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Abstract. Wildfires are recurrent natural hazards that affect
terrestrial ecosystems, the carbon cycle, climate and society.
They are typically hard to predict, as their exact location and
occurrence are driven by a variety of factors. Identifying a
selection of dominant controls can ultimately improve pre-
dictions and projections of wildfires in both the current and a
future climate. Data-driven models are suitable for identifica-
tion of dominant factors of complex and partly unknown pro-
cesses and can both help improve process-based models and
work as independent models. In this study, we applied a data-
driven machine learning approach to identify dominant hy-
drometeorological factors determining fire occurrence over
Fennoscandia and produced spatiotemporally resolved fire
danger probability maps. A random forest learner was ap-
plied to predict fire danger probabilities over space and time,
using a monthly (2001–2019) satellite-based fire occurrence
dataset at a 0.25◦ spatial grid as the target variable. The fi-
nal data-driven model slightly outperformed the established
Canadian Forest Fire Weather Index (FWI) used for compar-
ison. Half of the 30 potential predictors included in the study
were automatically selected for the model. Shallow volumet-
ric soil water anomaly stood out as the dominant predictor,
followed by predictors related to temperature and deep vol-
umetric soil water. Using a local fire occurrence record for
Norway as target data in a separate analysis, the test set per-
formance increased considerably. This demonstrates the po-
tential of developing reliable data-driven models for regions
with a high-quality fire occurrence record and the limitation
of using satellite-based fire occurrence data in regions sub-
ject to small fires not identified by satellites. We conclude
that data-driven fire danger probability models are promis-
ing, both as a tool to identify the dominant predictors and for

fire danger probability mapping. The derived relationships
between wildfires and the selected predictors can further be
used to assess potential changes in fire danger probability un-
der different (future) climate scenarios.

1 Introduction

Boreal ecosystems, covering large parts of northern North
America and Eurasia, comprise one of the world’s most ex-
tensive biomes (Balshi et al., 2009). In the boreal region,
which have the largest carbon stock of all major global forest
biomes, fires are the major stand-renewing agent and play a
major role in carbon storage and emissions (Bradshaw and
Warkentin, 2015; Flannigan et al., 2009). Boreal fires emit
up to 9 % of global fire carbon emissions and 15 % of global
fire methane emissions annually (Van der Werf et al., 2017;
Flannigan et al., 2009). The fire season length, fire frequency
and burned area have increased in many parts of the bo-
real region, and these changes have been linked to climate
change (Tomshin and Solovyev, 2021; Feurdean et al., 2020;
Hanes et al., 2019; Balshi et al., 2009; Kasischke and Turet-
sky, 2006). Accordingly, improved knowledge about boreal
fires and their occurrence is of high importance, both in the
current and in future climate scenarios. Fires have been ex-
tensively studied in the boreal zones of North America and
Russia (e.g. Tomshin and Solovyev, 2021; Hanes et al., 2019;
Forkel et al., 2012; Balshi et al., 2009). However, to the best
of our knowledge, fire studies within the European boreal
zone are limited.

The European boreal zone covers Fennoscandia, a penin-
sula comprising Norway, Sweden and Finland, as well as
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the northwestern part of Russia (Kola Peninsula and Kare-
lia). Fennoscandia is known for its large spatial heterogeneity
in hydroclimatological characteristics resulting from a high
local variability in altitude, soil characteristics and mois-
ture sources over short distances, to mention a few (Sømme,
1960). Similar to other boreal regions (Skinner et al., 2002),
the fire season comprises the warm and dry period of the year
and is limited by snow during winter. Fires in Fennoscan-
dia are normally small in size, as well as of shorter duration
(more quickly distinguished), as compared to boreal regions
in North America and Siberia (Aalto and Venäläinen, 2021).
However, there are recent examples of warm and dry sum-
mers where large areas burned, such as the record-breaking
area burned in Sweden in 2018 (Krikken et al., 2021; San-
Miguel-Ayanz et al., 2019). Such extreme fires pose the ques-
tion of what to expect in the future.

