter UK temperature and precipitation and implications for seasonal forecasting, Int. J. Climatol, 38, e660–e677, https://doi.org/10.1002/joc.5398, 2018.
Harrigan, S., Prudhomme, C., Parry, S., Smith, K., and Tanguy, M.: Benchmarking ensemble streamflow prediction skill in the UK, Hydrol. Earth Syst. Sci., 22, 2023–2039, https://doi.org/10.5194/hess-22-2023-2018, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020 (data available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels, last access: 22 February 2024).
Hollis, D., McCarthy, M., Kendon, M., Legg, T., and Simpson, I.: HadUK-Grid – A new UK dataset of gridded climate observations, Geosci. Data J., 6, 151–159, https://doi.org/10.1002/gdj3.78, 2019 (data available at: http://catalogue.ceda.ac.uk/uuid/4dc8450d889a491ebb20e724debe2dfb, last access: 22 February 2024).
Hough, M. N. and Jones, R. J. A.: The United Kingdom Meteorological Office rainfall and evaporation calculation system: MORECS version 2.0-an overview, Hydrol. Earth Syst. Sci., 1, 227–239, https://doi.org/10.5194/hess-1-227-1997, 1997.
Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H., and Monge-Sanz, B. M.: SEAS5: the new ECMWF seasonal forecast system, Geosci. Model Dev., 12, 1087–1117, https://doi.org/10.5194/gmd-12-1087-2019, 2019.
Kelder, T., Müller, M., Slater, L. J., Marjoribanks, T. I., Wilby, R. L., Prudhomme, C., Bohlinger, P., Ferranti, L., and Nipen, T.: Using UNSEEN trends to detect decadal changes in 100-year precipitation extremes, npj Climate and Atmospheric Science, 3, 1–13, https://doi.org/10.1038/s41612-020-00149-4, 2020.
Kelder, T., Marjoribanks, T. I., Slater, L. J., Prudhomme, C., Wilby, R. L., Wagemann, J., and Dunstone, N.: An open workflow to gain insights about low-likelihood high-impact weather events from initialized predictions, Meteorol. Appl., 29, e2065, https://doi.org/10.1002/met.2065, 2022.
Kolstad, E. W., Lee, S. H., Butler, A. H., Domeisen, D. I. V., and Wulff, C. O.: Diverse Surface Signatures of Stratospheric Polar Vortex Anomalies, J. Geophys. Res.-Atmos., 127, e2022JD037422, https://doi.org/10.1029/2022JD037422, 2022.
Mackay, J. D., Jackson, C. R., and Wang, L.: A lumped conceptual model to simulate groundwater level time-series, Environ. Modell. Softw., 61, 229–245, https://doi.org/10.1016/j.envsoft.2014.06.003, 2014.
Marsh, T., Cole, G., and Wilby, R.: Major droughts in England and Wales, 1800–2006, Weather, 62, 87–93, https://doi.org/10.1002/wea.67, 2007.
Mellado-Cano, J., Barriopedro, D., García-Herrera, R., Trigo, R. M., and Hernández, A.: Examining the North Atlantic Oscillation, East Atlantic Pattern, and Jet Variability since 1685, J. Climate, 32, 6285–6298, https://doi.org/10.1175/JCLI-D-19-0135.1, 2019.
National Drought Group: One hot, dry spell away from drought returning this summer, National Drought Group warns, https://www.gov.uk/government/news/one-hot-dry-spell-away-from-drought-returning-this-summer-national-drought-group-warns (last access: 6 March 2023), 2023.
National River Flow Archive: https://nrfa.ceh.ac.uk/, last access: 22 February 2024.
Parry, S.: Dry summer pushes river flows to the brink of 1976 drought, https://www.ceh.ac.uk/news-and-media/blogs/dry-summer-pushes-river-flows-brink-1976-drought (last access: 6 March 2023), 2022.
Parry, S., Hannaford, J., Lloyd-Hughes, B., and Prudhomme, C.: Multi-year droughts in Europe: analysis of development and causes, Hydrol. Res., 43, 689–706, https://doi.org/10.2166/nh.2012.024, 2012.
Parry, S., Wilby, R. L., Prudhomme, C., and Wood, P. J.: A systematic assessment of drought termination in the United Kingdom, Hydrol. Earth Syst. Sci., 20, 4265–4281, https://doi.org/10.5194/hess-20-4265-2016, 2016.
