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Abstract. Data-driven models have been recently suggested
to surrogate computationally expensive hydrodynamic mod-
els to map flood hazards. However, most studies focused on
developing models for the same area or the same precipita-
tion event. It is thus not obvious how transferable the models
are in space. This study evaluates the performance of a con-
volutional neural network (CNN) based on the U-Net archi-
tecture and the random forest (RF) algorithm to predict flood
water depth, the models’ transferability in space and perfor-
mance improvement using transfer learning techniques. We
used three study areas in Berlin to train, validate and test the
models. The results showed that (1) the RF models outper-
formed the CNN models for predictions within the training
domain, presumable at the cost of overfitting; (2) the CNN
models had significantly higher potential than the RF models
to generalize beyond the training domain; and (3) the CNN
models could better benefit from transfer learning technique
to boost their performance outside training domains than RF
models.

1 Introduction

Urbanization increases the frequency and severity of ex-
treme urban pluvial flood events (Skougaard Kaspersen et al.,
2017). Therefore, it is crucial to quantify the flood water
depth and extent due to pluvial flooding in urban environ-
ments. While 2D hydrodynamic models are effective and ro-
bust in estimating urban floodwater depth, they are difficult
to scale due to prohibitive computational costs (Costabile
et al., 2017). The use of data-driven models is increasing as
a surrogate that might overcome the limitations of the com-

putationally expensive numerical models (Hou et al., 2021;
Guo et al., 2021; Löwe et al., 2021; Guo et al., 2022; Ben-
tivoglio et al., 2022). They do not simulate the physical pro-
cess of runoff generation and concentration but find patterns
between the input and output data. The model’s accuracy de-
pends on the amount, quality and diversity of the available
data. They could predict water depth with a sufficient level
of accuracy within seconds. Consequently, they are a helpful
tool that can support decision-makers with a real-time fore-
cast.

Data-driven models used to address urban pluvial flood
hazards in the literature can be grouped into models that use
only rainfall input to map flood hazards (Hou et al., 2021;
Hofmann and Schüttrumpf, 2021) and models that account
for the topographic characteristics of the urban landscape
(Löwe et al., 2021; Guo et al., 2022). The former group inter-
polates the flood response between rainfall events that were
used to train the model and hence can only predict flood haz-
ards within the training domain, while the latter has the po-
tential to generalize and make accurate predictions outside
the training domain (Bentivoglio et al., 2022).

Point-based data-driven models such as the random for-
est (RF) algorithm have been widely used in the literature
to map susceptibility for pluvial flooding (Lee et al., 2017;
Chen et al., 2020; Zhao et al., 2020; Seleem et al., 2022). RF
models outperformed convolutional neural networks (CNNs)
to map flood susceptibility in Berlin at various spatial res-
olutions and showed promising results outside the training
domain (Seleem et al., 2022). Hou et al. (2021) trained RF
and K-nearest neighbor (KNN) algorithms to predict urban
pluvial flood water depth using only the rainfall characteris-
tics as inputs, and Zahura et al. (2020) trained an RF model
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to predict flood water depth in an urban coastal area using
three topographic predictive features. However, both studies
evaluated the model performance inside the training domain
only. The algorithm performance to map urban pluvial flood
hazards using different topographic characteristics of the ur-
ban area and its ability to generalize to other areas than the
training domain have not been systematically investigated in
the literature, yet.

CNNs have recently demonstrated the potential to map ur-
ban pluvial flood susceptibility (Zhao et al., 2020, 2021; Se-
leem et al., 2022) and flood hazard (Löwe et al., 2021; Guo
et al., 2022). They are designed to extract spatial information
from the input data and to handle image (raster) data without
an unwarranted growth in the model complexity. Löwe et al.
(2021) trained a CNN model based on the U-Net architec-
ture (Ronneberger et al., 2015) to predict urban pluvial flood
water depth. They divided the city into a grid and used part
of it for training and the rest for testing. The testing areas
were close to or surrounded by training areas which guaran-
teed that the testing dataset had minimal diversity from the
training dataset. Guo et al. (2022) used four topographic pre-
dictive features and one precipitation event to train a CNN
model. The model performed well outside the training do-
main for the same precipitation event used to train the model.

