Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-693-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-693-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Increased spatial extent and likelihood of compound long-duration dry and hot events in China, 1961–2014
School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
Wegener Center for Climate and Global Change, University of Graz,
Brandhofgasse 5, 8010, Graz, Austria
Douglas Maraun
CORRESPONDING AUTHOR
Wegener Center for Climate and Global Change, University of Graz,
Brandhofgasse 5, 8010, Graz, Austria
Albert Ossó
Wegener Center for Climate and Global Change, University of Graz,
Brandhofgasse 5, 8010, Graz, Austria
Jianping Tang
CORRESPONDING AUTHOR
School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
Related authors
No articles found.
Cuini Qi, Pinya Wang, Yang Yang, Huimin Li, Hui Zhang, Lili Ren, Xipeng Jin, Chenchao Zhan, Jianping Tang, and Hong Liao
Atmos. Chem. Phys., 24, 11775–11789, https://doi.org/10.5194/acp-24-11775-2024, https://doi.org/10.5194/acp-24-11775-2024, 2024
Short summary
Short summary
We investigate extremely hot weather impacts on surface ozone over the southeastern coast of China with and without tropical cyclones. Compared to hot days alone, ozone concentration decreased notably in the Yangtze River Delta (YRD) but increased in the Pearl River Delta (PRD) during tropical cyclones and hot days. The YRD benefited from strong and clean sea winds aiding ozone elimination. In contrast, the PRD experienced strong northeasterly winds that potentially transport ozone pollution.
Kamilya Yessimbet, Andrea K. Steiner, Florian Ladstädter, and Albert Ossó
Atmos. Chem. Phys., 24, 10893–10919, https://doi.org/10.5194/acp-24-10893-2024, https://doi.org/10.5194/acp-24-10893-2024, 2024
Short summary
Short summary
Major sudden stratospheric warmings (SSWs) and atmospheric blocking can markedly influence winter extratropical surface weather. To study the relationship between SSWs and blocking, we examine dynamic stratosphere–troposphere coupling using vertically highly resolved observations from global navigation satellite system radio occultation for 2007–2019. Our results provide a purely observational view of the evolution of major SSWs, their link to blocking, and their effect on the polar tropopause.
Colin Manning, Martin Widmann, Douglas Maraun, Anne F. Van Loon, and Emanuele Bevacqua
Weather Clim. Dynam., 4, 309–329, https://doi.org/10.5194/wcd-4-309-2023, https://doi.org/10.5194/wcd-4-309-2023, 2023
Short summary
Short summary
Climate models differ in their representation of dry spells and high temperatures, linked to errors in the simulation of persistent large-scale anticyclones. Models that simulate more persistent anticyclones simulate longer and hotter dry spells, and vice versa. This information is important to consider when assessing the likelihood of such events in current and future climate simulations so that we can assess the plausibility of their future projections.
Raphael Knevels, Helene Petschko, Herwig Proske, Philip Leopold, Aditya N. Mishra, Douglas Maraun, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 23, 205–229, https://doi.org/10.5194/nhess-23-205-2023, https://doi.org/10.5194/nhess-23-205-2023, 2023
Short summary
Short summary
In summer 2009 and 2014, rainfall events occurred in the Styrian Basin (Austria), triggering thousands of landslides. Landslide storylines help to show potential future changes under changing environmental conditions. The often neglected uncertainty quantification was the aim of this study. We found uncertainty arising from the landslide model to be of the same order as climate scenario uncertainty. Understanding the dimensions of uncertainty is crucial for allowing informed decision-making.
Marco Hofmann, Claudia Volosciuk, Martin Dubrovský, Douglas Maraun, and Hans R. Schultz
Earth Syst. Dynam., 13, 911–934, https://doi.org/10.5194/esd-13-911-2022, https://doi.org/10.5194/esd-13-911-2022, 2022
Short summary
Short summary
We modelled water budget developments of viticultural growing regions on the spatial scale of individual vineyard plots with respect to landscape features like the available water capacity of the soils, slope, and aspect of the sites. We used an ensemble of climate simulations and focused on the occurrence of drought stress. The results show a high bandwidth of projected changes where the risk of potential drought stress becomes more apparent in steep-slope regions.
Pinya Wang, Yang Yang, Huimin Li, Lei Chen, Ruijun Dang, Daokai Xue, Baojie Li, Jianping Tang, L. Ruby Leung, and Hong Liao
Atmos. Chem. Phys., 22, 4705–4719, https://doi.org/10.5194/acp-22-4705-2022, https://doi.org/10.5194/acp-22-4705-2022, 2022
Short summary
Short summary
China is now suffering from both severe ozone (O3) pollution and heat events. We highlight that North China Plain is the hot spot of the co-occurrences of extremes in O3 and high temperatures in China. Such coupled extremes exhibit an increasing trend during 2014–2019 and will continue to increase until the middle of this century. And the coupled extremes impose more severe health impacts to human than O3 pollution occurring alone because of elevated O3 levels and temperatures.
Gerard van der Schrier, Richard P. Allan, Albert Ossó, Pedro M. Sousa, Hans Van de Vyver, Bert Van Schaeybroeck, Roberto Coscarelli, Angela A. Pasqua, Olga Petrucci, Mary Curley, Mirosław Mietus, Janusz Filipiak, Petr Štěpánek, Pavel Zahradníček, Rudolf Brázdil, Ladislava Řezníčková, Else J. M. van den Besselaar, Ricardo Trigo, and Enric Aguilar
Clim. Past, 17, 2201–2221, https://doi.org/10.5194/cp-17-2201-2021, https://doi.org/10.5194/cp-17-2201-2021, 2021
Short summary
Short summary
The 1921 drought was the most severe drought to hit Europe since the start of the 20th century. Here the climatological description of the drought is coupled to an overview of its impacts, sourced from newspapers, and an analysis of its drivers. The area from Ireland to the Ukraine was affected but hardest hit was the triangle between Brussels, Paris and Lyon. The drought impacts lingered on until well into autumn and winter, affecting water supply and agriculture and livestock farming.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Douglas Maraun and Martin Widmann
Hydrol. Earth Syst. Sci., 22, 4867–4873, https://doi.org/10.5194/hess-22-4867-2018, https://doi.org/10.5194/hess-22-4867-2018, 2018
Short summary
Short summary
Cross-validation of free-running bias-corrected climate change simulations against observations is misleading, because it is typically dominated by internal variability. In particular, a sensible bias correction may be rejected and a non-sensible bias correction may be accepted. We therefore propose to avoid cross-validation when evaluating bias correction of free-running bias-corrected climate change simulations. Instead, one should evaluate temporal, spatial and
process-based aspects.
