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Hyperparameter tuning 

- Convolutional neural network (U-Net) 

Table S1, Table S2 and  

Table S3 show the computed performance indices for different combinations of U-Net hyper-

parameter (depth, number of filters in the first encoder block, and filter size) combinations using 

the best performance training data combination (SA1 & 2). We considered a total of 18 hyper-

parameter combinations and selected the best combination based on the model performance in 

the training domain. Table S1 and Table S2 show that the best performance model for both SA1 

and SA2 (study areas included in the training domain) had a number of filters =32, filter size = 3, 

and depth = 4. It has 7,771,809 parameters and a training time of 8 hours 21 minutes.  

 

- Random forest model (RF) 

We trained RF models with different numbers of trees in the forest also using the best 

performance training data combination (SA1 & 2), increasing the number of trees in the forest 

increased the computational cost and the training time (from 10 minutes to 3 hours) but it had 

no significant performance gain on the model prediction. Our findings agree with previous 

studies (Oshiro et al., 2012; Zahura et al., 2020). Therefore, we used the number of trees in the 

forest = 10 for further predictions in this paper. 

The holdout validation method showed that the RF models overfitted the training dataset. 

Therefore, we carried out a hyper-parameter tuning (number of iterations = 30) for the best 

performing model (RF – SA1&2) with k-fold cross-validation and a smaller training dataset 

(number of samples =100,000) as shown in Table S4. Then, we trained a model with the best 

hyper-parameters combination on the entire dataset. The trained model performance within the 

training domain reduced slightly (Nash Sutcliffe Efficiency (NSE) values dropped from 0.84 and 

0.9 to 0.75 and 0.84 for SA1 and SA2 respectively). Outside the training domain (the NSE 

increased from -0.67 to 0.03 for SA0). The calculated performance indices showed that the model 

trained using the best hyperparameter combination and k-fold cross-validation still could not 

generalize outside the training domain. 

We investigated also the impact of limiting the depth of decision trees on the holdout validation 

method. We implemented several models (RF- SA1&2) with varying the depth of the decision 

tree. Figure S1 shows the computed NSE values for all the implemented models. It points out that 

reducing the maximum depth of the decision tree enhanced the model performance outside the 

training domain at the cost of reducing the model performance inside the training domain.  

The goal of our study is to assess the model transferability in space. To do this, we selected the 

best combination of hyperparameters for each model based on their performance on the 

validation dataset. We then evaluated the models' performance on the testing dataset. We did 

not specifically choose the hyperparameter combination to optimize the models' transferability 



to other regions; Table S1 shows that a CNN model with 16 filters, a filter size of 7, and a network 

depth of 3 was superior for predictions outside of the training domain. However, other models 

were superior inside the training domain. 

 

 

Table S1. Calculated performance indices for SA0 for all the computed hyperparameter 
combinations for the best training dataset combination (SA1 & 2) 



 

Table S2. Calculated performance indices for SA1 for all the computed hyperparameter 
combinations for the best training dataset combination (SA1 & 2) 

 



Table S3. Calculated performance indices for SA2 for all the computed hyperparameter 
combinations for the best training dataset combination (SA1 & 2) 

  

Table S4. Selection of best combination of parameters for the RF model based on 
hyperparameter tuning using K-fold cross-validation method.  

Parameter Range Best combination 

Number of trees in random forest 100 < n_estimator< 2000 2000 

Number of features to consider at 
every split 

[ auto , sqrt] auto 

Maximum number of levels in tree 10 < max_depth < ∞ 50 

Minimum number of samples 
required to split a node 

min_samples_split = [2, 5, 
10] 

5 



Minimum number of samples 
required at each leaf node 

min_samples_leaf = [1, 2, 4] 2 

Method of selecting samples for 
training each tree 

bootstrap = [True, False] True 

 

 

 

Figure S1. Shows the impact of varying the maximum depth of the decision trees on the RF – SA1 
&2 model performance using holdout validation method. The X-axis shows the implemented 
maximum depth of the decision trees while the Y-axis denotes the computed Nash Sutcliffe 
Efficiency (NSE) 

Flood maps: 
Figure S2 and Figure S3 compare the water depths from different models and TELEMAC-2D 

model for 50 and 140 mm precipitation events for SA0. The figures show that the models 

performance enhances with increasing the precipitation depth. 
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Figure S2 Comparison of water depths from different models and TELEMAC-2D model for a 50 
mm precipitation event for SA0. The figure highlights the boundary of two topographic 
depressions within SA0 where runoff accumulates. The altitude is shown in the background 



 

Figure S3 Comparison of water depths from different models and TELEMAC-2D model for a 140 
mm precipitation event for SA0. The figure highlights the boundary of two topographic 
depressions within SA0 where runoff accumulates. The altitude is shown in the background 
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