Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-693-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-693-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Increased spatial extent and likelihood of compound long-duration dry and hot events in China, 1961–2014
School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
Wegener Center for Climate and Global Change, University of Graz,
Brandhofgasse 5, 8010, Graz, Austria
Douglas Maraun
CORRESPONDING AUTHOR
Wegener Center for Climate and Global Change, University of Graz,
Brandhofgasse 5, 8010, Graz, Austria
Albert Ossó
Wegener Center for Climate and Global Change, University of Graz,
Brandhofgasse 5, 8010, Graz, Austria
Jianping Tang
CORRESPONDING AUTHOR
School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
Related authors
No articles found.
Armin Schaffer, Tobias Lichtenegger, Albert Ossó, and Douglas Maraun
EGUsphere, https://doi.org/10.5194/egusphere-2025-4235, https://doi.org/10.5194/egusphere-2025-4235, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Extreme rainfall in Europe is often linked to weather fronts. To understand how these events may change in the future, we first need to evaluate how well climate models represent them. We found that all models show substantial biases, particularly for cold fronts, while higher-resolution models improve their simulation. Warm fronts also show biases, though they are generally better represented than cold fronts. This highlights the importance of high-resolution models for reliable projections.
Daniel Viviroli, Martin Jury, Maria Staudinger, Martina Kauzlaric, Heimo Truhez, and Douglas Maraun
EGUsphere, https://doi.org/10.5194/egusphere-2025-1920, https://doi.org/10.5194/egusphere-2025-1920, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Estimating the frequency and magnitude of floods is challenging due to the limited length of streamflow records. Here, we explore whether an extensive archive of meteorological forecasts run over past dates can assist in this context. After processing and concatenating these data for use as input to a hydrological model, we derive flood statistics from simulated streamflow. Results are promising for the larger catchments studied, providing a valuable complementary perspective on rare floods.
Cuini Qi, Pinya Wang, Yang Yang, Huimin Li, Hui Zhang, Lili Ren, Xipeng Jin, Chenchao Zhan, Jianping Tang, and Hong Liao
Atmos. Chem. Phys., 24, 11775–11789, https://doi.org/10.5194/acp-24-11775-2024, https://doi.org/10.5194/acp-24-11775-2024, 2024
Short summary
Short summary
We investigate extremely hot weather impacts on surface ozone over the southeastern coast of China with and without tropical cyclones. Compared to hot days alone, ozone concentration decreased notably in the Yangtze River Delta (YRD) but increased in the Pearl River Delta (PRD) during tropical cyclones and hot days. The YRD benefited from strong and clean sea winds aiding ozone elimination. In contrast, the PRD experienced strong northeasterly winds that potentially transport ozone pollution.
Kamilya Yessimbet, Andrea K. Steiner, Florian Ladstädter, and Albert Ossó
Atmos. Chem. Phys., 24, 10893–10919, https://doi.org/10.5194/acp-24-10893-2024, https://doi.org/10.5194/acp-24-10893-2024, 2024
Short summary
Short summary
Major sudden stratospheric warmings (SSWs) and atmospheric blocking can markedly influence winter extratropical surface weather. To study the relationship between SSWs and blocking, we examine dynamic stratosphere–troposphere coupling using vertically highly resolved observations from global navigation satellite system radio occultation for 2007–2019. Our results provide a purely observational view of the evolution of major SSWs, their link to blocking, and their effect on the polar tropopause.
Colin Manning, Martin Widmann, Douglas Maraun, Anne F. Van Loon, and Emanuele Bevacqua
Weather Clim. Dynam., 4, 309–329, https://doi.org/10.5194/wcd-4-309-2023, https://doi.org/10.5194/wcd-4-309-2023, 2023
Short summary
Short summary
Climate models differ in their representation of dry spells and high temperatures, linked to errors in the simulation of persistent large-scale anticyclones. Models that simulate more persistent anticyclones simulate longer and hotter dry spells, and vice versa. This information is important to consider when assessing the likelihood of such events in current and future climate simulations so that we can assess the plausibility of their future projections.
Raphael Knevels, Helene Petschko, Herwig Proske, Philip Leopold, Aditya N. Mishra, Douglas Maraun, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 23, 205–229, https://doi.org/10.5194/nhess-23-205-2023, https://doi.org/10.5194/nhess-23-205-2023, 2023
Short summary
Short summary
In summer 2009 and 2014, rainfall events occurred in the Styrian Basin (Austria), triggering thousands of landslides. Landslide storylines help to show potential future changes under changing environmental conditions. The often neglected uncertainty quantification was the aim of this study. We found uncertainty arising from the landslide model to be of the same order as climate scenario uncertainty. Understanding the dimensions of uncertainty is crucial for allowing informed decision-making.