Emanuele Bevacqua, Douglas Maraun, Ingrid Hobæk Haff, Martin Widmann, and Mathieu Vrac
Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, https://doi.org/10.5194/hess-21-2701-2017, 2017
Short summary
Short summary
We develop a conceptual model to quantify the risk of compound events (CEs), i.e. extreme impacts to society which are driven by statistically dependent climatic variables. Based on this model we study compound floods, i.e. joint storm surge and high river level, in Ravenna (Italy). The model includes meteorological predictors which (1) provide insight into the physical processes underlying CEs, as well as into the temporal variability, and (2) allow us to statistically downscale CEs.
Claudia Volosciuk, Douglas Maraun, Mathieu Vrac, and Martin Widmann
Hydrol. Earth Syst. Sci., 21, 1693–1719, https://doi.org/10.5194/hess-21-1693-2017, https://doi.org/10.5194/hess-21-1693-2017, 2017
Short summary
Short summary
For impact modeling, infrastructure design, or adaptation strategy planning, high-quality climate data on the point scale are often demanded. Due to the scale gap between gridbox and point scale and biases in climate models, we combine a statistical bias correction and a stochastic downscaling model and apply it to climate model-simulated precipitation. The method performs better in summer than in winter and in winter best for mild winter climate (Mediterranean) and worst for continental winter.
D. Maraun and M. Widmann
Hydrol. Earth Syst. Sci., 19, 3449–3456, https://doi.org/10.5194/hess-19-3449-2015, https://doi.org/10.5194/hess-19-3449-2015, 2015
Related subject area
Atmospheric, Meteorological and Climatological Hazards
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Intense rains in Israel associated with the train effect
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
Surprise floods: the role of our imagination in preparing for disasters
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Insights into ground strike point properties in Europe through the EUCLID lightning location system
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
Precipitation extremes in Ukraine from 1979 to 2019: climatology, large-scale flow conditions, and moisture sources
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Aircraft engine dust ingestion at global airports
Catchment-scale assessment of drought impact on environmental flow in the Indus Basin, Pakistan
The risk of synoptic-scale Arctic cyclones to shipping
Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020
Application of the teaching–learning-based optimization algorithm to an analytical model of thunderstorm outflows to analyze the variability of the downburst kinematic and geometric parameters
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Improving seasonal predictions of German Bight storm activity
A satellite view of the exceptionally warm summer of 2022 over Europe
Demographic yearbooks as a source of weather-related fatalities: the Czech Republic, 1919–2022
FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
Assessment of wind–damage relations for Norway using 36 years of daily insurance data
Interannual variations in the seasonal cycle of extreme precipitation in Germany and the response to climate change
Climatology of large hail in Europe: characteristics of the European Severe Weather Database
Amplified potential for vegetation stress under climate-change-induced intensifying compound extreme events in the Greater Mediterranean Region
Assimilation of surface pressure observations from personal weather stations in AROME-France
An open-source radar-based hail damage model for buildings and cars
Linkages between atmospheric rivers and humid heat across the United States
A modelled multi-decadal hailday time series for Switzerland
Evaluating pySTEPS optical flow algorithms for convection nowcasting over the Maritime Continent using satellite data
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
High-resolution projections of ambient heat for major European cities using different heat metrics
Heat wave characteristics: evaluation of regional climate model performances for Germany
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Spatial identification of regions at risk to multi-hazards at pan European level: an implemented methodological approach
Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks
Wind as a natural hazard in Poland
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
Characteristics of cloud-to-ground lightning (CG) and differences between +CG and −CG strokes in China regarding the China National Lightning Detection Network
The climatology and nature of warm-season convective cells in cold-frontal environments over Germany
Forecasting large hail and lightning using additive logistic regression models and the ECMWF reforecasts
The impact of global navigation satellite system (GNSS) zenith total delay data assimilation on the short-term precipitable water vapor and precipitation forecast over Italy using the Weather Research and Forecasting (WRF) model
Shallow and deep learning of extreme rainfall events from convective atmospheres
Linking reported drought impacts with drought indices, water scarcity and aridity: the case of Kenya
Future heat extremes and impacts in a convection-permitting climate ensemble over Germany
Assessment of subseasonal-to-seasonal (S2S) ensemble extreme precipitation forecast skill over Europe
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024, https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance compared to a single meteorological drought index or agricultural drought index in terms of drought identification.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024, https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Short summary
The train effect is related to convective cells that pass over the same place. Trains produce heavy rainfall and sometimes floods and are reported in North America during spring and summer. In Israel, 17 trains associated with Cyprus lows were identified by radar images and were found within the cold sector south of the low center and in the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km; last 1–3 h; and yield 35 mm of rainfall up to 60 mm.
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024, https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024, https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the vapor pressure deficit (VPD), an important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal shows the potential for using smartphone data to compliment the regular weather station network while also providing high spatial resolution of the VPD index.
