Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-65-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-65-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A data-driven model for Fennoscandian wildfire danger
Sigrid Jørgensen Bakke
CORRESPONDING AUTHOR
Department of Geosciences, University of Oslo, Oslo, Norway
Niko Wanders
Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Karin van der Wiel
Research and Development of Weather and Climate models, Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
Lena Merete Tallaksen
Department of Geosciences, University of Oslo, Oslo, Norway
Related authors
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Sigrid J. Bakke, Monica Ionita, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, https://doi.org/10.5194/hess-24-5621-2020, 2020
Short summary
Short summary
This study provides an in-depth analysis of the 2018 northern European drought. Large parts of the region experienced 60-year record-breaking temperatures, linked to high-pressure systems and warm surrounding seas. Meteorological drought developed from May and, depending on local conditions, led to extreme low flows and groundwater drought in the following months. The 2018 event was unique in that it affected most of Fennoscandia as compared to previous droughts.
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
René M. van Westen, Karin van der Wiel, Swinda K. J. Falkena, and Frank Selten
EGUsphere, https://doi.org/10.5194/egusphere-2025-1440, https://doi.org/10.5194/egusphere-2025-1440, 2025
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) moderates the European climate. The AMOC is a tipping element and may collapse to a substantially weaker state under climate change. Such an event induces global and regional climate shifts. The European hydroclimate becomes drier under an AMOC collapse, this response is not considered in the 'standard' hydroclimate projections. Our results indicate a considerable influence of the AMOC on the European hydroclimate.
Bailey J. Anderson, Eduardo Muñoz-Castro, Lena M. Tallaksen, Alessia Matano, Jonas Götte, Rachael Armitage, Eugene Magee, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1391, https://doi.org/10.5194/egusphere-2025-1391, 2025
Short summary
Short summary
When flood happen during, or shortly after, droughts, the impacts of can be magnified. In hydrological research, defining these events can be challenging. Here we have tried to address some of the challenges defining these events using real-world examples. We show how different methodological approaches differ in their results, make suggestions on when to use which approach, and outline some pitfalls of which researchers should be aware.
Astrid Vatne, Norbert Pirk, Kolbjørn Engeland, Ane Victoria Vollsnes, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1140, https://doi.org/10.5194/egusphere-2025-1140, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Measurements of evaporation are important to understand how evaporation modifies the water balance of northern ecosystems. However, evaporation data in these regions are scarce. We explored a new dataset of evaporation measurements from four wetland sites in Norway and found that up to 30 % of the annual precipitation evaporate back to the atmosphere. Our results indicate that earlier snow melt-out and drier air can increase annual evaporation in the region.
Jennie C. Steyaert, Edwin Sutanudjaja, Marc Bierkens, and Niko Wanders
EGUsphere, https://doi.org/10.5194/egusphere-2024-3658, https://doi.org/10.5194/egusphere-2024-3658, 2025
Short summary
Short summary
Using machine learning techniques and remotely sensed reservoir data, we develop a workflow to derive reservoir storage bounds. We put these bounds in a global hydrologic model, PCR-GLOBWB 2, and evaluate the difference between generalized operations (the schemes typically in global models) and this data derived method. We find that modelled storage is more accurate in the data derived operations. We also find that generalized operations over estimate storage and can underestimate water gaps.
Barry van Jaarsveld, Niko Wanders, Edwin H. Sutanudjaja, Jannis Hoch, Bram Droppers, Joren Janzing, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Earth Syst. Dynam., 16, 29–54, https://doi.org/10.5194/esd-16-29-2025, https://doi.org/10.5194/esd-16-29-2025, 2025
Short summary
Short summary
Policy makers use global hydrological models to develop water management strategies and policies. However, it would be better if these models provided information at higher resolution. We present a first-of-its-kind, truly global hyper-resolution model and show that hyper-resolution brings about better estimates of river discharge, and this is especially true for smaller catchments. Our results also suggest that future hyper-resolution models need to include more detailed land cover information.