Wildfires are recurrent natural hazards and an integral part
of all major biomes (Keywood et al., 2013; Bowman et al.,
2009). Wildfires both affect and are being affected by cli-
mate, emphasising the importance of incorporating fire ac-
tivity when investigating the earth system. On both short
and long timescales, wildfires affect regional and global cli-
mate by changing the terrestrial ecosystem composition and
functioning, surface energy fluxes, and the water and car-
bon cycle (Walker et al., 2019; López-Saldaña et al., 2015;
Keywood et al., 2013; Flannigan et al., 2009). Wildfires are
complex phenomena, driven by a combination of available
biomass to burn, hydrometeorological conditions suitable for
combusting and propagating the fire and a source of ignition
(Krawchuk and Moritz, 2011; Krawchuk et al., 2009). The
hydrometeorological conditions are the most variable and
largest driver of burned area (Jolly et al., 2015; Abatzoglou
and Kolden, 2013; Littell et al., 2009; Flannigan et al., 2005;
Bessie and Johnson, 1995), controlling whether or not an ig-
nition leads to a fire. The hydrometeorological controls act
on both seasonal to annual timescales, for example by con-
trolling the presence of snow and the moisture content of the
soil and vegetation, and on short timescales, for example by
concurrent hot, dry and windy weather. This makes wildfire
occurrence a complex hazard that can be caused by a multi-
tude of, typically statistically dependent, external drivers.

Research that explicitly takes into account information of
observed fires are typically either large-scale assessments us-
ing satellite-based burned area products or limited to regions
where historical fire records are good and that recently have
experienced devastating large wildfires (e.g. Kuhn-Régnier
et al., 2021; Hanes et al., 2019; Kganyago and Shikwambana,
2020; Lizundia-Loiola et al., 2020; Turco et al., 2013; An-
dela et al., 2017; Aldersley et al., 2011; Kasischke and Turet-
sky, 2006). Because satellite-based fire information relies on
reflectance changes from medium-resolution sensors, such
data can be very different compared to national historical fire
records, which are typically of higher resolution. In partic-
ular, satellite-based burned area products suffer from a sys-
tematically underestimation of burnt area due to difficulties

in detecting small fires (Padilla et al., 2015; Randerson et al.,
2012). On the other hand, the availability and quality of na-
tional fire datasets varies among countries, whereas satellite
products allow for consistent transboundary fire data.

Several fire characteristics are of interest, such as the fire
regime, emissions, burned area, duration and feedbacks with
vegetation. The characteristics all have in common that they
rely on the fundamental question of when and where fires are
likely to occur. Fire occurrence, or likelihood thereof (i.e. fire
danger probability), can be used for monitoring, forecasting
and projections and has been investigated using three main
approaches: fire weather indices, global fire models and data-
driven models, as further elaborated below.

The relation between hydrometeorology and wildfires
have traditionally relied on established fire weather indices
(e.g. Van Wagner, 1987; Bradshaw et al., 1984; Noble et al.,
1980). These indices are used for fire danger mapping ap-
plicable for monitoring, forecasting and projections. Fire
danger can be defined as the weather conditions that can
trigger and sustain wildfires (Ranasinghe et al., 2021) and
thus differs from (and is a prerequisite for) fire occurrence
that additionally require an ignition. Fire weather indices
are typically based on empirical and semi-physical equa-
tions relating weather observations to dryness of fuel, with
the aim of determining the fire danger. Fire weather indices
can also be calculated based on large-scale gridded reanal-
ysis and climate model data (e.g. McElhinny et al., 2020),
allowing for spatially continuous estimates. Such estimates
are used for assessments of historical and future changes in
fire danger (Sun et al., 2019; Abatzoglou et al., 2019; Jolly
et al., 2015; Flannigan et al., 2013), whereas fire weather in-
dices calculated using numerical weather forecast models are
used for transnational fire monitoring and forecasting (San-
Miguel-Ayanz et al., 2012). Despite their widespread use, fire
weather indices are typically developed for specific coun-
tries or biomes and are thus not necessarily well-suited for
other regions and climates (Arpaci et al., 2013; Dowdy et al.,
2009).

Over the last 2 decades, global fire models (fire-enabled
dynamic global vegetation models; DGVMs) that can be
coupled with climate models have been developed (Hantson
et al., 2016). Most global fire models are process-based mod-
els that estimate fuel load and fuel moisture, based on fire
weather indices or other atmospheric and simulated moisture
conditions. These estimates are subsequently combined with
the probability of lightning and/or anthropogenic ignition to
determine whether a fire will occur in a grid cell. Lightning
rates can be constant in time or based on statistics, whereas
population density is typically used to estimate human ig-
nition probabilities as well as human suppression of fires.
An advantage of global fire models is that they allow for ex-
amining the feedbacks between fire, vegetation and climate
(Hantson et al., 2016). However, this relies on how well the
model is able to represent reality. Whereas the global fire
models have shown to reproduce the seasonality in burned
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area well, they vary in their ability to represent the spatial
pattern in burned area and are generally unable to represent
interannual variations (Hantson et al., 2020).