Deep learning uses transfer learning techniques to mitigate
the problem of insufficient training data (Tan et al., 2018).
Zhao et al. (2021) applied transfer learning techniques to map
urban pluvial flood susceptibility using the LeNet-5 network
architecture. A model that was trained on a certain part of the
city (pre-trained model) performed poorly outside the train-
ing domain. A transferred model trained by freezing the pre-
trained model weights and allowing only a few weights to be
re-trained using limited training data from the new area im-
proved the model performance. The transferred model used
the knowledge learned from the pre-trained model and out-
performed a model that was only trained for the new area.
These techniques have not yet been investigated for predict-
ing flood water depth or for shallow machine learning algo-
rithms such as RF.

In summary, deep learning was consistently superior to
shallow machine learning in the literature, but recent studies
showed the contrary (Seleem et al., 2022; Grinsztajn et al.,
2022). However, shallow machine learning algorithms have
not been systematically challenged in terms of transferability
for urban flood modeling. A data-driven model that general-
izes outside the training domain is still a major challenge in
the literature (Bentivoglio et al., 2022). While previous stud-
ies tried to examine the transferability of a CNN in space
to predict flood water depth under certain limitations (Löwe
et al., 2021; Guo et al., 2022) and use transfer learning tech-
niques to improve the CNN performance outside the train-
ing domain to map flood susceptibility (Zhao et al., 2021),
such efforts have been examined neither for RF models nor
for surrogates of physical numerical 2D hydrodynamic mod-
els. It is not obvious how transfer learning techniques could

improve the data-driven model performance and be a useful
tool to overcome the limitations of applying computationally
expensive 2D hydrodynamic models to a big region. In this
study, we investigate the transferability of data-driven mod-
els to surrogate the physical numerical 2D hydrodynamic
models by addressing the following research questions.

1. How does the performance of RF and CNN models in
predicting urban pluvial flood water depth compare in-
side and outside the training domain?

2. Can transfer learning techniques improve the model per-
formance outside the training domain and thus help to
overcome the issue of limited training data?

2 Methodology

2.1 Study design

The overall design of this study was as follows: firstly, we se-
lected three areas (Fig. 1) that have frequently been flooded
in the last decades based on a flood inventory (Seleem et al.,
2022) gathered between 2005 and 2017. The 2D hydrody-
namic simulations were carried out in these areas. Then, the
precipitation depth, topographic predictive features and wa-
ter depth from the 2D hydrodynamic simulations were used
to prepare the training, validation and testing datasets. We
randomly selected 10 000 images (raster with spatial extent
of 256× 256) and 10 % of the available data (number of pix-
els within the training domain× number of training precipi-
tation events) to develop both the U-Net and RF models re-
spectively. We split the data into training (60 %), validation
(20 %) and testing (20 %) datasets. The validation dataset
were used to estimate the optimal hyperparameter combina-
tions. The testing dataset included data from three precipita-
tion events (50, 100 and 140 mm) which were not included
in the training and validation datasets. Next, we defined six
combinations of training and testing datasets as shown in Ta-
ble 1 and evaluated the model performance inside each train-
ing domain and the models’ spatial transferability to other
testing domains; hence we evaluated the transferability be-
tween precipitation events (at the same training domains)
and the transferability in space between study areas. After-
wards, we selected the best hyperparameter combinations for
the data-driven model that best fit the validation dataset. Fi-
nally, we investigated whether the learned knowledge from
the pre-trained models can improve urban flood hazard map-
ping outside the training domain using transfer learning tech-
niques and which predictive features are mostly influencing
the model predictions.

2.2 Study area and hydrodynamic model

Berlin is the capital of Germany and has around 3.6 mil-
lion inhabitants. The city has a relatively flat topography
(Seleem et al., 2022) and has an oceanic climate (Köppen:
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Figure 1. (a) The three study areas in Berlin and the altitude map in the background. Panels (b), (c) and (d) show the water depth map
from the TELEMAC-2D simulation for a 1 h 100 mm precipitation event for SA0, SA1 and SA2 respectively and the altitude map in the
background.

Table 1. Examined training data combinations to train the data-
driven models.

Training Testing domain Training Testing domain
domain domain

SA0 SA0∗, SA1 and SA2 SA0 and 1 SA0∗, SA1∗ and SA2
SA1 SA0, SA1∗ and SA2 SA0 and 2 SA0∗, SA1 and SA2∗

SA2 SA0, SA1 and SA2∗ SA1 and 2 SA0, SA1∗ and SA2∗

∗ refers to testing the model with precipitation events that were not included in the
training dataset.