Marco Hofmann, Claudia Volosciuk, Martin Dubrovský, Douglas Maraun, and Hans R. Schultz
Earth Syst. Dynam., 13, 911–934, https://doi.org/10.5194/esd-13-911-2022, https://doi.org/10.5194/esd-13-911-2022, 2022
Short summary
Short summary
We modelled water budget developments of viticultural growing regions on the spatial scale of individual vineyard plots with respect to landscape features like the available water capacity of the soils, slope, and aspect of the sites. We used an ensemble of climate simulations and focused on the occurrence of drought stress. The results show a high bandwidth of projected changes where the risk of potential drought stress becomes more apparent in steep-slope regions.
Pinya Wang, Yang Yang, Huimin Li, Lei Chen, Ruijun Dang, Daokai Xue, Baojie Li, Jianping Tang, L. Ruby Leung, and Hong Liao
Atmos. Chem. Phys., 22, 4705–4719, https://doi.org/10.5194/acp-22-4705-2022, https://doi.org/10.5194/acp-22-4705-2022, 2022
Short summary
Short summary
China is now suffering from both severe ozone (O3) pollution and heat events. We highlight that North China Plain is the hot spot of the co-occurrences of extremes in O3 and high temperatures in China. Such coupled extremes exhibit an increasing trend during 2014–2019 and will continue to increase until the middle of this century. And the coupled extremes impose more severe health impacts to human than O3 pollution occurring alone because of elevated O3 levels and temperatures.
Gerard van der Schrier, Richard P. Allan, Albert Ossó, Pedro M. Sousa, Hans Van de Vyver, Bert Van Schaeybroeck, Roberto Coscarelli, Angela A. Pasqua, Olga Petrucci, Mary Curley, Mirosław Mietus, Janusz Filipiak, Petr Štěpánek, Pavel Zahradníček, Rudolf Brázdil, Ladislava Řezníčková, Else J. M. van den Besselaar, Ricardo Trigo, and Enric Aguilar
Clim. Past, 17, 2201–2221, https://doi.org/10.5194/cp-17-2201-2021, https://doi.org/10.5194/cp-17-2201-2021, 2021
Short summary
Short summary
The 1921 drought was the most severe drought to hit Europe since the start of the 20th century. Here the climatological description of the drought is coupled to an overview of its impacts, sourced from newspapers, and an analysis of its drivers. The area from Ireland to the Ukraine was affected but hardest hit was the triangle between Brussels, Paris and Lyon. The drought impacts lingered on until well into autumn and winter, affecting water supply and agriculture and livestock farming.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE T.
Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Aladaileh, H., Al Qinna, M., Karoly, B., Al-Karablieh, E., and Rakonczai,
J.: An investigation into the spatial and temporal variability of the
meteorological drought in Jordan, Climate, 7, 82,
https://doi.org/10.3390/cli7060082, 2019.
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein
Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F.,
Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L.,
Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M.,
Zhai, P., Rusticucci, M., and Vazquez-Aguirre, J. L.: Global observed
changes in daily climate extremes of temperature and precipitation, J.
Geophys. Res.-Atmos., 111, D05109,
https://doi.org/10.1029/2005JD006290, 2006.
Alizadeh, M. R., Adamowski, J., Nikoo, M. R., AghaKouchak, A., Dennison, P.,
and Sadegh, M.: A century of observations reveals increasing likelihood of
continental-scale compound dry-hot extremes, Science Advances, 6,
eaaz4571, https://doi.org/10.1126/sciadv.aaz4571, 2020.
Anderegg, W. R., Kane, J. M., and Anderegg, L. D.: Consequences of
widespread tree mortality triggered by drought and temperature stress, Nat.
Clim. Change, 3, 30–36,
https://doi.org/10.1038/nclimate1635, 2013.
Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier,
D. P.: Twentieth-century drought in the conterminous United States, J.
Hydrometeorol., 6(6), 985-1001, https://doi.org/10.1175/JHM450.1, 2005.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M.,
Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from
precipitation and storm surge in Europe under anthropogenic climate change,
Science Advances, 5, eaaw5531,
https://doi.org/10.1126/sciadv.aaw5531, 2019.