Finally, data-driven models (statistical and machine learn-
ing models) have been developed to relate wildfires to envi-
ronmental and meteorological conditions (e.g. Gudmundsson
et al., 2014; Aldersley et al., 2011). Unlike process-based ap-
proaches (fire weather indices and global fire models) that
are constructed using predefined equations to relate a set
of drivers to the fire characteristic of interest; a data-driven
model follows a bottom-up approach that starts by consid-
ering the fire characteristic explicitly and relates that char-
acteristic to the combination of drivers based on the data it-
self. Many of the data-driven model studies predict spatial
patterns in fire occurrence or burned area (Krawchuk et al.,
2009; Parisien and Moritz, 2009; Prasad et al., 2008), some-
times over a typical fire season (Bedia et al., 2015; Gud-
mundsson et al., 2014; Aldersley et al., 2011). A few studies
account for year-to-year variability by predicting the annual
burned area (Littell et al., 2009; Balshi et al., 2009). Data-
driven model studies accounting for both seasonal and inter-
annual variability in fire occurrences are limited. Those that
exist typically predict monthly global patterns in burned area
using predictors from observational data (Forkel et al., 2017),
DGVMs (Forkel et al., 2019), or a combination of observa-
tional and reanalysis data (Kuhn-Régnier et al., 2021).

Data-driven methods are restricted to regions and applica-
tions that have sufficient data to both train the models and
validate their performance. Although there are multiple ex-
amples of the opposite, a data-driven model should always
be evaluated using a (part of the) dataset not used in the
construction of the model. This is important to avoid over-
fitting, i.e. to ensure the model is able to predict the system
of interest and not only the data points it is trained on. An-
other challenge is the rare occurrence of forest fires implying
a highly skewed dataset, an imbalance that needs to be ac-
counted for in the training and evaluation of a model. In ad-
dition, a bottom-up approach is typically less straightforward
in its data requirements and methodology as compared to the
process-based approaches because a bottom-up approach is
not limited by the physical understanding of the system and
the number of data, and algorithms implemented are in prin-
ciple unlimited.

Despite these challenges, bottom-up approaches are valu-
able as they facilitate an explicit link between climate sci-
ence and societal or environmental impacts, as emphasised
by the compound event framework among others (Van der
Wiel et al., 2020; Zscheischler et al., 2018; Leonard et al.,
2014). The approach allows for a high degree of flexibility
in terms of potential drivers, target variables and models.
This flexibility allows for both detailed regional investiga-
tions and constructing models transferable to different (fu-
ture) climate scenarios (e.g. Goulart et al., 2021). As opposed
to fire weather indices and global fire models, data-driven
models do not require a priori assumptions of the dominant

mechanisms and physical processes controlling fire occur-
rences (except indirectly in the selection of potential predic-
tors). This makes data-driven models suitable when the na-
ture of the processes is complex and/or partly unknown and
when the emphasis is on accurate predictions or identification
of dominant controlling mechanisms (Parisien and Moritz,
2009). Data-driven models can in this way both help im-
prove process-based models and work as independent mod-
els. A data-driven approach allows us to identify controlling
factors for fire occurrences for specific regions. This is es-
pecially important for regions such as Fennoscandia, which
possess highly variable hydroclimatological conditions and
where the current number of (satellite-detected) fires is rela-
tively low as compared to other regions of the world.

In this study, we developed a temporally and spatially ex-
plicit data-driven machine learning model for Fennoscandia
to reach two main objectives:

– identify the dominant predictors of wildfires

– construct monthly fire danger probability maps.

A satellite-based burned area product was used to con-
struct the target dataset of fire occurrences over the period
2001–2019 at a monthly time step. We chose a random for-
est (RF) algorithm to train the model and identify dominant
predictors from a predefined set of 30 hydrometeorological
and land-cover-based indices. To have trust in the model, it
was tested on an independent dataset using the area under the
curve of the receiver operating characteristic (ROC-AUC). In
addition, we aim to answer the following research questions:

1. How well does the data-driven model perform as com-
pared to the Canadian Forest Fire Weather Index (FWI),
which is developed for similar biomes and latitudes as
Fennoscandia?