Cfb) (Peel et al., 2007). The average annual precipitation is
around 570 mm (Berghäuser et al., 2021). Heavy summer
precipitation caused several urban pluvial floods in the last
decades, for example, the 170 mm precipitation depth event
on 29 and 30 June 2017 (Berghäuser et al., 2021). The se-
lected study areas are between 6, 11 and 12 km2. Seleem
et al. (2021) showed that SA0 has large deep topographic de-
pressions where flood water tends to accumulate, while flood
water spill outside the topographic depressions after a certain
precipitation depth threshold in SA2.

The maximum water depths were obtained from
TELEMAC-2D (Galland et al., 1991) hydrodynamic
simulations (for SA0 and SA2) performed by Seleem et al.

(2021). We performed additional simulations for SA1 using
the same model setup. We used the finite volume scheme
to solve the shallow water equations over non-structured
triangular grids (1 m maximum side length). The simulations
were carried out using 1 h duration precipitation events
(block rainfall) with precipitation depths ranging from 20 to
150 mm (10 mm increments); the 1 h intensive precipitation
event in 2019 caused pluvial flooding (Berghäuser et al.,
2021). We used the SCS-CN (soil conservation service
curve number) method (Cronshey, 1986) to estimate excess
runoff. The storm drainage system was not included in the
TELEMAC-2D simulations due to the unavailability of
detailed data of the storm drainage system. Additionally,
the city of Berlin has a relatively flat topography, and van
Dijk et al. (2014) showed that there was no significant
difference between the results of 2D and coupled 1D–2D
hydrodynamic models in urban areas with flat terrain. For
more information about the model setup, please see Seleem
et al. (2021).

2.3 Predictive features

While data-driven models do not “understand” the physi-
cal processes of runoff generation and concentration, they
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are designed to detect relationships between input and tar-
get variables (Grant and Wischik, 2020), in this case simu-
lated inundation depth. Therefore, predictive features should
represent the surface characteristics of the study area which
could inform the model of governing hydrological and hy-
drodynamic patterns. Table 2 shows the selected 12 pre-
dictive features that we considered potentially relevant for
mapping urban floods and their description. The topographic
predictive features were generated from a digital elevation
model (DEM) with a 1× 1 m pixel size which is openly avail-
able to download for the entire city of Berlin (ATKIS, 2020).

2.4 Models

2.4.1 U-Net

The application of CNNs for mapping urban flood hazards
is still rare in the literature (Löwe et al., 2021). This study
adopted the U-Net architecture (Ronneberger et al., 2015) as
shown in Fig. 2. The U-Net architecture showed a good per-
formance to predict water depth in the literature (Löwe et al.,
2021; Guo et al., 2022). The model input is a terrain raster
with 13 image channels (13 channels represent the predictive
features), and the output is the resulting water depth at the
surface. The U-Net architecture belongs to encoder/decoder
architectures. The encoder follows the typical architecture of
a convolutional neural network and uses pooling to down-
scale the spatial resolution, while the decoder uses upsam-
pling to upscale the learned patterns. Skip connections con-
catenate the output of each encoder layer to its corresponding
decoding layer to provide the spatial information (Srivastava
et al., 2015).

We applied LeakyReLU (leaky rectified linear unit) with
an activation threshold of 0.2 to all layers except the out-
put layer (Maas et al., 2013; Löwe et al., 2021; Guo et al.,
2022) and adaptive moment estimation (Adam; Kingma and
Ba, 2014) to update and optimize the network weights. We
used average pooling because it showed better performance
than maximum pooling (Löwe et al., 2021) and added a batch
normalization layer after each convolutional layer to stabi-
lize and speed up the training process (Ioffe and Szegedy,
2015; Santurkar et al., 2018). A drop-out strategy was imple-
mented with a rate of 0.5 to the convolutional layers (Löwe
et al., 2021; Seleem et al., 2022) and early stopping to prevent
overfitting (Prechelt, 1998). We used a batch size of 10 and
the mean squared loss as a loss function to train the models
(Löwe et al., 2021).

The success of CNNs relies on finding a suitable architec-
ture that fits a given task (Miikkulainen et al., 2019). There-
fore, we varied three parameters similar to Löwe et al. (2021)
to obtain the most suitable network architecture, namely
the network depth (i.e., number of encoding and decoding
blocks) (varied between 3 and 4), number of filters in the
first convolutional layer (varied between 16, 32 and 64) and
the size of the kernels in the convolutional layers (varied

between 3, 5 and 7). Using a deeper network and more fil-
ters increases the number of parameters and the computa-
tional expense. Moreover, using a larger kernel size allows
the network to perform spatial aggregation on a larger re-
gion, again, however, at increasing computational cost. All
the implemented models were validated based on the holdout
validation method. Löwe et al. (2021) showed that a model
trained using the holdout validation method was superior to
models trained using the k-fold cross-validation method to
predict urban floodwater depth.