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
Khalil Ur Rahman, Songhao Shang, Khaled Saeed Balkhair, Hamza Farooq Gabriel, Khan Zaib Jadoon, and Kifayat Zaman
Nat. Hazards Earth Syst. Sci., 24, 2191–2214, https://doi.org/10.5194/nhess-24-2191-2024, https://doi.org/10.5194/nhess-24-2191-2024, 2024
Short summary
Short summary
This paper assesses the impact of drought (meteorological drought) on the hydrological alterations in major rivers of the Indus Basin. Threshold regression and range of variability analysis are used to determine the drought severity and times where drought has caused low flows and extreme low flows (identified using indicators of hydrological alterations). Moreover, this study also examines the degree of alterations in river flows due to drought using the hydrological alteration factor.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Ran Zhu and Lei Chen
Nat. Hazards Earth Syst. Sci., 24, 1937–1950, https://doi.org/10.5194/nhess-24-1937-2024, https://doi.org/10.5194/nhess-24-1937-2024, 2024
Short summary
Short summary
There is a positive correlation between the frequency of Jianghuai cyclone activity and precipitation during the Meiyu period. Its occurrence frequency has an obvious decadal variation, which corresponds well with the quasi-periodic and decadal variation in precipitation during the Meiyu period. This study provides a reference for the long-term and short-term forecasting of precipitation during the Meiyu period.
Andi Xhelaj and Massimiliano Burlando
Nat. Hazards Earth Syst. Sci., 24, 1657–1679, https://doi.org/10.5194/nhess-24-1657-2024, https://doi.org/10.5194/nhess-24-1657-2024, 2024
Short summary
Short summary
The study provides an in-depth analysis of a severe downburst event in Sânnicolau Mare, Romania, utilizing an analytical model and optimization algorithm. The goal is to explore a multitude of generating solutions and to identify potential alternatives to the optimal solution. Advanced data analysis techniques help to discern three main distinct storm scenarios. For this particular event, the best overall solution from the optimization algorithm shows promise in reconstructing the downburst.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
João P. A. Martins, Sara Caetano, Carlos Pereira, Emanuel Dutra, and Rita M. Cardoso
Nat. Hazards Earth Syst. Sci., 24, 1501–1520, https://doi.org/10.5194/nhess-24-1501-2024, https://doi.org/10.5194/nhess-24-1501-2024, 2024
Short summary
Short summary
Over Europe, 2022 was truly exceptional in terms of extreme heat conditions, both in terms of temperature anomalies and their temporal and spatial extent. The satellite all-sky land surface temperature (LST) is used to provide a climatological context to extreme heat events. Where drought conditions prevail, LST anomalies are higher than 2 m air temperature anomalies. ERA5-Land does not represent this effect correctly due to a misrepresentation of vegetation anomalies.
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024, https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary
Short summary
The official mortality data in the Czech Republic in 1919–2022 are used to show long-term fluctuations in the number of fatalities caused by excessive natural cold and heat, lightning, natural disasters, and falls on ice/snow, as well as the sex and age of the deceased, based on certain meteorological, historical, and socioeconomic factors that strongly influence changes in the number and structure of such fatalities. Knowledge obtained is usable in risk management for the preservation of lives.
Ben Maybee, Cathryn E. Birch, Steven J. Böing, Thomas Willis, Linda Speight, Aurore N. Porson, Charlie Pilling, Kay L. Shelton, and Mark A. Trigg
Nat. Hazards Earth Syst. Sci., 24, 1415–1436, https://doi.org/10.5194/nhess-24-1415-2024, https://doi.org/10.5194/nhess-24-1415-2024, 2024
Short summary
Short summary
This paper presents the development and verification of FOREWARNS, a novel method for regional-scale forecasting of surface water flooding. We detail outcomes from a workshop held with UK forecast users, who indicated they valued the forecasts and would use them to complement national guidance. We use results of objective forecast tests against flood observations over northern England to show that this confidence is justified and that FOREWARNS meets the needs of UK flood responders.
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355, https://doi.org/10.5194/nhess-24-1341-2024, https://doi.org/10.5194/nhess-24-1341-2024, 2024
Short summary
Short summary
The present study uses daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns. However, there is no single damage function that performs better than another. A newly devised damage–no-damage classifier shows some skill in predicting extreme damaging events.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Faye Hulton and David M. Schultz
Nat. Hazards Earth Syst. Sci., 24, 1079–1098, https://doi.org/10.5194/nhess-24-1079-2024, https://doi.org/10.5194/nhess-24-1079-2024, 2024
Short summary
Short summary
Large hail devastates crops and property and can injure and kill people and livestock. Hail reports are collected by individual countries, so understanding where and when large hail occurs across Europe is an incomplete undertaking. We use the European Severe Weather Database to evaluate the quality of reports by year and by country since 2000. Despite its short record, the dataset appears to represent aspects of European large-hail climatology reliably.
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 24, 907–927, https://doi.org/10.5194/nhess-24-907-2024, https://doi.org/10.5194/nhess-24-907-2024, 2024
Short summary
Short summary
Improvements in numerical weather prediction models make it possible to warn of hazardous weather situations. The incorporation of new observations from personal weather stations into the French limited-area model is evaluated. It leads to a significant improvement in the modelling of the surface pressure field up to 9 h ahead. Their incorporation improves the location and intensity of the heavy precipitation event that occurred in the South of France in September 2021.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024, https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Short summary
How can we systematically understand what causes high levels of atmospheric humidity and thus heat stress? Here we argue that atmospheric rivers can be a useful tool, based on our finding that in several US regions, atmospheric rivers and humid heat occur close together in space and time. Most typically, an atmospheric river transports moisture which heightens heat stress, with precipitation following a day later. These effects tend to be larger for stronger and more extensive systems.
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
EGUsphere, https://doi.org/10.5194/egusphere-2024-371, https://doi.org/10.5194/egusphere-2024-371, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past haildays in Switzerland from 1959–2022. This new timeseries reveals a significant increase in hail occurrences over the last seven decades. We link this trend to climate factors, showcasing the impact of increasing moisture and instability in the atmosphere. The last two decades have seen a surge in early hailseason events. This time series can now be used to study what drives the strong year-to-year variability of Swiss hailstorms.