Bevacqua, E., Vousdoukas, M. I., Zappa, G., Hodges, K., Shepherd, T. G.,
Maraun, D., Mentaschi, L., and Feyen, L.: More meteorological events that
drive compound coastal flooding are projected under climate change,
Communications Earth and Environment, 1, 1–11,
https://doi.org/10.1038/s43247-020-00044-z, 2020.
Breinl, K., Di Baldassarre, G., Mazzoleni, M., Lun, D., and Vico, G.:
Extreme dry and wet spells face changes in their duration and timing,
Environ. Res. Lett., 15, 074040, https://doi.org/10.1088/1748-9326/ab7d05, 2020.
Chen, L., Chen, X., Cheng, L., Zhou, P., and Liu, Z.: Compound hot droughts
over China: Identification, risk patterns and variations, Atmos. Res., 227,
210–219, https://doi.org/10.1016/j.atmosres.2019.05.009, 2019.
Coffel, E. D., Keith, B., Lesk, C., Horton, R. M., Bower, E., Lee, J., and
Mankin, J. S.: Future hot and dry years worsen Nile Basin water scarcity
despite projected precipitation increases, Earth's Future, 7, 967–977,
https://doi.org/10.1029/2019EF001247, 2019.
Coumou, D. and De Luca, P.: Global warming makes weather in boreal summer more persistent, Weather Clim. Dynam. Discuss. [preprint], https://doi.org/10.5194/wcd-2020-40, 2020.
Ding, Y. and Chan, C.: The East Asian summer monsoon: an overview,
Meteorol. Atmos. Phys., 89, 117–142,
https://doi.org/10.1007/s00703-005-0125-z, 2005.
Dong, B., Wilcox, L. J., Highwood, E. J., and Sutton, R. T.: Impacts of
recent decadal changes in Asian aerosols on the East Asian summer monsoon:
roles of aerosol-radiation and aerosol-cloud interactions, Clim. Dynam.,
53, 3235–3256, https://doi.org/10.1007/s00382-019-04698-0,
2019.
Dosio, A., Mentaschi, L., Fischer, E. M., and Wyser, K.: Extreme heat waves
under 1.5∘ and 2∘ global warming, Environ. Res. Lett.,
13, 054006, https://doi.org/10.1088/1748-9326/aab827, 2018.
Gao, H., Luo, Y., Jiang, X., Zhang, D. L., Chen, Y., Wang, Y., and Shen, X.:
A Statistical Analysis of Extreme Hot Characteristics and Their
Relationships with Urbanization in Southern China during 1971–2020, J. Appl.
Meteorol. Clim., 60, 1301–1317,
https://doi.org/10.1175/JAMC-D-21-0012.1, 2021.
Genest, C., Rémillard, B., and Beaudoin, D.: Goodness-of-fit tests for
copulas: A review and a power study, Insurance: Mathematics and economics,
44, 199–213,
https://doi.org/10.1016/j.insmatheco.2007.10.005, 2009.
Gong, D. Y. and Ho, C. H.: Shift in the summer rainfall over the Yangtze
River valley in the late 1970s, Geophys. Res. Lett., 29, 78-1–78-4,
https://doi.org/10.1029/2001GL014523, 2002.
Guerreiro, S. B., Fowler, H. J., Barbero, R., Westra, S., Lenderink, G.,
Blenkinsop, S., Lewis, E., and Li X. F.: Detection of continental-scale
intensification of hourly rainfall extremes, Nat. Clim. Change, 8,
803–807, https://doi.org/10.1038/s41558-018-0245-3, 2018.
Hao, Z., Hao, F., Singh, V. P., and Zhang, X.: Changes in the severity of
compound drought and hot extremes over global land areas, Environ. Res.
Lett., 13, 124022,
https://doi.org/10.1088/1748-9326/aaee96, 2018.
Hao, Z., Phillips, T. J., Hao, F., and Wu, X.: Changes in the dependence
between global precipitation and temperature from observations and model
simulations, Int. J. Climatol., 39, 4895–4906,
https://doi.org/10.1002/joc.6111, 2019.
He, B., Wang, H. L., Wang, Q. F., and Di, Z. H.: A quantitative assessment
of the relationship between precipitation deficits and air temperature
variations, J. Geophys. Res.-Atmos., 120, 5951–5961, https://doi.org/10.1002/2015JD023463, 2015.