2. How well does the data-driven model perform when ap-
plied to an independent local (Norwegian) fire occur-
rence dataset?

3. Does the performance of a data-driven model improve
when using a local fire occurrence dataset as the target
variable for training the model?

Finally, we performed two additional experiments to chal-
lenge the model choices made:

4. Does the data-driven model chosen outperform both a
simpler machine learning algorithm (decision tree), as
well as a more sophisticated (AdaBoost, adaptive boost-
ing) machine learning algorithm?

5. What is the effect of not including a dynamical vegeta-
tion index?

The paper is structured as follows: Sect. 2 provides a de-
tailed description of the data sources and methods applied.
The results are presented in Sect. 3. A discussion is provided
in Sect. 4, followed by concluding remarks given in Sect. 5.
The Supplement comprises Figs. S1–S13.
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2 Data and methods

A general outline of the data-driven approach for Fennoscan-
dia is shown in Fig. 1. Data and pre-processing of the tar-
get variable (fire occurrence) and the potential predictors are
summarised in Table 1 and described in Sect. 2.1–2.3. Sec-
tion 2.4 describes the data and calculation of the Canadian
Forest Fire Weather Index (FWI), which was used as an alter-
native fire danger model. The data-driven model set-up and
training are described in Sect. 2.5. Section 2.6 describes the
selection and evaluation of the final data-driven model, in-
cluding the predictor importance estimate, comparison of fire
danger probability maps produced by the data-driven model
and FWI, and model evaluation using the Norwegian fire oc-
currence dataset. Finally, Sect. 2.7 describes the additional
experiments challenging the model choices made.

2.1 Data and pre-processing of the target variable

Two spatiotemporally varying datasets were used as target
variables for the analysis, a main satellite-based fire occur-
rence dataset (Sect. 2.1.1) and an additional Norwegian fire
occurrence dataset (Sect. 2.1.2). The two datasets are fun-
damentally different; whereas the satellite-based fire occur-
rence dataset only captures fires large enough to impact the
reflectance captured by the satellite, the Norwegian fire oc-
currence dataset comprises all wildfire occurrences, whereof
many cover a rather small area.

2.1.1 Satellite-based fire occurrence dataset

Data used for the target variable were the gridded fire burned
area European Space Agency Climate Change Initiative
(ESA CCI) product version 5.1.1cds, downloaded from the
Copernicus Data Store (ESA-CCI, 2020). This dataset holds
the same information as the Fire Essential Climate Variable
(ECV) Climate Change Initiative project (Fire_cci) burned
area product version 5.1 and is based on the reflectance prod-
uct of the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor. The main reflectance data used are daily
surface reflectance information in the red and near-infrared
bands (more details found in Pettinari et al., 2019). Data un-
certainties are related to a potential underestimation of the
actual burned area due to cloud cover, haze or other factors
influencing the observations. The fire burned area dataset is
available both as a 0.25◦× 0.25◦ regular grid product and as
a pixel product of 250 m resolution. We chose to use the grid
product to investigate if a data-driven model is applicable for
use at the spatial scale of the state-of-the-art global climate
models. Further, spatial dependency of fires (e.g. the same
fire occurring in two or more cells) is reduced when using
the coarser scale of the grid product as compared to the pixel
product.

From the global fire burned area dataset, Fennoscandia
was selected, and a two-class target variable of fire occur-

rence was constructed by classifying each data point as 1
(fire) if the burned area of the data point exceeded zero and 0
(no fire) otherwise. Thus, each data point (i.e. each grid cell
for each time step) was independently considered as either a
fire occurrence or not, and no merging was performed of fires
that potentially extended multiple grid cells or months. The
original monthly time step, in the period 2001–2019, and a
0.25◦× 0.25◦ regular grid of the dataset were kept to have
as many data points as possible. However, the months Octo-
ber to March were omitted each year, as they had less than
20 fire occurrences over the whole period and all grid cells,
which was considered too few occurrences for the analysis.
Figure 2 shows the distribution of the fire occurrences over
time and space. There is an extreme imbalance between the
two classes (fire and no fire) in the target variable, with only
1439 of the 444 030 data points (0.3 %) classified as fire.