We implemented an input image size of 256× 256 pixels
(1× 1 m spatial resolution). Löwe et al. (2021) used the same
image size but with a 5 m spatial resolution. We understand
that this image size may be not sufficient to fully capture
urban watersheds or topographic depressions. On the other
hand, the selected study areas are small (area ranges from 6
to 12 km2). We also used 12 predictive features to guarantee
that the input data represent well both the terrain and hy-
drological characteristics. The predictive features were cal-
culated for the whole city, and hence the calculated rasters
consider the characteristics of the upstream urban catchment.
Finally, training models with larger images is also limited by
the memory of the graphics card.

2.4.2 Random forest

The random forest (RF) is a decision tree algorithm that was
proposed by Breiman (2001). It solves both classification and
regression problems by combining several randomized de-
cision trees and averaging their predictions. RF divides the
training data into several sub-datasets. Then, a tree model
is developed for each dataset. Finally, a prediction is deter-
mined based on the majority result of the decision trees as
shown in Fig. 3. This approach intends to prevent overfitting
(Biau and Scornet, 2016).

It is well known that RF performs relatively well
with default hyper-parameter values. Still, hyper-parameter
tuning may improve model performance (Probst et al.,
2019). This study used the default values for the hyper-
parameters, such as the minimum number of samples in
a node and the maximum depth of each tree in the
sklearn.ensemble.RandomForestRegressor (Pedregosa et al.,
2011), and varied the number of trees in the forest (between
10, 100, 200 and 300) (Zahura et al., 2020). Finally, an in-
creasing number of training data points increases the training
time and the model size dramatically. We used 10 % of the
available training data (number of pixels within the training
domain× number of training precipitation events) to train the
RF model for all the simulations carried out in the study.
We also tried to use larger portions of the training data but
without a significant improvement in model performance. In
addition, we performed hyperparameter tuning using the k-
fold cross-validation method using a smaller training dataset
(number of samples= 100 000) to investigate the models’
performance and their transferability.
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Table 2. Spatial predictive features used to train the data-driven models.

Predictive
feature

Data adjustment Description

Altitude Normalized to [0, 1] Surface elevation is important for flood hazard mapping because runoff tends to accumulate
at low elevation (Zhao et al., 2020; Seleem et al., 2021; Löwe et al., 2021; Seleem et al.,
2022)

Slope Normalized to [0, 1] Slope impacts the runoff velocity and the available time for infiltration (Rahmati et al.,
2016)

Aspect Scaled to [−1, 1] Aspect indicates the flow direction. We used the cosine and sine of aspect as two separate
predictive features to deal with the cyclic behavior of flow direction (Löwe et al., 2021).
Löwe et al. (2021) and Seleem et al. (2022) found that aspect was the most important pre-
dictive feature for mapping urban floods using CNNs.

TWI Normalized to [0, 1] Topographic wetness index was proposed by Kirkby (1975). It indicates the geotechnical
wetness level and is being used to identify urban flood-prone areas (Jalayer et al., 2014;
Seleem et al., 2021).

Curvature Normalized to [−1, 1] Depending on the curvature value, the surface is flat, concave or convex. Guo et al. (2021)
and Löwe et al. (2021) used it to predict urban flooding using data-driven models.

SDepth Normalized to [0, 1] Depth of topographic depression impacts the volume of excess runoff that can be accumu-
lated in it (Zhang and Pan, 2014; Seleem et al., 2021, 2022; Löwe et al., 2021).

FLACC Normalized to [0, 1] Flow accumulation indicates the number of pixels draining into a certain pixel. We used
the upper cutoff at 250 ha because very large values represent natural streams (Löwe et al.,
2021).

TPI Normalized to [−1, 1] Topographic position index is defined as the difference between the pixel elevation and the
mean elevation of the surrounding pixels (Lei et al., 2021). A positive value denotes that the
pixel is higher than the neighboring pixels, while a negative value indicates that the pixel is
lower that the neighboring pixels, and a zero value represents flat areas (Weiss, 2001).