He, Y., Fang, J., Xu, W., and Shi, P.: Substantial increase of compound
droughts and heatwaves in wheat growing seasons worldwide, Int. J.
Climatol., 42, 5038–5054, https://doi.org/10.1002/joc.7518,
2022.
Hu, Z. Z., Yang, S., and Wu, R.: Long-term climate variations in China and
global warming signals, J. Geophys. Res.-Atmos., 108, 4614,
https://doi.org/10.1029/2003JD003651, 2003.
Kaufman, L. and Rousseeuw, P. J.: Finding groups in data: an introduction
to cluster analysis, Vol. 344, John Wiley & Sons, ISBN 9780470317488, 2009.
Kim, Y., Choi, Y., and Min, S. K.: Future changes in heat wave
characteristics and their impacts on the electricity demand in South Korea,
Weather and Climate Extremes, 37, 100485,
https://doi.org/10.1016/j.wace.2022.100485, 2022.
Kong, Q., Guerreiro, S. B., Blenkinsop, S., Li, X. F., and Fowler, H. J.:
Increases in summertime concurrent drought and heatwave in Eastern China,
Weather and Climate Extremes, 28, 100242,
https://doi.org/10.1016/j.wace.2019.100242, 2020.
Kornhuber, K., Osprey, S., Coumou, D., Petri, S., Petoukhov, V., Rahmstorf,
S., and Gray, L.: Extreme weather events in early summer 2018 connected by a
recurrent hemispheric wave-7 pattern, Environ. Res. Lett., 14, 054002,
https://doi.org/10.1088/1748-9326/ab13bf, 2019.
Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes,
K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound
event framework for understanding extreme impacts, WIRES. Clim. Change,
5, 113–128, https://doi.org/10.1002/wcc.252, 2014.
Li, J., Ding, T., Jia, X., and Zhao, X.: Analysis on the extreme heat wave
over China around Yangtze River region in the summer of 2013 and its main
contributing factors, Adv. Meteorol., 2015, 706713, https://doi.org/10.1155/2015/706713, 2015.
Li, L., Wang, B., and Zhou, T.: Contributions of natural and anthropogenic
forcings to the summer cooling over eastern China: An AGCM study, Geophys.
Res. Lett., 34, L18807, https://doi.org/10.1029/2007GL030541, 2007.
Li, X., You, Q., Ren, G., Wang, S., Zhang, Y., Yang, J., and Zheng, G.:
Concurrent droughts and hot extremes in northwest China from 1961 to 2017,
Int. J. Climatol., 39, 2186–2196, https://doi.org/10.1002/joc.5944, 2019.
Lin, W., Wen, C., Wen, Z., and Gang, H.: Drought in Southwest China: a
review, Atmospheric and Oceanic Science Letters, 8, 339–344, https://doi.org/10.3878/AOSL20150043, 2015.
Lopez, H., West, R., Dong, S., Goni, G., Kirtman, B., Lee, S. K., and Atlas,
R.: Early emergence of anthropogenically forced heat waves in the western
United States and Great Lakes, Nat. Clim. Change, 8, 414–420, https://doi.org/10.1038/s41558-018-0116-y, 2018.
Lu, E., Cai, W., Jiang, Z., Zhang, Q., Zhang, C., Higgins, R. W., and
Halpert, M. S.: The day-to-day monitoring of the 2011 severe drought in
China, Clim. Dynam., 43, 1–9, https://doi.org/10.1007/s00382-013-1987-2, 2014.
Lu, Y., Hu, H., Li, C., and Tian, F.: Increasing compound events of extreme
hot and dry days during growing seasons of wheat and maize in China,
Sci. Rep.-UK, 8, 1–8, https://doi.org/10.1038/s41598-018-34215-y, 2018.
Lyon, B., Barnston, A. G., Coffel, E., and Horton, R. M.: Projected increase
in the spatial extent of contiguous US summer heat waves and associated
attributes, Environ. Res. Lett., 14, 114029, https://doi.org/10.1088/1748-9326/ab4b41, 2019.
Manning, C., Widmann, M., Bevacqua, E., Van Loon, A. F., Maraun, D., and
Vrac, M.: Soil moisture drought in Europe: a compound event of precipitation
and potential evapotranspiration on multiple time scales, J. Hydrometeorol.,
19, 1255–1271, https://doi.org/10.1175/JHM-D-18-0017.1,
2018.
