Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-809-2023
https://doi.org/10.5194/nhess-23-809-2023
Research article
 | 
24 Feb 2023
Research article |  | 24 Feb 2023

Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany

Omar Seleem, Georgy Ayzel, Axel Bronstert, and Maik Heistermann

Data sets

Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany Omar Seleem https://doi.org/10.5281/zenodo.7516408

Model code and software

omarseleem92/Urban_flooding: Python script and handouts Omar Seleem https://doi.org/10.5281/zenodo.7661174

Download
Short summary
Data-driven models are becoming more of a surrogate that overcomes the limitations of the computationally expensive 2D hydrodynamic models to map urban flood hazards. However, the model's ability to generalize outside the training domain is still a major challenge. We evaluate the performance of random forest and convolutional neural networks to predict urban floodwater depth and investigate their transferability outside the training domain.
Altmetrics
Final-revised paper
Preprint