Joren Janzing, Niko Wanders, Marit van Tiel, Barry van Jaarsveld, Dirk Nikolaus Karger, and Manuela Irene Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3072, https://doi.org/10.5194/egusphere-2024-3072, 2024
Short summary
Short summary
Process representation in hyper-resolution large-scale hydrological models (LHM) limits model performance, particularly in mountain regions. Here, we update mountain process representation in an LHM and compare different meteorological forcing products. Structural and parametric changes in snow, glacier and soil processes improve discharge simulations, while meteorological forcing remains a major control on model performance. Our work can guide future development of LHMs.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Barry van Jaarsveld, Sandra M. Hauswirth, and Niko Wanders
Hydrol. Earth Syst. Sci., 28, 2357–2374, https://doi.org/10.5194/hess-28-2357-2024, https://doi.org/10.5194/hess-28-2357-2024, 2024
Short summary
Short summary
Drought often manifests itself in vegetation; however, obtaining high-resolution remote-sensing products that are spatially and temporally consistent is difficult. In this study, we show that machine learning (ML) can fill data gaps in existing products. We also demonstrate that ML can be used as a downscaling tool. By relying on ML for gap filling and downscaling, we can obtain a more holistic view of the impacts of drought on vegetation.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023, https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Norbert Pirk, Kristoffer Aalstad, Sebastian Westermann, Astrid Vatne, Alouette van Hove, Lena Merete Tallaksen, Massimo Cassiani, and Gabriel Katul
Atmos. Meas. Tech., 15, 7293–7314, https://doi.org/10.5194/amt-15-7293-2022, https://doi.org/10.5194/amt-15-7293-2022, 2022
Short summary
Short summary
In this study, we show how sparse and noisy drone measurements can be combined with an ensemble of turbulence-resolving wind simulations to estimate uncertainty-aware surface energy exchange. We demonstrate the feasibility of this drone data assimilation framework in a series of synthetic and real-world experiments. This new framework can, in future, be applied to estimate energy and gas exchange in heterogeneous landscapes more representatively than conventional methods.
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Henrique M. D. Goulart, Karin van der Wiel, Christian Folberth, Juraj Balkovic, and Bart van den Hurk
Earth Syst. Dynam., 12, 1503–1527, https://doi.org/10.5194/esd-12-1503-2021, https://doi.org/10.5194/esd-12-1503-2021, 2021
Short summary
Short summary
Agriculture is sensitive to weather conditions and to climate change. We identify the weather conditions linked to soybean failures and explore changes related to climate change. Additionally, we build future versions of a historical extreme season under future climate scenarios. Results show that soybean failures are likely to increase with climate change. Future events with similar physical conditions to the extreme season are not expected to increase, but events with similar impacts are.
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Noemi Vergopolan, Sitian Xiong, Lyndon Estes, Niko Wanders, Nathaniel W. Chaney, Eric F. Wood, Megan Konar, Kelly Caylor, Hylke E. Beck, Nicolas Gatti, Tom Evans, and Justin Sheffield
Hydrol. Earth Syst. Sci., 25, 1827–1847, https://doi.org/10.5194/hess-25-1827-2021, https://doi.org/10.5194/hess-25-1827-2021, 2021
Short summary
Short summary
Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.
Gijs van Kempen, Karin van der Wiel, and Lieke Anna Melsen
Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, https://doi.org/10.5194/nhess-21-961-2021, 2021
Short summary
Short summary
In this study, we combine climate model results with a hydrological model to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of
current climatewas created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on high- and low-flow risk in four different climate zones with return periods of up to 500 years.
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
Peter Horvath, Hui Tang, Rune Halvorsen, Frode Stordal, Lena Merete Tallaksen, Terje Koren Berntsen, and Anders Bryn
Biogeosciences, 18, 95–112, https://doi.org/10.5194/bg-18-95-2021, https://doi.org/10.5194/bg-18-95-2021, 2021
Short summary
Short summary
We evaluated the performance of three methods for representing vegetation cover. Remote sensing provided the best match to a reference dataset, closely followed by distribution modelling (DM), whereas the dynamic global vegetation model (DGVM) in CLM4.5BGCDV deviated strongly from the reference. Sensitivity tests show that use of threshold values for predictors identified by DM may improve DGVM performance. The results highlight the potential of using DM in the development of DGVMs.
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Sigrid J. Bakke, Monica Ionita, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, https://doi.org/10.5194/hess-24-5621-2020, 2020
Short summary
Short summary
This study provides an in-depth analysis of the 2018 northern European drought. Large parts of the region experienced 60-year record-breaking temperatures, linked to high-pressure systems and warm surrounding seas. Meteorological drought developed from May and, depending on local conditions, led to extreme low flows and groundwater drought in the following months. The 2018 event was unique in that it affected most of Fennoscandia as compared to previous droughts.
Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, Friederike Otto, Robert Vautard, Karin van der Wiel, Andrew King, Fraser Lott, Julie Arrighi, Roop Singh, and Maarten van Aalst
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, https://doi.org/10.5194/ascmo-6-177-2020, 2020
Short summary
Short summary
Event attribution studies can now be performed at short notice. We document a protocol developed by the World Weather Attribution group. It includes choices of which events to analyse, the event definition, observational analysis, model evaluation, multi-model multi-method attribution, hazard synthesis, vulnerability and exposure analysis, and communication procedures. The protocol will be useful for future event attribution studies and as a basis for an operational attribution service.
Kerstin Stahl, Jean-Philippe Vidal, Jamie Hannaford, Erik Tijdeman, Gregor Laaha, Tobias Gauster, and Lena M. Tallaksen
Proc. IAHS, 383, 291–295, https://doi.org/10.5194/piahs-383-291-2020, https://doi.org/10.5194/piahs-383-291-2020, 2020
Short summary
Short summary
Numerous indices exist for the description of hydrological drought, some are based on absolute thresholds of overall streamflows or water levels and some are based on relative anomalies with respect to the season. This article discusses paradigms and experiences with such index uses in drought monitoring and drought analysis to raise awareness of the different interpretations of drought severity.