Manning, C., Widmann, M., Bevacqua, E., Van Loon, A. F., Maraun, D., and
Vrac, M.: Increased probability of compound long-duration dry and hot events
in Europe during summer (1950–2013), Environ. Res. Lett., 14, 094006,
https://doi.org/10.1088/1748-9326/ab23bf, 2019.
Mazdiyasni, O. and AghaKouchak, A.: Substantial increase in concurrent
droughts and heatwaves in the United States, P. Natl.
Acad. Sci. USA, 112, 11484–11489, https://doi.org/10.1073/pnas.1422945112, 2015.
McCabe, G. J., Palecki, M. A., and Betancourt, J. L.: Pacific and Atlantic
Ocean influences on multidecadal drought frequency in the United States,
P. Natl. Acad. Sci. USA, 101, 4136–4141,
https://doi.org/10.1073/pnas.0306738101, 2004.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought
frequency and duration to time scales, in: Proceedings of the 8th Conference on
Applied Climatology, Anaheim, California, 17–22 January 1993, 179–184, 1993.
Peng, D. and Zhou, T.: Why was the arid and semiarid northwest China
getting wetter in the recent decades?, J. Geophys. Res.-Atmos., 122,
9060–9075, https://doi.org/10.1002/2016JD026424, 2017.
Perkins, S. E. and Alexander, L. V.: On the measurement of heat waves, J.
Climate, 26, 4500–4517, https://doi.org/10.1175/JCLI-D-12-00383.1, 2013.
Pfleiderer, P., Schleussner, C. F., Kornhuber, K., and Coumou, D.: Summer
weather becomes more persistent in a 2∘ world, Nat. Clim. Change,
9, 666–671, https://doi.org/10.1038/s41558-019-0555-0, 2019.
Raymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak, A.,
Balch, J., Bowen, S. G., Camargo, S. J., Hess, J., Kornhuber, K.,
Oppenheimer, M., Ruane, A. C., Wahl, T., and White, K.: Understanding and
managing connected extreme events, Nat. Clim. Change, 10, 611–621,
https://doi.org/10.1038/s41558-020-0790-4, 2020.
Raymond, F., Ullmann, A., Camberlin, P., Drobinski, P., and Smith, C. C.:
Extreme dry spell detection and climatology over the Mediterranean Basin
during the wet season, Geophys. Res. Lett., 43, 7196–7204, https://doi.org/10.1002/2016GL069758, 2016.
Raymond, F., Ullmann, A., Camberlin, P., Oueslati, B., and Drobinski, P.:
Atmospheric conditions and weather regimes associated with extreme winter
dry spells over the Mediterranean basin, Clim. Dynam., 50, 4437–4453,
https://doi.org/10.1007/s00382-017-3884-6, 2018.
Ren, F., Cui, D., Gong, Z., Wang, Y., Zou, X., Li, Y., Wang, S., and Wang,
X.: An objective identification technique for regional extreme events, J.
Climate, 25, 7015–7027, https://doi.org/10.1175/JCLI-D-11-00489.1, 2012.
Ren, F. M., Trewin, B., Brunet, M., Dushmanta, P., Walter, A., Baddour, O.,
and Korber, M.: A research progress review on regional extreme events,
Advances in Climate Change Research, 9, 161–169, https://doi.org/10.1016/j.accre.2018.08.001, 2018.
Ridder, N. N., Pitman, A. J., Westra, S., Ukkola, A., Do Hong, X., Bador,
M., Hirsch, A. L., Evans, J. P., Luca, A. D., and Zscheischler, J.: Global
hotspots for the occurrence of compound events, Nat. Commun., 11, 1–10,
https://doi.org/10.1038/s41467-020-19639-3, 2020.
Rokach, L. and Maimon, O.: Clustering methods, in: Data mining and knowledge
discovery handbook, Springer, 321–352, ISBN 9780387244358, 2005.
Salas, J. D. and Obeysekera, J.: Revisiting the concepts of return period
and risk for nonstationary hydrologic extreme events, J. Hydrol. Eng.,
19, 554–568, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820, 2014.
Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D., and Diffenbaugh, N.
S.: Multidimensional risk in a nonstationary climate: Joint probability of
increasingly severe warm and dry conditions, Science Advances, 4,
eaau3487, https://doi.org/10.1126/sciadv.aau3487, 2018.
Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B., Nagler, T.,
Erhardt, T., Almeida, C., Min, A., Czado, C., Hofmann, M., Killiches, M.,
Joe, H., and Vatter, T.: Statistical Inference of Vine Copulas, R package
version 2.0.5, https://CRAN.R-project.org/package=VineCopula (last access: 14 October 2022), 2016.
Serinaldi, F.: Dismissing return periods!, Stoch. Env. Res. Risk A., 29,
1179–1189, https://doi.org/10.1007/s00477-014-0916-1, 2015.
Shao, D., Chen, S., Tan, X., and Gu, W.: Drought characteristics over China
during 1980–2015, Int. J. Climatol., 38, 3532–3545, https://doi.org/10.1002/joc.5515, 2018.
Sharma, S. and Mujumdar, P.: Increasing frequency and spatial extent of
concurrent meteorological droughts and heatwaves in India, Sci. Rep.-UK, 7,
1–9, https://doi.org/10.1038/s41598-017-15896-3, 2017.
Sheffield, J., Andreadis, K. M., Wood, E. F., and Lettenmaier, D. P.: Global
and continental drought in the second half of the twentieth century:
Severity-area-duration analysis and temporal variability of large-scale
events, J. Climate, 22, 1962–1981, https://doi.org/10.1175/2008JCLI2722.1, 2009.
Shi, Y., Shen, Y., Kang, E., Li, D., Ding, Y., Zhang, G., and Hu, R.: Recent
and future climate change in northwest China, Climatic change, 80,
379–393, https://doi.org/10.1007/s10584-006-9121-7, 2007.
Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D.:
Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model
evaluation in the present climate, J. Geophys. Res.-Atmos., 118,
1716–1733, https://doi.org/10.1002/jgrd.50203, 2013.
Stefanon, M., D'Andrea, F., and Drobinski, P.: Heatwave classification over
Europe and the Mediterranean region, Environ. Res. Lett., 7, 014023,
https://doi.org/10.1088/1748-9326/7/1/014023, 2012.
Sugiyama, J. and Kobayashi, K.: wvtool: Image Tools for Automated Wood
Identification, https://rdocumentation.org/packages/wvtool/versions/1.0 (last access: 22 July 2022),
2016.
Sun, L., Ren, F., Wang, Z., Liu, Y., Liu, Y., Wang, P., and Wang, D.:
Analysis of Climate Anomaly and Causation in August 2011, Meteor.
Mon., 38, 615–622, 2012.
Sutanto, S. J., Vitolo, C., Di Napoli, C., D'Andrea, M., and Van Lanen, H.
A.: Heatwaves, droughts, and fires: Exploring compound and cascading dry
hazards at the pan-European scale, Environ. Int., 134, 105276, https://doi.org/10.1016/j.envint.2019.105276, 2020.
Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich,
J., Briffa, K. R., and Sheffield, J.: Global warming and changes in drought,
Nat. Clim. Change, 4, 17–22, https://doi.org/10.1038/nclimate2067, 2014.
Vogel, M. M., Zscheischler, J., Fischer, E. M., and Seneviratne, S. I.:
Development of future heatwaves for different hazard thresholds, J. Geophys.
Res.-Atmos., 125, e2019JD032070, https://doi.org/10.1029/2019JD032070, 2020.
Wang, A., Lettenmaier, D. P., and Sheffield, J.: Soil moisture drought in
China, 1950–2006, J. Climate, 24, 3257-3271, https://doi.org/10.1175/2011JCLI3733.1, 2011.
Wang, P., Tang, J., Wang, S., Dong, X., and Fang, J.: Regional heatwaves in
china: a cluster analysis, Clim. Dynam., 50, 1901–1917, https://doi.org/10.1007/s00382-017-3728-4, 2018.
Wang, W., Zhou, W., Li, X., Wang, X., and Wang, D.: Synoptic-scale
characteristics and atmospheric controls of summer heat waves in China,
Clim. Dynam., 46, 2923–2941, https://doi.org/10.1007/s00382-015-2741-8, 2016.
Ward Jr., J. H.: Hierarchical grouping to optimize an objective function, J.
Am. Stat. Assoc., 58, 236–244, https://doi.org/10.1080/01621459.1963.10500845, 1963.
Wu, J. and Gao, X. J.: A gridded daily observation dataset over China
region and comparison with the other datasets, Chinese J.
