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Hyperparameter tuning

- Convolutional neural network (U-Net)
Table S1, Table S2 and

Table S3 show the computed performance indices for different combinations of U-Net hyper-
parameter (depth, number of filters in the first encoder block, and filter size) combinations using
the best performance training data combination (SA1 & 2). We considered a total of 18 hyper-
parameter combinations and selected the best combination based on the model performance in
the training domain. Table S1 and Table S2 show that the best performance model for both SA1
and SA2 (study areas included in the training domain) had a number of filters =32, filter size = 3,
and depth = 4. It has 7,771,809 parameters and a training time of 8 hours 21 minutes.

- Random forest model (RF)
We trained RF models with different numbers of trees in the forest also using the best
performance training data combination (SA1 & 2), increasing the number of trees in the forest
increased the computational cost and the training time (from 10 minutes to 3 hours) but it had
no significant performance gain on the model prediction. Our findings agree with previous
studies (Oshiro et al., 2012; Zahura et al., 2020). Therefore, we used the number of trees in the
forest = 10 for further predictions in this paper.

The holdout validation method showed that the RF models overfitted the training dataset.
Therefore, we carried out a hyper-parameter tuning (number of iterations = 30) for the best
performing model (RF — SA1&2) with k-fold cross-validation and a smaller training dataset
(number of samples =100,000) as shown in Table S4. Then, we trained a model with the best
hyper-parameters combination on the entire dataset. The trained model performance within the
training domain reduced slightly (Nash Sutcliffe Efficiency (NSE) values dropped from 0.84 and
0.9 to 0.75 and 0.84 for SA1 and SA2 respectively). Outside the training domain (the NSE
increased from -0.67 to 0.03 for SAQ). The calculated performance indices showed that the model
trained using the best hyperparameter combination and k-fold cross-validation still could not
generalize outside the training domain.

We investigated also the impact of limiting the depth of decision trees on the holdout validation
method. We implemented several models (RF- SA1&2) with varying the depth of the decision
tree. Figure S1 shows the computed NSE values for all the implemented models. It points out that
reducing the maximum depth of the decision tree enhanced the model performance outside the
training domain at the cost of reducing the model performance inside the training domain.

The goal of our study is to assess the model transferability in space. To do this, we selected the
best combination of hyperparameters for each model based on their performance on the
validation dataset. We then evaluated the models' performance on the testing dataset. We did
not specifically choose the hyperparameter combination to optimize the models' transferability



to other regions; Table S1 shows that a CNN model with 16 filters, a filter size of 7, and a network
depth of 3 was superior for predictions outside of the training domain. However, other models
were superior inside the training domain.

Table S1. Calculated performance indices for SAO for all the computed hyperparameter
combinations for the best training dataset combination (SA1 & 2)
Filter num Filter size Depth HNSE RMSE csl

o 16 3 &N 0216079 POS144989 NiEE s
1 16 3 4 0450139 U Pyl R RVETE
2 16 3 SRR LBV NN 0126293 0528408
3 16 9 4 0465831 QURNRLLEE 0539143
4 16 7 3 0602343 QuNls2CLE 0542547
5 16 7 SR e 0123669 0.491252
& 32 3 &N 0.079667 0.518367
7 32 3 4  0.531396 gUREWLEE 0555347
8 32 3 3 0533752 UARLAFE 0535400
9 32 9 4 0431954 JURPsz s BEIVEY P
10 32 7 <N 0141585 USEArFZAN 0527111
11 32 7 N -0.068188 guNlscreyl 0503513
12 64 3 SV RIS 0.112196  0.511400
12 64 3 U 0349439 | 0.132082 RES i)
14 64 3 3 0415645 U PLY LIV RS LE]
15 64 9 SO ESLTE G 0128125 BOSRHEHES
16 64 7 SRV ST 0.121345  0.510000
17 64 7 SO 0.121345 0.500000



Table S2. Calculated performance indices for SA1 for all the computed hyperparameter
combinations for the best training dataset combination (SA1 & 2)