Cited articles
Abatzoglou, J. T. and Kolden, C. A.:
Relationships between climate and macroscale area burned in the western United States, Int. J. Wildland Fire, 22, 1003–1020, https://doi.org/10.1071/WF13019, 2013. a
Abatzoglou, J. T., Williams, A. P., and Barbero, R.:
Global emergence of anthropogenic climate change in fire weather indices, Geophys. Res. Lett., 46, 326–336, https://doi.org/10.1029/2018GL080959, 2019. a
Aldersley, A., Murray, S. J., and Cornell, S. E.:
Global and regional analysis of climate and human drivers of wildfire, Sci. Total Environ., 409, 3472–3481, https://doi.org/10.1016/j.scitotenv.2011.05.032, 2011. a, b, c, d
Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., and Randerson, J. T.: A human-driven decline in global burned area, Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017. a
Arpaci, A., Eastaugh, C. S., and Vacik, H.:
Selecting the best performing fire weather indices for Austrian ecoregions, Theor. Appl. Climatol., 114, 393–406, https://doi.org/10.1007/s00704-013-0839-7, 2013. a
Bakke, S. J., Ionita, M., and Tallaksen, L. M.:
The 2018 northern European hydrological drought and its drivers in a historical perspective, Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, 2020. a
Balshi, M. S., McGuire, A. D., Duffy, P., Flannigan, M., Walsh, J., and Melillo, J.:
Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach, Glob. Change Biol., 15, 578–600, https://doi.org/10.1111/j.1365-2486.2008.01679.x, 2009. a, b, c, d
Beck, H. E., Pan, M., Miralles, D. G., Reichle, R. H., Dorigo, W. A., Hahn, S., Sheffield, J., Karthikeyan, L., Balsamo, G., Parinussa, R. M., van Dijk, A. I. J. M., Du, J., Kimball, J. S., Vergopolan, N., and Wood, E. F.:
Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors, Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, 2021. a
Bedia, J., Herrera, S., Gutiérrez, J. M., Benali, A., Brands, S., Mota, B., and Moreno, J. M.:
Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change, Agr. Forest Meteorol., 214, 369–379, https://doi.org/10.1016/j.agrformet.2015.09.002, 2015. a
Bedia, J., Golding, N., Casanueva, A., Iturbide, M., Buontempo, C., and Gutiérrez, J. M.:
Seasonal predictions of Fire Weather Index: Paving the way for their operational applicability in Mediterranean Europe, Climate Services, 9, 101–110, https://doi.org/10.1016/j.cliser.2017.04.001, 2018. a
Beguería, S., Vicente-Serrano, S. M., Reig, F., and Latorre, B.:
Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring, Int. J. Climatol., 34, 3001–3023, https://doi.org/10.1002/joc.3887, 2014. a
Bell, R., Spring, A., Brady, R., Andrew, Squire, D., Blackwood, Z., Sitter, M. C., and Chegini, T.: xskillscore: v0.0.23, Zenodo [code], https://doi.org/10.5281/zenodo.5173153, 2021. a
Bessie, W. and Johnson, E.:
The relative importance of fuels and weather on fire behavior in subalpine forests, Ecology, 76, 747–762, https://doi.org/10.2307/1939341, 1995. a
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R., and Pyne, S. J.:
Fire in the Earth system, Science, 324, 481–484, https://doi.org/10.1126/science.1163886, 2009. a
Bradshaw, C. J. and Warkentin, I. G.:
Global estimates of boreal forest carbon stocks and flux, Global Planet. Change, 128, 24–30, https://doi.org/10.1016/j.gloplacha.2015.02.004, 2015. a
Bradshaw, L. S., Deeming, J. E., Burgan, R. E., and Cohen, J. D.:
The 1978 national fire-danger rating system: technical documentation, United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, https://doi.org/10.2737/INT-GTR-169, 1984. a
Breiman, L.:
Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
Caswell, T. A., Droettboom, M., Lee, A., Sales de Andrade, E., Hoffmann, T., Hunter, J., Klymak, J., Firing, E., Stansby, D., Varoquaux, N., Nielsen, J. H., Root, B., May, R., Elson, P., Seppänen, J. K., Dale, D., Lee, J.-J., McDougall, D., Straw, A., Hobson, P., hannah, Gohlke, C., Yu, T. S., Ma, E., Vincent, A. F., Silvester, S., Moad, C., Kniazev, N., Ernest, E., and Ivanov, P.: matplotlib: v3.4.3, Zenodo [code], https://doi.org/10.5281/zenodo.5194481, 2021. a
CEMS:
Fire danger indices historical data from the Copernicus Emergency Management Service (CEMS), Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.0e89c522, 2020. a
Chowdhury, E. H. and Hassan, Q. K.:
Development of a new daily-scale forest fire danger forecasting system using remote sensing data, Remote Sens.-Basel, 7, 2431–2448, https://doi.org/10.3390/rs70302431, 2015. a
Cornes, R. C., Van der Schrier, G., Van den Besselaar, E. J., and Jones, P. D.: An ensemble version of the E-OBS temperature and precipitation data sets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018. a
Didan, K.: MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD13C2.006, 2015. a, b
DSB: Skogbrannsesongen 2018, Tech. rep., The Norwegian Directorate of Civil Protection (DSB), ISBN 978-82-7768-474-1, 2019. a
Elson, P., Sales de Andrade, E., Hattersley, R., Campbell, E., Dawson, A., May, R., scmc72, Little, B., Pelley, C., Blay, B., Donkers, K., Killick, P., marqh, lbdreyer, Peglar, P., Wilson, N., Kirkham, D., Bosley, C., Signell, J., Filipe, Krischer, L., Eriksson, D., Smith, A., Carlos, McDougall, D., Crosby, A., Herzmann, D., scaine1, Greg, and munslowa: cartopy: v0.17.0, Zenodo [code], https://doi.org/10.5281/zenodo.1490296, 2018. a
EU-FP6 project UERRA, Copernicus Climate Change Service and data providers in the EC&D project: E-OBS daily gridded meteorological data for Europe from 1950 to present derived from in-situ observations: v23.1e, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.151d3ec6, 2021. a
Fawcett, T.:
An introduction to ROC analysis, Pattern Recogn. Lett., 27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010, 2006. a
Feurdean, A., Florescu, G., Tanţău, I., Vannière, B., Diaconu, A.-C., Pfeiffer, M., Warren, D., Hutchinson, S. M., Gorina, N., Gałka, M., and Kirpotin, S.:
Recent fire regime in the southern boreal forests of western Siberia is unprecedented in the last five millennia, Quaternary Sci. Rev., 244, 106495, https://doi.org/10.1016/j.quascirev.2020.106495, 2020. a
Flannigan, M., Stocks, B., Turetsky, M., and Wotton, M.:
Impacts of climate change on fire activity and fire management in the circumboreal forest, Glob. Change Biol., 15, 549–560, https://doi.org/10.1111/j.1365-2486.2008.01660.x, 2009. a, b, c
Flannigan, M., Cantin, A. S., De Groot, W. J., Wotton, M., Newbery, A., and Gowman, L. M.:
Global wildland fire season severity in the 21st century, Forest Ecol. Manag., 294, 54–61, https://doi.org/10.1016/j.foreco.2012.10.022, 2013. a
Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R., and Stocks, B.:
Future area burned in Canada, Climatic Change, 72, 1–16, https://doi.org/10.1007/s10584-005-5935-y, 2005. a
Forkel, M., Thonicke, K., Beer, C., Cramer, W., Bartalev, S., and Schmullius, C.:
Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia, Environ. Res. Lett., 7, 044021, https://doi.org/10.1088/1748-9326/7/4/044021, 2012. a, b
Forkel, M., Dorigo, W., Lasslop, G., Teubner, I., Chuvieco, E., and Thonicke, K.:
A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1), Geosci. Model Dev., 10, 4443–4476, https://doi.org/10.5194/gmd-10-4443-2017, 2017. a, b
Forkel, M., Andela, N., Harrison, S. P., Lasslop, G., van Marle, M., Chuvieco, E., Dorigo, W., Forrest, M., Hantson, S., Heil, A., Li, F., Melton, J., Sitch, S., Yue, C., and Arneth, A.:
Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models, Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019, 2019. a, b
Freund, Y. and Schapire, R. E.:
A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci., 55, 119–139, https://doi.org/10.1006/jcss.1997.1504, 1997. a
Genuer, R., Poggi, J.-M., and Tuleau-Malot, C.:
VSURF: an R package for variable selection using random forests, R Journal, 7, 19–33, https://hal.archives-ouvertes.fr/hal-01251924/file/genuer-poggi-tuleaumalot.pdf (last access: 10 January 2023), 2015. a
Goulart, H. M. D., van der Wiel, K., Folberth, C., Balkovic, J., and van den Hurk, B.:
Storylines of weather-induced crop failure events under climate change, Earth Syst. Dynam., 12, 1503–1527, https://doi.org/10.5194/esd-12-1503-2021, 2021. a
Grisel, O., Mueller, A., Lars, Gramfort, A., Louppe, G., Prettenhofer, P., Blondel, M., Niculae, V., Nothman, J., Joly, A., Fan, T. J., Vanderplas, J., Kumar, M., Qin, H., Hug, N., Varoquaux, N., Estève, L., Layton, R., Lemaitre, G., Metzen, J. H., Jalali, A., Rajagopalan, V. R., Schönberger, J., Yurchak, R., du Boisberranger, J., Li, W., Woolam, C., Dupré la Tour, T., Eren, K., and Eustache: scikit-learn: v0.24.2, Zenodo [code], https://doi.org/10.5281/zenodo.4725836, 2021. a