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024, https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Short summary
Nowcasting uses observations to make predictions of the atmosphere on short timescales and is particularly applicable to the Maritime Continent, where storms rapidly develop and cause natural disasters. This paper evaluates probabilistic and deterministic satellite nowcasting algorithms over the Maritime Continent. We show that the probabilistic approach is most skilful at small scales (~ 60 km), whereas the deterministic approach is most skilful at larger scales (~ 200 km).
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Tiberiu-Eugen Antofie, Stefano Luoni, Alois Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-220, https://doi.org/10.5194/nhess-2023-220, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hot-spots) and meta-analysis in order to identify the regions at European level at risk to multi-hazards. The findings point out the socio-economic dimension as determinant factor for the risk potential to multi-hazard. The outcome provides valuable input for the Disaster Risk Management policy support and will assist national authorities on the implementation of a multi-hazard approach in the National Risk Assessments preparation.
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023, https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Short summary
This research presents a model for estimating extreme gusts associated with European windstorms. Using observed storm footprints we are able to calculate the return level of events at the 200-year return period. The largest gusts are found across NW Europe, and these are larger when the North Atlantic Oscillation is positive. Using theoretical future climate states we find that return levels are likely to increase across NW Europe to levels that are unprecedented compared to historical storms.
Tadeusz Chmielewski and Piotr A. Bońkowski
Nat. Hazards Earth Syst. Sci., 23, 3839–3844, https://doi.org/10.5194/nhess-23-3839-2023, https://doi.org/10.5194/nhess-23-3839-2023, 2023
Short summary
Short summary
The paper deals with wind speeds of extreme wind events in Poland and the descriptions of their effects. Two recent estimations developed by the Institute of Meteorology and Water Management in Warsaw and by Halina Lorenc are presented and briefly described. The 37 annual maximum gusts of wind speeds measured between 1971 and 2007 are analysed. Based on the measured and estimated wind speeds, the authors suggest new estimations for extreme winds that may occur in Poland.
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023, https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
Short summary
Hail and tornadoes are devastating hazards responsible for significant property damage and economic losses in the United States. Quantifying the connection between hazard events and mesoscale convective systems (MCSs) is of great significance for improving predictability, as well as for better understanding the influence of the climate-scale perturbations. A 14-year statistical dataset of MCS-related hazard production is presented.
Ruijiao Jiang, Guoping Zhang, Shudong Wang, Bing Xue, Zhengshuai Xie, Tingzhao Yu, Kuoyin Wang, Jin Ding, and Xiaoxiang Zhu
Nat. Hazards Earth Syst. Sci., 23, 3747–3759, https://doi.org/10.5194/nhess-23-3747-2023, https://doi.org/10.5194/nhess-23-3747-2023, 2023
Short summary
Short summary
Lightning activity in China is analyzed. Low latitudes, undulating terrain, seaside, and humid surfaces are beneficial for lightning occurrence. Summer of the year or afternoon of the day is the high period. Large cloud-to-ground lightning frequency always corresponds to a small ratio and weak intensity of positive cloud-to-ground lightning on either a temporal or spatial scale. Interestingly, the discharge intensity difference between the two types of lightning shrinks on the Tibetan Plateau.
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023, https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as flooding, hail and lightning. We find that cold-frontal cell days are associated with higher cell frequency and cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storm climatology and improved forecasting.
Francesco Battaglioli, Pieter Groenemeijer, Ivan Tsonevsky, and Tomàš Púčik
Nat. Hazards Earth Syst. Sci., 23, 3651–3669, https://doi.org/10.5194/nhess-23-3651-2023, https://doi.org/10.5194/nhess-23-3651-2023, 2023
Short summary
Short summary
Probabilistic models for lightning and large hail were developed across Europe using lightning observations and hail reports. These models accurately predict the occurrence of lightning and large hail several days in advance. In addition, the hail model was shown to perform significantly better than the state-of-the-art forecasting methods. These results suggest that the models developed in this study may help improve forecasting of convective hazards and eventually limit the associated risks.
Rosa Claudia Torcasio, Alessandra Mascitelli, Eugenio Realini, Stefano Barindelli, Giulio Tagliaferro, Silvia Puca, Stefano Dietrich, and Stefano Federico
Nat. Hazards Earth Syst. Sci., 23, 3319–3336, https://doi.org/10.5194/nhess-23-3319-2023, https://doi.org/10.5194/nhess-23-3319-2023, 2023
Short summary
Short summary
This work shows how local observations can improve precipitation forecasting for severe weather events. The improvement lasts for at least 6 h of forecast.
Gerd Bürger and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 3065–3077, https://doi.org/10.5194/nhess-23-3065-2023, https://doi.org/10.5194/nhess-23-3065-2023, 2023
Short summary
Short summary
Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify reanalyzed daily atmospheric fields of convective indices according to CatRaRE, using conventional statistical and more recent machine learning algorithms, and apply them to present and future atmospheres. Increasing trends are projected for CatRaRE-type probabilities, from reanalyzed as well as from simulated atmospheric fields.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Marie Hundhausen, Hendrik Feldmann, Natalie Laube, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 23, 2873–2893, https://doi.org/10.5194/nhess-23-2873-2023, https://doi.org/10.5194/nhess-23-2873-2023, 2023
Short summary
Short summary
Using a convection-permitting regional climate ensemble, the magnitude of heat waves (HWs) over Germany is projected to increase by 26 % (100 %) in a 2 °C (3 °C) warmer world. The increase is strongest in late summer, relatively homogeneous in space, and accompanied by increasing variance in HW length. Tailored parameters to climate adaptation to heat revealed dependency on major landscapes, and a nonlinear, exponential increase for parameters characterizing strong heat stress is expected.