CN Normalized to [0, 1] Curve number is an empirical parameter that is computed using land cover and soil hydro-
logic group (Cronshey, 1986). It is used to estimate the direct runoff. We used the CN map
produced by Seleem et al. (2021).

Roughness Normalized to [0, 1] Roughness impacts the excess runoff flow over the surface. We used the Manning rough-
ness coefficient map produced by Seleem et al. (2021). Buildings were defined by a high
roughness coefficient similar to the TELEMAC-2D model setup (Seleem et al., 2021).

DEML Normalized to [0, 1] It is computed as the difference between the elevation of a pixel and the focal mean of
elevation within a 100 m radius. Urban pluvial floods occur on a small spatial scale (< 1 km)
and are connected to the local variation in elevation (Löwe et al., 2021).

Precipitation
depth

Normalized to [0, 1] We used 1 h duration precipitation events with precipitation depths ranging from 20 to
150 mm (10 mm increments) (Seleem et al., 2021).

2.5 Transfer learning

The transfer learning technique is a vital tool in deep learn-
ing to overcome the problem of insufficient training data
(Tan et al., 2018). It is based on the idea that a model is firstly
trained for a certain task (called the pre-trained model). Then,
a new model is implemented (the transferred model) where
some of its layers are frozen (they use the same weights from
the pre-trained model) and the remaining layers (weights)
are trained using new training data and/or a new task. This
technique thus extends the application of data-driven models

outside the training domain of the pre-trained model. It also
reduces the training time because of the reuse of the weights
from the pre-trained model. In this study, we froze all the
layers in the U-Net model except the layers in the last decod-
ing block which were then re-trained using new training data
(see Fig. 2) (Adiba et al., 2019).

The majority of shallow machine learning algorithms do
not support transfer learning techniques because training the
model is always fast and not complicated. However, RF of-
fers the warm start option that allows adding more trees to the
forest to be fitted using a new training dataset, which means a
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Figure 2. Schematic diagram of the applied U-Net architecture for a network of depth= 4 (four blocks of encoder and decoder). The
transferred model obtained the weights from the pre-trained model except for the weights in the last decoder block (black color). Then, the
new training data were used to train the remaining untrained weights.

Figure 3. Schematic diagram of the random forest algorithm and the additional trees that are added to the model in the case of a warm start.
The additional trees are trained using the new training data, while the old trees (from the pre-trained model) remain unchanged.

model can be trained (pre-trained model) and then new trees
can be added to the forest and trained using the new training
data (transferred model) without changing the trees in the
pre-trained model, as shown in Fig. 3.

2.6 Performance evaluation

The models’ performance was assessed based on predicting
water depth and inundation extent. For computing the per-
formance indices, we compared the water depth and extent
obtained from the TELEMAC-2D model to the results of the
competing data-driven models. Table 3 gives an overview of
performance metrics. We computed other indices like bal-
anced accuracy, mean absolute error and the total flooded
area ratio. However, we found that root mean square error
(RMSE), Nash–Sutcliffe efficiency (NSE) and critical suc-
cess index (CSI) represent the model performance well. A
10 cm threshold was applied for the CSI calculation.

2.7 Predictive feature importance

We adopted the forward selection process from Löwe et al.
(2021) to estimate the most important topographical predic-
tive features for the U-Net model. Firstly, we trained 11 mod-
els, each of which considered 1 of the 11 topographical pre-
dictive features (precipitation depth was included in all mod-
els) from Table 2. Then, we evaluated the model performance
based on the performance indices in Table 3 and selected the
best model. After that, we trained 10 new models based on
the best model from the previous step by adding 1 of the re-
maining 10 predictive features to the inputs. We repeated this
procedure three times to get the three most important predic-
tive features for the U-Net model.

One of the advantages of the RF algorithm is the ability
to compute the importance of predictive features; hence no
forward selection process was required to estimate the im-
portance of specific features for the RF models. We used the
built-in feature importance in the RF model, which is imple-
mented in the scikit-learn Python package (Pedregosa et al.,
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Table 3. Performance indices used to evaluate the models’ predictions. The yi and ŷi denote the water depth from the TELEMAC-2D model
and the data-driven model respectively. ŷi is the average of water depths from the data-driven model. Hits, misses and false alarms are
estimated by the contingency table.

Index Equation Range Description

RMSE
√

1
n

∑n
i=1

(
yi − ŷi

)2 [0,∞] Root mean square error measures the difference between the predicted and
observed values. The optimal RMSE is zero.