Gudmundsson, L. and Stagge, J. H.:
SCI: Standardized Climate Indices such as SPI, SRI or SPEI, R package version 1.0-2, Cran [code], https://cran.r-project.org/package=SCI
(last access: 9 January 2023), 2016. a
Gudmundsson, L., Rego, F. C., Rocha, M., and Seneviratne, S. I.:
Predicting above normal wildfire activity in southern Europe as a function of meteorological drought, Environ. Res. Lett., 9, 084008, https://doi.org/10.1088/1748-9326/9/8/084008, 2014. a, b, c
Guttman, N. B.:
Accepting the standardized precipitation index: a calculation algorithm, J. Am. Water Resour. Ass., 35, 311–322, https://doi.org/10.1111/j.1752-1688.1999.tb03592.x, 1999. a
Hanes, C. C., Wang, X., Jain, P., Parisien, M.-A., Little, J. M., and Flannigan, M. D.:
Fire-regime changes in Canada over the last half century, Can. J. Forest Res., 49, 256–269, https://doi.org/10.1139/cjfr-2018-0293, 2019. a, b, c
Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., Archibald, S., Mouillot, F., Arnold, S. R., Artaxo, P., Bachelet, D., Ciais, P., Forrest, M., Friedlingstein, P., Hickler, T., Kaplan, J. O., Kloster, S., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Meyn, A., Sitch, S., Spessa, A., van der Werf, G. R., Voulgarakis, A., and Yue, C.:
The status and challenge of global fire modelling, Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, 2016. a, b
Hantson, S., Kelley, D. I., Arneth, A., Harrison, S. P., Archibald, S., Bachelet, D., Forrest, M., Hickler, T., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Nieradzik, L., Rabin, S. S., Prentice, I. C., Sheehan, T., Sitch, S., Teckentrup, L., Voulgarakis, A., and Yue, C.:
Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project, Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, 2020. a
Hargreaves, G. H. and Samani, Z. A.:
Reference crop evapotranspiration from temperature, Appl. Eng. Agric., 1, 96–99, https://doi.org/10.13031/2013.26773, 1985. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hastie, T., Tibshirani, R., and Friedman, J.:
The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Science+Business Media, New York, USA, ISBN 978-0-387-84858-7, https://doi.org/10.1007/978-0-387-84858-7, 2009. a, b
Hoyer, S. and Hamman, J.:
xarray: ND labeled arrays and datasets in Python, Journal of Open Research Software, 5, p. 10, https://doi.org/10.5334/jors.148, 2017. a
Hoyer, S., Fitzgerald, C., Hamman, J., keewis, Cherian, D., Fitzgerald, C., Hauser, M., Fujii, K., Maussion, F., crusaderky, Clark, S., Kleeman, A., Nicholas, T., Illviljan, T. K., Munroe, J., Amici, A., Barghini, A., Banihirwe, A., Bell, R., gimperiale, Hatfield-Dodds, Z., Abernathey, R., Bovy, B., johnomotani, Mühlbauer, K., Roszko, M., and Wolfram, P. J.: xarray: v0.20.1, Zenodo [code], https://doi.org/10.5281/zenodo.5648431, 2021. a
Hunter, J. D.:
Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., and Bowman, D. M.:
Climate-induced variations in global wildfire danger from 1979 to 2013, Nature Commun., 6, 1–11, https://doi.org/10.1038/ncomms8537, 2015. a, b
Kasischke, E. S. and Turetsky, M. R.:
Recent changes in the fire regime across the North American boreal region–Spatial and temporal patterns of burning across Canada and Alaska, Geophys. Res. Lett., 33, L09703, https://doi.org/10.1029/2006GL025677, 2006. a, b
Keywood, M., Kanakidou, M., Stohl, A., Dentener, F., Grassi, G., Meyer, C. P., Torseth, K., Edwards, D., Thompson, A. M., Lohmann, U., and Burrows, J.:
Fire in the air: Biomass burning impacts in a changing climate, Crit. Rev. Env. Sci. Tec., 43, 40–83, https://doi.org/10.1080/10643389.2011.604248, 2013. a, b
Kganyago, M. and Shikwambana, L.:
Assessment of the characteristics of recent major wildfires in the USA, Australia and Brazil in 2018–2019 using multi-source satellite products, Remote Sens.-Basel, 12, 1803, https://doi.org/10.3390/rs12111803, 2020. a
Krawchuk, M. A. and Moritz, M. A.:
Constraints on global fire activity vary across a resource gradient, Ecology, 92, 121–132, https://doi.org/10.1890/09-1843.1, 2011. a
Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J., and Hayhoe, K.: Global pyrogeography: the current and future distribution of wildfire, PloS ONE, 4, e5102, https://doi.org/10.1371/journal.pone.0005102, 2009. a, b