Pauline Rivoire, Olivia Martius, Philippe Naveau, and Alexandre Tuel
Nat. Hazards Earth Syst. Sci., 23, 2857–2871, https://doi.org/10.5194/nhess-23-2857-2023, https://doi.org/10.5194/nhess-23-2857-2023, 2023
Short summary
Short summary
Heavy precipitation can lead to floods and landslides, resulting in widespread damage and significant casualties. Some of its impacts can be mitigated if reliable forecasts and warnings are available. In this article, we assess the capacity of the precipitation forecast provided by ECMWF to predict heavy precipitation events on a subseasonal-to-seasonal (S2S) timescale over Europe. We find that the forecast skill of such events is generally higher in winter than in summer.
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE T.
Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Aladaileh, H., Al Qinna, M., Karoly, B., Al-Karablieh, E., and Rakonczai,
J.: An investigation into the spatial and temporal variability of the
meteorological drought in Jordan, Climate, 7, 82,
https://doi.org/10.3390/cli7060082, 2019.
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein
Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F.,
Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L.,
Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M.,
Zhai, P., Rusticucci, M., and Vazquez-Aguirre, J. L.: Global observed
changes in daily climate extremes of temperature and precipitation, J.
Geophys. Res.-Atmos., 111, D05109,
https://doi.org/10.1029/2005JD006290, 2006.
Alizadeh, M. R., Adamowski, J., Nikoo, M. R., AghaKouchak, A., Dennison, P.,
and Sadegh, M.: A century of observations reveals increasing likelihood of
continental-scale compound dry-hot extremes, Science Advances, 6,
eaaz4571, https://doi.org/10.1126/sciadv.aaz4571, 2020.
Anderegg, W. R., Kane, J. M., and Anderegg, L. D.: Consequences of
widespread tree mortality triggered by drought and temperature stress, Nat.
Clim. Change, 3, 30–36,
https://doi.org/10.1038/nclimate1635, 2013.
Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier,
D. P.: Twentieth-century drought in the conterminous United States, J.
Hydrometeorol., 6(6), 985-1001, https://doi.org/10.1175/JHM450.1, 2005.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M.,
Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from
precipitation and storm surge in Europe under anthropogenic climate change,
Science Advances, 5, eaaw5531,
https://doi.org/10.1126/sciadv.aaw5531, 2019.
Bevacqua, E., Vousdoukas, M. I., Zappa, G., Hodges, K., Shepherd, T. G.,
Maraun, D., Mentaschi, L., and Feyen, L.: More meteorological events that
drive compound coastal flooding are projected under climate change,
Communications Earth and Environment, 1, 1–11,
https://doi.org/10.1038/s43247-020-00044-z, 2020.
Breinl, K., Di Baldassarre, G., Mazzoleni, M., Lun, D., and Vico, G.:
Extreme dry and wet spells face changes in their duration and timing,
Environ. Res. Lett., 15, 074040, https://doi.org/10.1088/1748-9326/ab7d05, 2020.
Chen, L., Chen, X., Cheng, L., Zhou, P., and Liu, Z.: Compound hot droughts
over China: Identification, risk patterns and variations, Atmos. Res., 227,
210–219, https://doi.org/10.1016/j.atmosres.2019.05.009, 2019.
Coffel, E. D., Keith, B., Lesk, C., Horton, R. M., Bower, E., Lee, J., and
Mankin, J. S.: Future hot and dry years worsen Nile Basin water scarcity
despite projected precipitation increases, Earth's Future, 7, 967–977,
https://doi.org/10.1029/2019EF001247, 2019.
Coumou, D. and De Luca, P.: Global warming makes weather in boreal summer more persistent, Weather Clim. Dynam. Discuss. [preprint], https://doi.org/10.5194/wcd-2020-40, 2020.
Ding, Y. and Chan, C.: The East Asian summer monsoon: an overview,
Meteorol. Atmos. Phys., 89, 117–142,
https://doi.org/10.1007/s00703-005-0125-z, 2005.
Dong, B., Wilcox, L. J., Highwood, E. J., and Sutton, R. T.: Impacts of
recent decadal changes in Asian aerosols on the East Asian summer monsoon:
roles of aerosol-radiation and aerosol-cloud interactions, Clim. Dynam.,
53, 3235–3256, https://doi.org/10.1007/s00382-019-04698-0,
2019.
Dosio, A., Mentaschi, L., Fischer, E. M., and Wyser, K.: Extreme heat waves
under 1.5∘ and 2∘ global warming, Environ. Res. Lett.,
13, 054006, https://doi.org/10.1088/1748-9326/aab827, 2018.
Gao, H., Luo, Y., Jiang, X., Zhang, D. L., Chen, Y., Wang, Y., and Shen, X.:
A Statistical Analysis of Extreme Hot Characteristics and Their
Relationships with Urbanization in Southern China during 1971–2020, J. Appl.
Meteorol. Clim., 60, 1301–1317,
https://doi.org/10.1175/JAMC-D-21-0012.1, 2021.
Genest, C., Rémillard, B., and Beaudoin, D.: Goodness-of-fit tests for
copulas: A review and a power study, Insurance: Mathematics and economics,
44, 199–213,
https://doi.org/10.1016/j.insmatheco.2007.10.005, 2009.
Gong, D. Y. and Ho, C. H.: Shift in the summer rainfall over the Yangtze
River valley in the late 1970s, Geophys. Res. Lett., 29, 78-1–78-4,
https://doi.org/10.1029/2001GL014523, 2002.
Guerreiro, S. B., Fowler, H. J., Barbero, R., Westra, S., Lenderink, G.,
Blenkinsop, S., Lewis, E., and Li X. F.: Detection of continental-scale
intensification of hourly rainfall extremes, Nat. Clim. Change, 8,
803–807, https://doi.org/10.1038/s41558-018-0245-3, 2018.
Hao, Z., Hao, F., Singh, V. P., and Zhang, X.: Changes in the severity of
compound drought and hot extremes over global land areas, Environ. Res.
Lett., 13, 124022,
https://doi.org/10.1088/1748-9326/aaee96, 2018.
Hao, Z., Phillips, T. J., Hao, F., and Wu, X.: Changes in the dependence
between global precipitation and temperature from observations and model
simulations, Int. J. Climatol., 39, 4895–4906,
https://doi.org/10.1002/joc.6111, 2019.