Prudhomme, C., Hannaford, J., Harrigan, S., Boorman, D., Knight, J., Bell, V., Jackson, C., Svensson, C., Parry, S., Bachiller-Jareno, N., Davies, H., Davis, R., Mackay, J., McKenzie, A., Rudd, A., Smith, K., Bloomfield, J., Ward, R., and Jenkins, A.: Hydrological Outlook UK: an operational streamflow and groundwater level forecasting system at monthly to seasonal time scales, Hydrolog. Sci. J., 62, 2753–2768, https://doi.org/10.1080/02626667.2017.1395032, 2017.
Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T., and Andréassian, V.: A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, J. Hydrol., 411, 66–76, https://doi.org/10.1016/j.jhydrol.2011.09.034, 2011.
Richardson, D., Fowler, H. J., Kilsby, C. G., Neal, R., and Dankers, R.: Improving sub-seasonal forecast skill of meteorological drought: a weather pattern approach, Nat. Hazards Earth Syst. Sci., 20, 107–124, https://doi.org/10.5194/nhess-20-107-2020, 2020.
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West, I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A., Sobel, A. H., Stainforth, D. A., Tett, S. F. B., Trenberth, K. E., van den Hurk, B. J. J. M., Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.: Storylines: an alternative approach to representing uncertainty in physical aspects of climate change, Climatic Change, 151, 555–571, https://doi.org/10.1007/s10584-018-2317-9, 2018.
Smith, K. A., Barker, L. J., Tanguy, M., Parry, S., Harrigan, S., Legg, T. P., Prudhomme, C., and Hannaford, J.: A multi-objective ensemble approach to hydrological modelling in the UK: an application to historic drought reconstruction, Hydrol. Earth Syst. Sci., 23, 3247–3268, https://doi.org/10.5194/hess-23-3247-2019, 2019.
Svensson, C.: Seasonal river flow forecasts for the United Kingdom using persistence and historical analogues, Hydrolog. Sci. J., 61, 19–35, https://doi.org/10.1080/02626667.2014.992788, 2016.
Svensson, C., Brookshaw, A., Scaife, A. A., Bell, V. A., Mackay, J. D., Jackson, C. R., Hannaford, J., Davies, H. N., Arribas, A., and Stanley, S.: Long-range forecasts of UK winter hydrology, Environ. Res. Lett., 10, 064006, https://doi.org/10.1088/1748-9326/10/6/064006, 2015.
Svensson, C., Hannaford, J., and Prosdocimi, I.: Statistical distributions for monthly aggregations of precipitation and streamflow in drought indicator applications, Water Resour. Res., 53, 999–1018, https://doi.org/10.1002/2016WR019276, 2017.
Tanguy, M., Dixon, H., Prosdocimi, I., Morris, D. G., and Keller, V. D. J.: Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890–2019) [CEH-GEAR], NERC EDS Environmental Information Data Centre [data set], https://doi.org/10.5285/dbf13dd5-90cd-457a-a986-f2f9dd97e93c, 2021.
Thompson, V., Dunstone, N. J., Scaife, A. A., Smith, D. M., Slingo, J. M., Brown, S., and Belcher, S. E.: High risk of unprecedented UK rainfall in the current climate, Nat. Commun., 8, 107, https://doi.org/10.1038/s41467-017-00275-3, 2017.
van den Brink, H. W., Können, G. P., Opsteegh, J. D., van Oldenborgh, G. J., and Burgers, G.: Improving 10000-year surge level estimates using data of the ECMWF seasonal prediction system, Geophys. Res. Lett., 31, L17210, https://doi.org/10.1029/2004GL020610, 2004.
West, H., Quinn, N., and Horswell, M.: Monthly Rainfall Signatures of the North Atlantic Oscillation and East Atlantic Pattern in Great Britain, Atmosphere, 12, 1533, https://doi.org/10.3390/atmos12111533, 2021.
West, H., Quinn, N., and Horswell, M.: The Influence of the North Atlantic Oscillation and East Atlantic Pattern on Drought in British Catchments, Frontiers in Environmental Science, 10, 754597, https://doi.org/10.3389/fenvs.2022.754597, 2022.
Short summary
The most recent drought in the UK was declared in summer 2022. We pooled a large sample of plausible winters from seasonal hindcasts and grouped them into four clusters based on their atmospheric circulation configurations. Drought storylines representative of what the drought could have looked like if winter 2022/23 resembled each winter circulation storyline were created to explore counterfactuals of how bad the 2022 drought could have been over winter 2022/23 and beyond.
The most recent drought in the UK was declared in summer 2022. We pooled a large sample of...
Altmetrics
Final-revised paper
Preprint