NSE 1−
∑n

i=1(yi−ŷi)
2∑n

i=1

(
yi−ŷi

)2 [−∞, 1] Nash–Sutcliffe efficiency shows how well the observed values are predicted
by the model (Nash and Sutcliffe, 1970). The optimal NSE value is 1.

CSI hits
hits+misses+false alarms [0, 1] Critical success index is a binary index calculated based on a pixel basis.

The optimal value is 1.

2011). The importance of the predictive features is calculated
as the mean and standard deviation of accumulation of the
impurity decrease within each tree (Pedregosa et al., 2011).

2.8 Computational details

The U-Net models were implemented using the Keras
Python package (Chollet et al., 2015), while the RF
models were implemented using the method ensem-
ble.RandomForestRegressor from the Python package scikit-
learn (Pedregosa et al., 2011). The U-Net models were
trained using a high-performance machine with an NVIDIA
Quadro P4000 GPU, while RF models were trained using
a machine with an Intel(R) Xeon(R) E5-2667 v3 3.20 GHz
CPU. The training time ranged from 20 min to 48 h and from
10 min to 2 h for the U-Net and RF models respectively. The
U-net models needed around 20 s to predict and map the wa-
ter depth, while the RF models took around 3 min.

3 Results and discussion

3.1 Evaluating different combinations of training data

In order to evaluate model transferability between spatial
domains, we used a U-Net model with the following com-
bination of hyperparameters: depth= 4, kernel size= 3 and
number of filters in the first encoding block= 32. This com-
bination showed reasonable performance with the training
datasets and had performed well in previous studies (Guo
et al., 2021; Löwe et al., 2021). For the RF model, we used
the holdout validation method with the number of trees in the
forest= 10, as it shows also reasonable results and training
time (around 10 min).

Figure 4 compares the performance indices for each study
area (SA) and for all combinations of training and testing
datasets for both the U-Net and RF models. The NSE val-
ues show that the RF models outperformed the U-Net models
for predicting water depth within the training domains; how-
ever, they failed to predict water depth outside the training
domains. It is obvious from Fig. 4 that the RF models were

overfit to the training data, while the U-Net models tended to
generalize better. The CSI and RMSE values are in line with
that finding: they show that the RF models could predict the
inundation extent better than the U-Net models in some train-
ing combinations despite failing to predict the water depth
outside the training domain accurately. Allowing the deci-
sion tree to have unlimited maximum depth may cause over-
fitting, so we performed multiple simulations varying it (as
shown in the Supplement). The simulations showed that re-
ducing the maximum depth of the decision tree improved the
model performance outside the training domain at the cost
of lower performance inside the training domain. We also
trained RF models using the k-fold cross-validation method.
The results indicated that the models were not able to gen-
eralize outside the training domain, as demonstrated in the
Supplement. Finally, it is clear from Fig. 4 that the models
U-Net-SA1 and RF-SA1 performed best outside the training
domain, compared to models trained using training data from
the SA0 and SA2 separately. The U-Net-SA1&2 model had
the best performance within and outside the training domain.

3.2 Transfer learning

We evaluated how transfer learning could improve model
performance outside the original training domain. Specifi-
cally, we investigated how the improvement from transfer
learning depends on the percentage of data that was used
from the target domain of the transfer. Figure 5 compares
the performance of the transferred U-Net and RF models to
the models trained exclusively on the target domain of the
transfer. The figure shows that the transfer learning technique
boosted the U-Net and RF model performance outside the
training domain of the pre-trained models. Another advan-
tage for transfer learning for U-Net models is that the train-
ing of the transferred models (20 min to 2 h) was faster than
training the whole network from scratch.

All U-Net models transferred to the SA0 domain outper-
formed the U-Net-SA0 model for all performance indices.
This applies even if we used only 10 % of the available train-
ing data (from SA0) for transfer learning (in contrast to using
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Figure 4. Computed performance indices (based on the testing dataset) for different combinations of training datasets for both the U-Net and
RF models. The x axis shows the model used and the training domain, while the y axis shows the performance indices. The U-Net-SA1&2
model had the best performance within and outside the training domain.