He, B., Wang, H. L., Wang, Q. F., and Di, Z. H.: A quantitative assessment
of the relationship between precipitation deficits and air temperature
variations, J. Geophys. Res.-Atmos., 120, 5951–5961, https://doi.org/10.1002/2015JD023463, 2015.
He, Y., Fang, J., Xu, W., and Shi, P.: Substantial increase of compound
droughts and heatwaves in wheat growing seasons worldwide, Int. J.
Climatol., 42, 5038–5054, https://doi.org/10.1002/joc.7518,
2022.
Hu, Z. Z., Yang, S., and Wu, R.: Long-term climate variations in China and
global warming signals, J. Geophys. Res.-Atmos., 108, 4614,
https://doi.org/10.1029/2003JD003651, 2003.
Kaufman, L. and Rousseeuw, P. J.: Finding groups in data: an introduction
to cluster analysis, Vol. 344, John Wiley & Sons, ISBN 9780470317488, 2009.
Kim, Y., Choi, Y., and Min, S. K.: Future changes in heat wave
characteristics and their impacts on the electricity demand in South Korea,
Weather and Climate Extremes, 37, 100485,
https://doi.org/10.1016/j.wace.2022.100485, 2022.
Kong, Q., Guerreiro, S. B., Blenkinsop, S., Li, X. F., and Fowler, H. J.:
Increases in summertime concurrent drought and heatwave in Eastern China,
Weather and Climate Extremes, 28, 100242,
https://doi.org/10.1016/j.wace.2019.100242, 2020.
Kornhuber, K., Osprey, S., Coumou, D., Petri, S., Petoukhov, V., Rahmstorf,
S., and Gray, L.: Extreme weather events in early summer 2018 connected by a
recurrent hemispheric wave-7 pattern, Environ. Res. Lett., 14, 054002,
https://doi.org/10.1088/1748-9326/ab13bf, 2019.
Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes,
K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound
event framework for understanding extreme impacts, WIRES. Clim. Change,
5, 113–128, https://doi.org/10.1002/wcc.252, 2014.
Li, J., Ding, T., Jia, X., and Zhao, X.: Analysis on the extreme heat wave
over China around Yangtze River region in the summer of 2013 and its main
contributing factors, Adv. Meteorol., 2015, 706713, https://doi.org/10.1155/2015/706713, 2015.
Li, L., Wang, B., and Zhou, T.: Contributions of natural and anthropogenic
forcings to the summer cooling over eastern China: An AGCM study, Geophys.
Res. Lett., 34, L18807, https://doi.org/10.1029/2007GL030541, 2007.
Li, X., You, Q., Ren, G., Wang, S., Zhang, Y., Yang, J., and Zheng, G.:
Concurrent droughts and hot extremes in northwest China from 1961 to 2017,
Int. J. Climatol., 39, 2186–2196, https://doi.org/10.1002/joc.5944, 2019.
Lin, W., Wen, C., Wen, Z., and Gang, H.: Drought in Southwest China: a
review, Atmospheric and Oceanic Science Letters, 8, 339–344, https://doi.org/10.3878/AOSL20150043, 2015.
Lopez, H., West, R., Dong, S., Goni, G., Kirtman, B., Lee, S. K., and Atlas,
R.: Early emergence of anthropogenically forced heat waves in the western
United States and Great Lakes, Nat. Clim. Change, 8, 414–420, https://doi.org/10.1038/s41558-018-0116-y, 2018.
Lu, E., Cai, W., Jiang, Z., Zhang, Q., Zhang, C., Higgins, R. W., and
Halpert, M. S.: The day-to-day monitoring of the 2011 severe drought in
China, Clim. Dynam., 43, 1–9, https://doi.org/10.1007/s00382-013-1987-2, 2014.
Lu, Y., Hu, H., Li, C., and Tian, F.: Increasing compound events of extreme
hot and dry days during growing seasons of wheat and maize in China,
Sci. Rep.-UK, 8, 1–8, https://doi.org/10.1038/s41598-018-34215-y, 2018.
Lyon, B., Barnston, A. G., Coffel, E., and Horton, R. M.: Projected increase
in the spatial extent of contiguous US summer heat waves and associated
attributes, Environ. Res. Lett., 14, 114029, https://doi.org/10.1088/1748-9326/ab4b41, 2019.
Manning, C., Widmann, M., Bevacqua, E., Van Loon, A. F., Maraun, D., and
Vrac, M.: Soil moisture drought in Europe: a compound event of precipitation
and potential evapotranspiration on multiple time scales, J. Hydrometeorol.,
19, 1255–1271, https://doi.org/10.1175/JHM-D-18-0017.1,
2018.
Manning, C., Widmann, M., Bevacqua, E., Van Loon, A. F., Maraun, D., and
Vrac, M.: Increased probability of compound long-duration dry and hot events
in Europe during summer (1950–2013), Environ. Res. Lett., 14, 094006,
https://doi.org/10.1088/1748-9326/ab23bf, 2019.
Mazdiyasni, O. and AghaKouchak, A.: Substantial increase in concurrent
droughts and heatwaves in the United States, P. Natl.
Acad. Sci. USA, 112, 11484–11489, https://doi.org/10.1073/pnas.1422945112, 2015.
McCabe, G. J., Palecki, M. A., and Betancourt, J. L.: Pacific and Atlantic
Ocean influences on multidecadal drought frequency in the United States,
P. Natl. Acad. Sci. USA, 101, 4136–4141,
https://doi.org/10.1073/pnas.0306738101, 2004.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought
frequency and duration to time scales, in: Proceedings of the 8th Conference on
Applied Climatology, Anaheim, California, 17–22 January 1993, 179–184, 1993.
Peng, D. and Zhou, T.: Why was the arid and semiarid northwest China
getting wetter in the recent decades?, J. Geophys. Res.-Atmos., 122,
9060–9075, https://doi.org/10.1002/2016JD026424, 2017.