Krikken, F., Lehner, F., Haustein, K., Drobyshev, I., and van Oldenborgh, G. J.: Attribution of the role of climate change in the forest fires in Sweden 2018, Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, 2021. a
Kuhn-Régnier, A., Voulgarakis, A., Nowack, P., Forkel, M., Prentice, I. C., and Harrison, S. P.:
The importance of antecedent vegetation and drought conditions as global drivers of burnt area, Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, 2021. a, b, c
Leonard, M., Westra, S., Phatak, A., Lambert, M., Van den Hurk, B., McInnes, K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.:
A compound event framework for understanding extreme impacts,
WIREs Clim. Change, 5, 113–128, https://doi.org/10.1002/wcc.252, 2014. a
Littell, J. S., McKenzie, D., Peterson, D. L., and Westerling, A. L.:
Climate and wildfire area burned in western US ecoprovinces, 1916–2003, Ecol. Appl., 19, 1003–1021, https://doi.org/10.1890/07-1183.1, 2009. a, b
Lizundia-Loiola, J., Pettinari, M. L., and Chuvieco, E.:
Temporal anomalies in burned area trends: satellite estimations of the Amazonian 2019 fire crisis, Remote Sens.-Basel, 12, 151, https://doi.org/10.3390/rs12010151, 2020. a
López-Saldaña, G., Bistinas, I., and Pereira, J. M. C.:
Global analysis of radiative forcing from fire-induced shortwave albedo change, Biogeosciences, 12, 557–565, https://doi.org/10.5194/bg-12-557-2015, 2015. a
Maselli, F., Romanelli, S., Bottai, L., and Zipoli, G.:
Use of NOAA-AVHRR NDVI images for the estimation of dynamic fire risk in Mediterranean areas, Remote Sens. Environ., 86, 187–197, https://doi.org/10.1016/S0034-4257(03)00099-3, 2003. a
McElhinny, M., Beckers, J. F., Hanes, C., Flannigan, M., and Jain, P.:
A high-resolution reanalysis of global fire weather from 1979 to 2018 – overwintering the Drought Code, Earth Syst. Sci. Data, 12, 1823–1833, https://doi.org/10.5194/essd-12-1823-2020, 2020. a
McKee, T. B., Doesken, N. J., and Kleist, J.:
The relationship of drought frequency and duration to time scales, in: Proceedings of the 8th Conference on Applied Climatology, Anaheim, California, USA, 17–22 January 1993, American Meteorological Society, 179–184, https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf
(last access: 9 January 2023), 1993. a
Met Office: Cartopy: a cartographic python library with a matplotlib interface, Met Office, Exeter, Devon, http://scitools.org.uk/cartopy (last access: 9 January 2023), 2010–2015. a
Michael, Y., Helman, D., Glickman, O., Gabay, D., Brenner, S., and Lensky, I. M.:
Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series, Sci. Total Environ., 764, 142844, https://doi.org/10.1016/j.scitotenv.2020.142844, 2021. a
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019a. a, b, c
Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.68d2bb30, 2019b. a, b, c
Noble, I., Gill, A., and Bary, G.:
McArthur's fire-danger meters expressed as equations, Aust. J. Ecol., 5, 201–203, https://doi.org/10.1111/j.1442-9993.1980.tb01243.x, 1980. a
Norwegian Meteorological Institute: Skogbrannfareindeks, https://skogbrannfare.met.no/, last access: 30 May 2022. a
NumPy project: NumPy: v1.20.3, GitHub [code], https://github.com/numpy/numpy (last access: 5 January 2023), 2021. a
Oliva, P. and Schroeder, W.:
Assessment of VIIRS 375 m active fire detection product for direct burned area mapping, Remote Sens. Environ., 160, 144–155, https://doi.org/10.1016/j.rse.2015.01.010, 2015. a
Padilla, M., Stehman, S. V., Ramo, R., Corti, D., Hantson, S., Oliva, P., Alonso-Canas, I., Bradley, A. V., Tansey, K., Mota, B., Pereira, J. M., and Chuvieco, E.:
Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation, Remote Sens. Environ., 160, 114–121, https://doi.org/10.1016/j.rse.2015.01.005, 2015. a
Parisien, M.-A. and Moritz, M. A.:
Environmental controls on the distribution of wildfire at multiple spatial scales, Ecol. Monogr., 79, 127–154, https://doi.org/10.1890/07-1289.1, 2009. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a, b, c, d
Pettinari, M. and Chuvieco, E.:
ESA CCI ECV Fire Disturbance: D3.3.3 Product User Guide – MODIS, version 1.1, ESA Climate Change Initiative, https://climate.esa.int/media/documents/Fire_cci_D3.3.3_PUG-MODIS_v1.1.pdf (last access: 9 January 2023), 2018. a
Pettinari, M., Lizundia-Loiola, J., and Chuvieco, E.:
Algorithm Theoretical Basis Document: CDR Fire Burned Area (brokered from CCI Fire Burned Area), Copernicus Climate Change Service (C3S), http://datastore.copernicus-climate.eu/documents/satellite-fire-burned-area/D1.6.2-v1.0_ATBD_CDR_BA-FireCCI_MODIS_v5.1cds_PRODUCTS_v1.0.1.pdf (last access: 9 January 2023), 2019. a
Prasad, V. K., Badarinath, K., and Eaturu, A.:
Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India, J. Environ. Manage., 86, 1–13, https://doi.org/10.1016/j.jenvman.2006.11.017, 2008. a
Ranasinghe, R., Ruane, A. C., Vautard, R., Arnell, N., Coppola, E., Cruz, F. A., Dessai, S., Islam, A. S., Rahimi, M., Ruiz Carrascal, D., Sillmann, J., Sylla, M. B., Tebaldi, C., Wang, W., and Zaaboul, R.: Climate Change Information for Regional Impact and for Risk Assessment, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
1767–1926, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter12.pdf (last access: 12 January 2023), 2021. a
Randerson, J., Chen, Y., Van der Werf, G., Rogers, B., and Morton, D.:
Global burned area and biomass burning emissions from small fires, J. Geophys. Res.-Biogeo., 117, G04012, https://doi.org/10.1029/2012JG002128, 2012. a
Reback, J., jbrockmendel, McKinney, W., Van den Bossche, J., Augspurger, T., Cloud, P., Hawkins, S., gfyoung, Sinhrks, Roeschke, M., Klein, A., Petersen, T., Tratner, J., She, C., Ayd, W., Hoefler, P., Naveh, S., Garcia, M., Schendel, J., Hayden, A., Saxton, D., Shadrach, R., Gorelli, M. E., Li, F., Jancauskas, V., attack68, McMaster, A., Battiston, P., Seabold, S., and Dong, K.: Pandas: v1.3.2, Zenodo [code], https://doi.org/10.5281/zenodo.5203279, 2021. a
San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., Strobl, P., Liberta, G., Giovando, C., Boca, R., Sedano, F., Kempeneers, P., McInerney, D., Withmore, C., Santos de Oliveira, S., Rodrigues, M., Durrant, T., Corti, P., Oehler, F., Vilar, L., and Amatulli, G.:
Comprehensive monitoring of wildfires in Europe: the European forest fire information system (EFFIS), in: Approaches to managing disaster-Assessing hazards, emergencies and disaster impacts, edited by: Tiefenbacher, J., IntechOpen, https://doi.org/10.5772/28441, 2012. a, b
San-Miguel-Ayanz, J., Durrant, T., Boca, R., Libertà, G., Branco, A., de Rigo, D., Ferrari, D., Maianti, P., Vivancos, T. A., Oom, D., Pfeiffer, H., Nuijten, D., and Leray, T.:
Forest Fires in Europe Middle East and North Africa 2018, Tech. Rep. EUR 29856EN, European Union, https://doi.org/10.2760/1128, 2019. a
Schulzweida, U.: CDO User Guide, Zenodo, https://doi.org/10.5281/zenodo.5614769, 2021. a
Schulzweida, U., Mueller, R., Heidmann, O., Ansorge, C., Kornblueh, L., Wachsmann, F., Kameswarrao, M., and Quast, R.: Climate Data Operator (CDO) (1.9.6), Zenodo [code], https://doi.org/10.5281/zenodo.3991595, 2019. a
Skinner, W. R., Flannigan, M. D., Stocks, B. J., Martell, D. L., Wotton, B. M., Todd, J. B., Mason, J. A., Logan, K. A., and Bosch, E. M.:
A 500 hPa synoptic wildland fire climatology for large Canadian forest fires, 1959–1996, Theor. Appl. Climatol., 71, 157–169, https://doi.org/10.1007/s007040200002, 2002. a
Smith, N. E., Kooijmans, L. M. J., Koren, G., van Schaik, E., van der Woude, A. M., Wanders, N., Ramonet, M., Xueref-Remy, I., Siebicke, L., Manca, G., Brümmer, C., Baker, I. T., Haynes, K. D., Luijkx, I. T., and Peters, W.:
Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern Europe, Philos. T. R. Soc. B, 375, 20190509, https://doi.org/10.1098/rstb.2019.0509, 2020. a
Sømme, A.: A Geography of Norden: Denmark, Finland, Iceland, Norway, Sweden, J. W. Cappelens Forlag, Oslo, ISBN 9788202063351, 1960. a
Stagge, J. H., Tallaksen, L. M., Xu, C. Y., and Van Lanen, H. A.:
Standardized precipitation–evapotranspiration index (SPEI): Sensitivity to potential evapotranspiration model and parameters, in: Hydrology in a Changing World, Copernicus GmbH (IAHS-AISH Proceedings and Reports), vol. 363, 367–373, ISBN 9781907161414, 2014. a, b
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., and Stahl, K.: Candidate distributions for climatological drought indices (SPI and SPEI), Int. J. Climatol., 35, 4027–4040, https://doi.org/10.1002/joc.4267, 2015. a, b
Sun, Q., Miao, C., Hanel, M., Borthwick, A. G., Duan, Q., Ji, D., and Li, H.:
Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming, Environ. Int., 128, 125–136, https://doi.org/10.1016/j.envint.2019.04.025, 2019. a