Filter_num Filter_size Depth NSE RMSE Csl

0 16 3 KN 0.738003 0.070887

1 16 3 N 0.715503 [ OOF3868 | 0537106
2 16 5 N 0765911 0.067005 [ 0575877
3 16 5 Ll 0724726 0.072661 0572724
4 16 7 KN 0633788 0.459598
5 16 7 4 0.066073 | 0.561517
6 32 3 3 0.794891 gURLrpN 0518499
7 32 3 4 0.837990 EUDELYESE 0651536
8 32 5 &N 0.729301 0072054 0527954
9 32 5 LN 0. 703284 puRUETELE 0.479789
10 32 7 3 0.810939 guarsveNy

11 32 7 4 10779307 LI

12 64 3 &N (.695888 0.548835
13 64 3 LS 0760771 0.067737

14 64 5 KN 0759953 0.067853 | 09872598
15 64 5 4 0.833772 gL

16 64 7 KN 0669744 guRGELEYE 0512753
17 64 7 LS 0.740098 0.070604 0558408




Table S3. Calculated performance indices for SA2 for all the computed hyperparameter
combinations for the best training dataset combination (SA1 & 2)
RMSE Csl

Filter num Filter_size Depth NSE

0 16 3 KN 0.728378 0.086787 Nk
1 16 3 Y 0.653640 0491272
2 16 5 3 WrEe iyl 0.551749
3 16 5 vS 0745083 0.084076

4 16 7 KW (0.565798 0.377808
5 16 7 4  0.795849 guRirgysivl 0.5481838
6 32 3 3 0.853574 QURLETFAN 0.611738
7 32 3 4 0.859656 EuNPshEE 0520996
8 32 5 &N 0.737983 0085239 0492455
] 32 5 tN 0747101 0.083743 0462011
10 32 7 3 0.841516 pURLLrE [.592333
11 32 7 4 0.810015 guRirpst=g 0.594880
12 64 3 KN 0.665841 BN 0479617
13 64 3 4 0767345 guliisrig 0579144
14 64 5 3 0770667 gUIriErEyl 0542615
15 64 5 4 0856114 gURINIE [ 554332
16 64 7 &N 0.685174 - 0.489645
17 64 7 LN 0.729622 0.086594 0474623

Table S4. Selection of best combination of parameters for the RF model based on
hyperparameter tuning using K-fold cross-validation method.

Parameter Range Best combination
Number of trees in random forest 100 < n_estimator< 2000 2000
Number of features to consider at
. [ auto, sqrt] auto
every split
Maximum number of levels in tree 10 < max_depth < oo 50
Minimum number of samples min_samples_split =[2, 5, 5

required to split a node

10]




Minimum number of samples

i les leaf=[1,2,4 2
required at each leaf node min_samples_leaf =1, 2, 4]

Method of selecting samples for

.. bootstrap = [True, False] True
training each tree

0,5

NSE
o

SA1 SA2 SAO
Maximum depth

Figure S1. Shows the impact of varying the maximum depth of the decision trees on the RF — SA1
&2 model performance using holdout validation method. The X-axis shows the implemented
maximum depth of the decision trees while the Y-axis denotes the computed Nash Sutcliffe
Efficiency (NSE)

Flood maps:

Figure S2 and Figure S3 compare the water depths from different models and TELEMAC-2D
model for 50 and 140 mm precipitation events for SAQ. The figures show that the models
performance enhances with increasing the precipitation depth.
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Figure S2 Comparison of water depths from different models and TELEMAC-2D model for a 50
mm precipitation event for SAQ. The figure highlights the boundary of two topographic
depressions within SAO where runoff accumulates. The altitude is shown in the background
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Figure S3 Comparison of water depths from different models and TELEMAC-2D model for a 140

mm precipitation event for SAO. The figure highlights the boundary

of two topographic

depressions within SAO where runoff accumulates. The altitude is shown in the background



References
Oshiro, T. M., Perez, P. S., and Baranauskas, J. A.: How many trees in a random forest?, in:
International workshop on machine learning and data mining in pattern recognition, pp. 154—
168, Springer, 2012

Zahura, F. T, Goodall, J. L., Sadler, J. M., Shen, Y., Morsy, M. M., and Behl, M.: Training machine
learning surrogate models from a high-fidelity physics-based model: Application for real-time
street-scale flood prediction in an urban coastal community, Water Resources Research, 56,
€2019WR027 038, 2020.