Geophys., 56, 1102–1111, https://doi.org/10.6038/cjg20130406, 2013 (in Chinese, data available at: http://climatechange-data.cn/resource/detail?id=228, last access: 8 February 2023).
Yang, C., Tuo, Y., Ma, J., and Zhang, D.: Spatial and Temporal Evolution
Characteristics of Drought in Yunnan Province from 1969 to 2018 Based on
SPI/SPEI, Water Air Soil Poll., 230, 1–13, https://doi.org/10.1007/s11270-019-4287-6, 2019a.
Yang, Y., Tang, J., Xiong, Z., Wang, S., and Yuan, J.: An intercomparison of
multiple statistical downscaling methods for daily precipitation and
temperature over China: future climate projections, Clim. Dynam., 52,
6749–6771, https://doi.org/10.1007/s00382-018-4543-2, 2019b.
Ye, J., Li, W., Li, L., and Zhang, F.: “North drying and south wetting”
summer precipitation trend over China and its potential linkage with aerosol
loading, Atmos. Res., 125, 12–19, 2013.
Yu, R. and Zhai, P.: More frequent and widespread persistent compound
drought and heat event observed in China, Sci. Rep.-UK, 10, 1–7, https://doi.org/10.1038/s41598-020-71312-3, 2020.
Yu, R., Wang, B., and Zhou, T.: Tropospheric cooling and summer monsoon
weakening trend over East Asia, Geophys. Res. Lett., 31, L22212, https://doi.org/10.1029/2004GL021270, 2004.
Yu, Y. and Ginoux, P.: Enhanced dust emission following large wildfires due
to vegetation disturbance, Nat. Geosci., 15, 878–884, https://doi.org/10.1038/s41561-022-01046-6, 2022.
Zhang, J., Chen, H., and Zhang, Q.: Extreme drought in the recent two
decades in northern China resulting from Eurasian warming, Clim. Dynam.,
52, 2885–2902, https://doi.org/10.1007/s00382-018-4312-2,
2019.
Zhang, L., and Zhou, T.: Drought over East Asia: a review, J. Climate,
28, 3375–3399, https://doi.org/10.1175/JCLI-D-14-00259.1,
2015.
Zhang, L., Wu, P., and Zhou, T.: Aerosol forcing of extreme summer drought
over North China, Environ. Res. Lett., 12, 034020, https://doi.org/10.1088/1748-9326/aa5fb3, 2017.
Zhao, P., Yang, S., and Yu, R.: Long-term changes in rainfall over eastern
China and large-scale atmospheric circulation associated with recent global
warming, J. Climate, 23, 1544–1562, https://doi.org/10.1175/2009JCLI2660.1, 2010.
Zhou, B., Xu, Y., Wu, J., Dong, S., and Shi, Y.: Changes in temperature and
precipitation extreme indices over China: analysis of a high-resolution grid
dataset, Int. J. Climatol., 36, 1051–1066, https://doi.org/10.1002/joc.4400, 2016.
Zhou, T. J., Gong, D. Y., Li, J., Li, B.: Detecting and understanding the
multi-decadal variability of the East Asian Summer Monsoon Recent progress
and state of affairs, Meteorol. Z., 18, 455–467, https://doi.org/10.1127/0941-2948/2009/0396, 2009.
Zscheischler, J. and Fischer, E. M.: The record-breaking compound hot and
dry 2018 growing season in Germany, Weather and Climate Extremes, 29,
100270, https://doi.org/10.1016/j.wace.2020.100270, 2020.
Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects
risks associated with compound events, Science Advances, 3, e1700263,
https://doi.org/10.1126/sciadv.1700263, 2017.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C.,
Horton, R. M., Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M.
D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A
typology of compound weather and climate events, Nature Reviews Earth &
Environment, 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim.
Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3,
2018.
Zscheischler, J., Naveau, P., Martius, O., Engelke, S., and Raible, C. C.: Evaluating the dependence structure of compound precipitation and wind speed extremes, Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, 2021.
Short summary
This study quantifies the spatiotemporal variation and characteristics of compound long-duration dry and hot events in China over the 1961–2014 period. The results show that over the past few decades, there has been a substantial increase in the frequency of these compound events across most parts of China, which is dominated by rising temperatures. We detect a strong increase in the spatially contiguous areas experiencing concurrent dry and hot conditions.
This study quantifies the spatiotemporal variation and characteristics of compound long-duration...
Altmetrics
Final-revised paper
Preprint