Swedish Meteorological and Hydrological Institute: Brandrisk skog och mark, https://www.smhi.se/brandrisk, last access: 30 May 2022. a
Tomshin, O. and Solovyev, V.:
Spatio-temporal patterns of wildfires in Siberia during 2001–2020, Geocarto Int., 1–19, https://doi.org/10.1080/10106049.2021.1973581, 2021. a, b
Turco, M., Llasat, M. C., Tudela, A., Castro, X., and Provenzale, A.:
Brief communication Decreasing fires in a Mediterranean region (1970–2010, NE Spain), Nat. Hazards Earth Syst. Sci., 13, 649–652, https://doi.org/10.5194/nhess-13-649-2013, 2013. a
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.:
Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017. a
Van der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R., and Screen, J. A.:
Ensemble climate-impact modelling: extreme impacts from moderate meteorological conditions, Environ. Res. Lett., 15, 034050, https://doi.org/10.1088/1748-9326/ab7668, 2020. a
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.:
A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index, J. Climate, 23, 1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Virtanen, P., Gommers, R., Burovski, E., Oliphant, T. E., Weckesser, W., Cournapeau, D., alexbrc, Reddy, T., Peterson, P., Haberland, M., Wilson, J., Nelson, A., endolith, Mayorov, N., van der Walt, S., Polat, I., Laxalde, D., Brett, M., Larson, E., Millman, J., Lars, van Mulbregt, P., eric-jones, Carey, C. J., Moore, E., Kern, R., peterbell10, Leslie, T., Perktold, J., and Striega, K.: SciPy: v1.6.2, Zenodo [code], https://doi.org/10.5281/zenodo.4635380, 2021. a
Walker, X. J., Baltzer, J. L., Cumming, S. G., Day, N. J., Ebert, C., Goetz, S., Johnstone, J. F., Potter, S., Rogers, B. M., Schuur, E. A. G., Turetsky, M. R., and Mack, M. C.:
Increasing wildfires threaten historic carbon sink of boreal forest soils, Nature, 572, 520–523, https://doi.org/10.1038/s41586-019-1474-y, 2019.
a
Ward, J. H. J.:
Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc., 58, 236–244, https://doi.org/10.1080/01621459.1963.10500845, 1963. a
Waskom, M. L.:
seaborn: statistical data visualization, Journal of Open Source Software, 6, 3021, https://doi.org/10.21105/joss.03021, 2021. a
Waskom, M., Gelbart, M., Botvinnik, O., Ostblom, J., Hobson, P., Lukauskas, S., Gemperline, D. C., Augspurger, T., Halchenko, Y., Warmenhoven, J., Cole, J. B., de Ruiter, J., Vanderplas, J., Hoyer, S., Pye, C., Miles, A., Swain, C., Meyer, K., Martin, M., Bachant, P., Quintero, E., Kunter, G., Villalba, S., Brian, Fitzgerald, C., Evans, C., Williams, M. L., O'Kane, D., Yarkoni, T., and Brunner, T.: seaborn: v0.11.2, Zenodo [code], https://doi.org/10.5281/zenodo.5205191, 2021. a
Wooster, M. J., Roberts, G. J., Giglio, L., Roy, D. P., Freeborn, P. H., Boschetti, L., Justice, C., Ichoku, C., Schroeder, W., Davies, D., Smith, A. M. S., Setzer, A., Csiszar, I., Strydom, T., Frost, P., Zhang, T., Xu, W., de Jong, M. C., Johnston, J. M., Ellison, L., Vadrevu, K., Sparks, A. M., Nguyen, H., McCarty, J., Tanpipat, V., Schmidt, C., and San-Miguel-Ayanz, J.:
Satellite remote sensing of active fires: History and current status, applications and future requirements, Remote Sens. Environ., 267, 112694, https://doi.org/10.1016/j.rse.2021.112694, 2021. a, b
Zhang, T., Wooster, M. J., De Jong, M. C., and Xu, W.:
How well does the 'small fire boost' methodology used within the GFED4.1s fire emissions database represent the timing, location and magnitude of agricultural burning?, Remote Sens.-Basel, 10, 823, https://doi.org/10.3390/rs10060823, 2018. a
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N.., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018. a
Short summary
In this study, we developed a machine learning model to identify dominant controls of wildfire in Fennoscandia and produce monthly fire danger probability maps. The dominant control was shallow-soil water anomaly, followed by air temperature and deep soil water. The model proved skilful with a similar performance as the existing Canadian Forest Fire Weather Index (FWI). We highlight the benefit of using data-driven models jointly with other fire models to improve fire monitoring and prediction.
In this study, we developed a machine learning model to identify dominant controls of wildfire...
Altmetrics
Final-revised paper
Preprint