100 % of the SA0 training data for training the U-Net-SA0
model). We could conclude from Fig. 5 that the transferred
model could use the previously learned knowledge from the
U-Net-SA1&2 model to predict water depth in SA0. Con-
trary to U-Net, the trained RF models for each SA separately
outperformed all the transferred RF models. All RF models
transferred to the SA0 domain performed better than the RF-
SA1&2 model but worse than the RF-SA0 model. Figure 5
confirms the previous findings that RF models are prone to
overfitting.

3.3 Flood maps

In order to convey a visual idea of the resulting flood maps,
Fig. 6 compares the water depth as predicted by the different
models to the water depths as simulated by the TELEMAC-
2D model for region SA0 and for a precipitation depth of
100 mm (Figs. S2 and S3 in the Supplement show the flood
maps for 50 and 140 mm precipitation depths). Apparently,
all models could identify topographic depressions and pre-
dict flood water within them. The U-Net-SA0 model under-

estimates the water depth as shown in Fig. 6b. Figure 6c
and d show the predicted water depth from the best per-
formance U-Net-SA1&2 model and the transferred model
(U-Net-SA1&2→SA0) using 10 % of the training data of
SA0 (including only 40 and 120 mm precipitation depths)
to train the weights in the transferred model. The trans-
ferred model outperformed both U-Net-SA0 and U-Net-
SA1&2. It predicted the most identical inundation extent as
the TELEMAC-2D model. Finally, Fig. 6e, f and g show
the predicted water depth from the RF-SA0, RF-SA1&2 and
RF-SA1&2→SA0 models respectively. The RF-SA0 model
memorized the training data as shown in Fig. 4 and thus
predicted the water depth accurately, while the RF-SA1&2
model could not predict the flood water inside the topograph-
ical depressions correctly, and the RF-SA1&2→SA0 model
overestimated the water depth.

3.4 Feature importance

Figure 7 shows the NSE for SA1 and SA2 for the first three
rounds in the predictive feature forward selection process
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Figure 5. Evaluation of transfer learning: the colored markers represent the performance indices for transferred models with different per-
centages of data from the domain where the model has been transferred to. For example, SA0→SA1&2 refers to a model pre-trained on
SA0 and then transferred to (re-trained on) SA1 and SA2. The bars show the performance indices for the models trained exclusively on
the transfer target domains. 10 %∗ denotes that the training data from the transferred domain was generated using only two precipitation
events (40 and 120 mm). The transferred U-Net-SA1&2→SA0 (pre-trained model SA1&2 and transfer target SA0) models outperformed
the U-Net-SA0 model, but the RF-SA0 model was superior to the transferred RF-SA1&2→SA0 models for all percentages used of new
training data from SA0.

for the best performance model U-Net-SA1&2 (other indices
were computed but not shown here since the results regarding
feature importance did not change). We stopped after three
rounds because the process was computationally expensive,
and we aimed to obtain just the most important topographi-
cal predictive features. These were TWI, SDepth, roughness
and altitude. TWI showed the best performance in the first
round for both SA1 and SA2, while a model trained with
TWI and SDepth was superior to other models in round two.
Finally, training a model with TWI, SDepth and altitude out-
performed the other models in round three. While the gained
knowledge in round three by adding altitude and roughness
was the same for SA1, adding roughness reduced the model
performance in SA2. It is explainable that roughness influ-
enced the models’ prediction because buildings were defined
in the input dataset as having a high roughness values. The
precipitation depth was added as a predictive feature to all the
trained models but not included in Fig. 7 because the main
objective was to estimate the most important topographical

predictive features. In contrast to Löwe et al. (2021) and Se-
leem et al. (2022), aspect was not among the most important
features.

Figure 8 shows the feature importance for the RF-SA1&2
model. SDepth, altitude and CN were the most important
predictive features. In contrast to U-Net models, TWI was
not among the most important predictive features for the RF
models. The estimated best predictive features from the U-
Net and RF models were not the same, but the results agree
with the findings in the literature that TWI (Jalayer et al.,
2014; Seleem et al., 2021; Bentivoglio et al., 2022), SDepth
(Zhang and Pan, 2014; Seleem et al., 2021) and altitude
(Zhang and Pan, 2014; Seleem et al., 2021, 2022) are indi-
cators for urban flood-prone areas.

4 Conclusions

This study developed and tested CNN models (based on the
U-Net architecture) and RF models to emulate the output of a
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Figure 6. Comparison of water depths from different models and TELEMAC-2D model for a 100 mm precipitation event for SA0. The figure
highlights the boundary of two topographic depressions within SA0 where runoff accumulates. The altitude is shown in the background.