Perkins, S. E. and Alexander, L. V.: On the measurement of heat waves, J.
Climate, 26, 4500–4517, https://doi.org/10.1175/JCLI-D-12-00383.1, 2013.
Pfleiderer, P., Schleussner, C. F., Kornhuber, K., and Coumou, D.: Summer
weather becomes more persistent in a 2∘ world, Nat. Clim. Change,
9, 666–671, https://doi.org/10.1038/s41558-019-0555-0, 2019.
Raymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak, A.,
Balch, J., Bowen, S. G., Camargo, S. J., Hess, J., Kornhuber, K.,
Oppenheimer, M., Ruane, A. C., Wahl, T., and White, K.: Understanding and
managing connected extreme events, Nat. Clim. Change, 10, 611–621,
https://doi.org/10.1038/s41558-020-0790-4, 2020.
Raymond, F., Ullmann, A., Camberlin, P., Drobinski, P., and Smith, C. C.:
Extreme dry spell detection and climatology over the Mediterranean Basin
during the wet season, Geophys. Res. Lett., 43, 7196–7204, https://doi.org/10.1002/2016GL069758, 2016.
Raymond, F., Ullmann, A., Camberlin, P., Oueslati, B., and Drobinski, P.:
Atmospheric conditions and weather regimes associated with extreme winter
dry spells over the Mediterranean basin, Clim. Dynam., 50, 4437–4453,
https://doi.org/10.1007/s00382-017-3884-6, 2018.
Ren, F., Cui, D., Gong, Z., Wang, Y., Zou, X., Li, Y., Wang, S., and Wang,
X.: An objective identification technique for regional extreme events, J.
Climate, 25, 7015–7027, https://doi.org/10.1175/JCLI-D-11-00489.1, 2012.
Ren, F. M., Trewin, B., Brunet, M., Dushmanta, P., Walter, A., Baddour, O.,
and Korber, M.: A research progress review on regional extreme events,
Advances in Climate Change Research, 9, 161–169, https://doi.org/10.1016/j.accre.2018.08.001, 2018.
Ridder, N. N., Pitman, A. J., Westra, S., Ukkola, A., Do Hong, X., Bador,
M., Hirsch, A. L., Evans, J. P., Luca, A. D., and Zscheischler, J.: Global
hotspots for the occurrence of compound events, Nat. Commun., 11, 1–10,
https://doi.org/10.1038/s41467-020-19639-3, 2020.
Rokach, L. and Maimon, O.: Clustering methods, in: Data mining and knowledge
discovery handbook, Springer, 321–352, ISBN 9780387244358, 2005.
Salas, J. D. and Obeysekera, J.: Revisiting the concepts of return period
and risk for nonstationary hydrologic extreme events, J. Hydrol. Eng.,
19, 554–568, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820, 2014.
Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D., and Diffenbaugh, N.
S.: Multidimensional risk in a nonstationary climate: Joint probability of
increasingly severe warm and dry conditions, Science Advances, 4,
eaau3487, https://doi.org/10.1126/sciadv.aau3487, 2018.
Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B., Nagler, T.,
Erhardt, T., Almeida, C., Min, A., Czado, C., Hofmann, M., Killiches, M.,
Joe, H., and Vatter, T.: Statistical Inference of Vine Copulas, R package
version 2.0.5, https://CRAN.R-project.org/package=VineCopula (last access: 14 October 2022), 2016.
Serinaldi, F.: Dismissing return periods!, Stoch. Env. Res. Risk A., 29,
1179–1189, https://doi.org/10.1007/s00477-014-0916-1, 2015.
Shao, D., Chen, S., Tan, X., and Gu, W.: Drought characteristics over China
during 1980–2015, Int. J. Climatol., 38, 3532–3545, https://doi.org/10.1002/joc.5515, 2018.
Sharma, S. and Mujumdar, P.: Increasing frequency and spatial extent of
concurrent meteorological droughts and heatwaves in India, Sci. Rep.-UK, 7,
1–9, https://doi.org/10.1038/s41598-017-15896-3, 2017.
Sheffield, J., Andreadis, K. M., Wood, E. F., and Lettenmaier, D. P.: Global
and continental drought in the second half of the twentieth century:
Severity-area-duration analysis and temporal variability of large-scale
events, J. Climate, 22, 1962–1981, https://doi.org/10.1175/2008JCLI2722.1, 2009.
Shi, Y., Shen, Y., Kang, E., Li, D., Ding, Y., Zhang, G., and Hu, R.: Recent
and future climate change in northwest China, Climatic change, 80,
379–393, https://doi.org/10.1007/s10584-006-9121-7, 2007.
Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D.:
Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model
evaluation in the present climate, J. Geophys. Res.-Atmos., 118,
1716–1733, https://doi.org/10.1002/jgrd.50203, 2013.
Stefanon, M., D'Andrea, F., and Drobinski, P.: Heatwave classification over
Europe and the Mediterranean region, Environ. Res. Lett., 7, 014023,
https://doi.org/10.1088/1748-9326/7/1/014023, 2012.
Sugiyama, J. and Kobayashi, K.: wvtool: Image Tools for Automated Wood
Identification, https://rdocumentation.org/packages/wvtool/versions/1.0 (last access: 22 July 2022),
2016.
Sun, L., Ren, F., Wang, Z., Liu, Y., Liu, Y., Wang, P., and Wang, D.:
Analysis of Climate Anomaly and Causation in August 2011, Meteor.
Mon., 38, 615–622, 2012.
Sutanto, S. J., Vitolo, C., Di Napoli, C., D'Andrea, M., and Van Lanen, H.
A.: Heatwaves, droughts, and fires: Exploring compound and cascading dry
hazards at the pan-European scale, Environ. Int., 134, 105276, https://doi.org/10.1016/j.envint.2019.105276, 2020.
Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich,
J., Briffa, K. R., and Sheffield, J.: Global warming and changes in drought,
Nat. Clim. Change, 4, 17–22, https://doi.org/10.1038/nclimate2067, 2014.
Vogel, M. M., Zscheischler, J., Fischer, E. M., and Seneviratne, S. I.:
Development of future heatwaves for different hazard thresholds, J. Geophys.
Res.-Atmos., 125, e2019JD032070, https://doi.org/10.1029/2019JD032070, 2020.
Wang, A., Lettenmaier, D. P., and Sheffield, J.: Soil moisture drought in
China, 1950–2006, J. Climate, 24, 3257-3271, https://doi.org/10.1175/2011JCLI3733.1, 2011.
Wang, P., Tang, J., Wang, S., Dong, X., and Fang, J.: Regional heatwaves in
china: a cluster analysis, Clim. Dynam., 50, 1901–1917, https://doi.org/10.1007/s00382-017-3728-4, 2018.
Wang, W., Zhou, W., Li, X., Wang, X., and Wang, D.: Synoptic-scale
characteristics and atmospheric controls of summer heat waves in China,
Clim. Dynam., 46, 2923–2941, https://doi.org/10.1007/s00382-015-2741-8, 2016.
Ward Jr., J. H.: Hierarchical grouping to optimize an objective function, J.
Am. Stat. Assoc., 58, 236–244, https://doi.org/10.1080/01621459.1963.10500845, 1963.
Wu, J. and Gao, X. J.: A gridded daily observation dataset over China
region and comparison with the other datasets, Chinese J.
Geophys., 56, 1102–1111, https://doi.org/10.6038/cjg20130406, 2013 (in Chinese, data available at: http://climatechange-data.cn/resource/detail?id=228, last access: 8 February 2023).
Yang, C., Tuo, Y., Ma, J., and Zhang, D.: Spatial and Temporal Evolution
Characteristics of Drought in Yunnan Province from 1969 to 2018 Based on
SPI/SPEI, Water Air Soil Poll., 230, 1–13, https://doi.org/10.1007/s11270-019-4287-6, 2019a.
Yang, Y., Tang, J., Xiong, Z., Wang, S., and Yuan, J.: An intercomparison of
multiple statistical downscaling methods for daily precipitation and
temperature over China: future climate projections, Clim. Dynam., 52,
6749–6771, https://doi.org/10.1007/s00382-018-4543-2, 2019b.
Ye, J., Li, W., Li, L., and Zhang, F.: “North drying and south wetting”
summer precipitation trend over China and its potential linkage with aerosol
loading, Atmos. Res., 125, 12–19, 2013.
Yu, R. and Zhai, P.: More frequent and widespread persistent compound
drought and heat event observed in China, Sci. Rep.-UK, 10, 1–7, https://doi.org/10.1038/s41598-020-71312-3, 2020.
Yu, R., Wang, B., and Zhou, T.: Tropospheric cooling and summer monsoon
weakening trend over East Asia, Geophys. Res. Lett., 31, L22212, https://doi.org/10.1029/2004GL021270, 2004.
Yu, Y. and Ginoux, P.: Enhanced dust emission following large wildfires due
to vegetation disturbance, Nat. Geosci., 15, 878–884, https://doi.org/10.1038/s41561-022-01046-6, 2022.
Zhang, J., Chen, H., and Zhang, Q.: Extreme drought in the recent two
decades in northern China resulting from Eurasian warming, Clim. Dynam.,
52, 2885–2902, https://doi.org/10.1007/s00382-018-4312-2,
2019.
Zhang, L., and Zhou, T.: Drought over East Asia: a review, J. Climate,
28, 3375–3399, https://doi.org/10.1175/JCLI-D-14-00259.1,
2015.
Zhang, L., Wu, P., and Zhou, T.: Aerosol forcing of extreme summer drought
over North China, Environ. Res. Lett., 12, 034020, https://doi.org/10.1088/1748-9326/aa5fb3, 2017.
Zhao, P., Yang, S., and Yu, R.: Long-term changes in rainfall over eastern
China and large-scale atmospheric circulation associated with recent global
warming, J. Climate, 23, 1544–1562, https://doi.org/10.1175/2009JCLI2660.1, 2010.
Zhou, B., Xu, Y., Wu, J., Dong, S., and Shi, Y.: Changes in temperature and
precipitation extreme indices over China: analysis of a high-resolution grid
dataset, Int. J. Climatol., 36, 1051–1066, https://doi.org/10.1002/joc.4400, 2016.
Zhou, T. J., Gong, D. Y., Li, J., Li, B.: Detecting and understanding the
multi-decadal variability of the East Asian Summer Monsoon Recent progress
and state of affairs, Meteorol. Z., 18, 455–467, https://doi.org/10.1127/0941-2948/2009/0396, 2009.
Zscheischler, J. and Fischer, E. M.: The record-breaking compound hot and
dry 2018 growing season in Germany, Weather and Climate Extremes, 29,
100270, https://doi.org/10.1016/j.wace.2020.100270, 2020.
Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects
risks associated with compound events, Science Advances, 3, e1700263,
https://doi.org/10.1126/sciadv.1700263, 2017.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C.,
Horton, R. M., Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M.
D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A
typology of compound weather and climate events, Nature Reviews Earth &
Environment, 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim.
Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3,
2018.
Zscheischler, J., Naveau, P., Martius, O., Engelke, S., and Raible, C. C.: Evaluating the dependence structure of compound precipitation and wind speed extremes, Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, 2021.
Short summary
This study quantifies the spatiotemporal variation and characteristics of compound long-duration dry and hot events in China over the 1961–2014 period. The results show that over the past few decades, there has been a substantial increase in the frequency of these compound events across most parts of China, which is dominated by rising temperatures. We detect a strong increase in the spatially contiguous areas experiencing concurrent dry and hot conditions.
This study quantifies the spatiotemporal variation and characteristics of compound long-duration...
Altmetrics
Final-revised paper
Preprint