2D hydrodynamic model (TELEMAC-2D) for three selected
areas within the city of Berlin. We trained the data-driven
surrogate models to map topographic, land cover and precip-
itation variables to flood water depths as obtained from 2D
hydrodynamic model simulations. The evaluation of model
performance was designed to assess the transferability of
trained models to areas outside the training domain. It is
worth mentioning that the accuracy of the predicted flood
maps by a data-driven model highly depends on the accu-
racy of the hydrodynamic model simulations used to train
the model. While the urban area lacks monitoring devices,

crowd-sourced data and fine-resolution satellite images could
be helpful tools to validate the hydrodynamic models.

Both U-Net and RF models were skillful in predicting wa-
ter depth within the training domain (minimum NSE= 0.6).
Contrary to the hypothesis that deep learning algorithms
were superior to shallow machine learning algorithms (Ben-
tivoglio et al., 2022), the results suggested that the RF mod-
els outperformed the U-Net models for predictions within
the training domain. However, we found that the high per-
formance of RF models was largely owed to overfitting: out-
side of the training domains, RF models exhibited a substan-
tial performance loss for all considered metrics (NSE, RMSE
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Figure 7. NSE values for SA1 (a) and SA2 (b) for the models trained in the forward selection process for the best performance training data
combination (U-Net-SA1&2). The best performance model in every round is marked in red.

Figure 8. Predictive feature importance for RF-SA1&2 model.

and CSI). Although some RF models showed better perfor-
mance outside the training domain (as shown in the Supple-
ment), this study aimed to evaluate the model transferability
and not to optimize the model to generalize. For the CNN
models, the loss of performance was also considerable but
clearly less pronounced than for the RF models. We thus con-
clude that the potential of CNN models to generalize beyond
the training domain is significantly higher than for RF mod-
els. Further research requires testing the data-driven model’s
transferability further in environments with different charac-
teristics (particularly with cities in more mountainous envi-
ronments).

Furthermore, we found that the CNN models’ ability to
generalize and hence to be transferred beyond the training
domain could be boosted by transfer learning: by provid-
ing only a small fraction of training data from a target do-

main, transfer learning improved the performance of some
pre-trained CNN models in such a way that it outperformed
a CNN that was trained from scratch with the full amount
of training data from that domain. This outcome clearly dis-
tinguishes deep learning models such as CNN from shallow
models such as RF which could not benefit from transfer
learning in a similar fashion. Transfer learning thus provides
a promising perspective to efficiently use additional training
data to adjust deep learning models to specific target areas or
to provide an additional level of generalization at a minimum
computational expense.

Analyzing the results showed that the depth of a depres-
sion (SDepth) is a strong predictive feature for both the U-
Net and RF models. SDepth, altitude and CN were the most
influential topographical predictors for the RF model, while
TWI, SDepth, roughness and altitude were the most influ-
ential topographical predictive features for the U-Net model.
This is in contrast to Löwe et al. (2021) and Seleem et al.
(2022), who found the aspect to be the most important pre-
dictive feature for flood hazard and susceptibility mapping
using CNN. We thus suggest a detailed future study to sys-
tematically explore the suitability of different topographical
predictive features for data-driven models of urban flood haz-
ard.

Altogether, this study confirms that deep learning could
be a skillful tool for upscaling flood hazard maps in ur-
ban environments. Given the excessive costs of providing
complete high-resolution 2D hydrodynamic model cover-
age, deep learning, namely CNN, has shown its ability to
learn transferable knowledge of simulated inundation pat-
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terns. This puts into perspective previous study results by
Seleem et al. (2022) that highlighted the performance of ran-
dom forest models – which we now found less able to gen-
eralize. Given the apparent potential of CNN for generaliza-
tion, however, it is all the more important to collect training
and testing data from many and diverse regions in order to
capitalize on this learning capability. This could be a com-
munity effort and the basis for future benchmarking experi-
ments that move beyond the boundaries of isolated cities. In
order to start this process, we provided the output of the 2D
hydrodynamic simulations along with this paper.

Code and data availability. The predictive features and water
depth from the TELEMAC-2D model simulations are available
at https://doi.org/10.5281/zenodo.7516408 (Seleem, 2023a); the
source code for the models are provided through a GitHub reposi-
tory (https://github.com/omarseleem92/Urban_flooding.git, last ac-
cess: 21 February 2023; https://doi.org/10.5281/zenodo.7661174,
Seleem, 2023b).
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