2.1.2 Norwegian fire occurrence dataset

A national record of historical wildfires in Norway from the
Norwegian Directorate for Civil Protection (DSB, 2020) was
used to evaluate the model prediction capability using a dif-
ferent target dataset. The Norwegian fire occurrence dataset
covers the point location and date of wildfires in Norway
from 2016 to the near present. The dataset comprises all fires
registered in grass, cultivated land, forests and uncultivated
land, regardless of ignition source. The data are based on the
fire and rescue service reporting system in Norway (brann-
og redningstjenestens rapporteringssystem; BRIS). There is
no lower limit of burned area in this dataset, as it is based
on fire responses of the fire department. The point locations
in the dataset are the fire response attendance locations. Al-
though these locations may not overlap with the locations
where the fire started, we consider this uncertainty of minor
importance at the 0.25◦ spatial grid applied in the study.

Each fire was assigned to the nearest grid cell using the
same spatial grid as the satellite-based fire occurrence dataset
and to the month of occurrence. All data points were classi-
fied as 1 (fire) if one or more fires occurred and 0 (no fire)
otherwise. Because multiple fires can occur within the same
month and grid cell, the total number of fire occurrences is
lower for this variable than the original fire record data. Data
covering the same season and period as the satellite-based
fire occurrence dataset were selected, i.e. April–September
2016–2019.

Figure 3 shows the differences in the spatial and temporal
distribution of fire data points (i.e. grid cells with recorded
fire occurrence at a given time step) in the Norwegian fire
occurrence dataset and the satellite-based fire occurrence
dataset for the spatial and temporal domain of the Norwegian
fire occurrence dataset. There are substantial differences be-
tween the two datasets, mainly arising from the lack of small
fires in the satellite-based fire occurrence dataset. The Nor-
wegian dataset has in total 800 fire data points, as opposed
to 24 in the satellite-based dataset. Whereas the 3 months
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Figure 1. Flow chart of the data-driven approach for Fennoscandia. Sections given in the flow chart refer to sections in the text where
detailed descriptions can be found. Grey, green and dark brown boxes represent steps relevant to model training, model evaluation and both,
respectively.

Figure 2. Distribution of fire occurrences in the satellite-based target variable over (a) time (month and year) and (b) space (0.25◦ resolution).

of the highest number of fire data points in the Norwegian
dataset are May–July, no fire data points exist for June and
July in the satellite-based dataset. The unusual high number
of fires in 2018 is not reflected in the satellite-based dataset.
Finally, the Norwegian dataset show a higher spread in fire

occurrence across Norway as compared to the satellite-based
dataset.

Nat. Hazards Earth Syst. Sci., 23, 65–89, 2023 https://doi.org/10.5194/nhess-23-65-2023



S. J. Bakke et al.: A data-driven model for Fennoscandian wildfire danger 71

Figure 3. Distribution of fire occurrences in Norway using (a) the satellite-based dataset and (b) the Norwegian dataset. The figures show
the spatial distribution over Norway (map; 0.25◦ resolution) and the temporal distribution over the period 2016–2019 (bar plot), as defined
by the spatial and temporal domain of the Norwegian fire occurrence dataset. Note the different y axes of the two bar plots.

2.2 Criteria for potential predictors

The selection of potential predictors was governed by three
criteria: available in most climate models, transferable to dif-
ferent climate scenarios, and compatible with the spatiotem-
poral resolution and domain of the target data. In addition,
the data should be of high quality and the predictors should
have a physical interpretation.

By limiting the selection of potential predictors to the two
first criteria, we allow for investigations of fire danger prob-
ability as modelled by the data-driven model for different
potential future climate scenarios. Due to the lack of hu-
man influence being represented in many climate models,
predictors such as human infrastructure, settlement and ig-
nition sources were excluded from the analysis. Also light-
ning was excluded, partly due to the lack of such informa-
tion in most climate models, partly due to the limited infor-
mation such data can provide at a monthly 0.25◦ resolution
and partly due to the inconsistency in having only one type
of ignition information. Other categories of potential predic-
tors that were excluded include predictors that indirectly hold
hydrometeorological information, such as month number, as
well as dynamic vegetation-related predictors, such as green-
ness indices. Dynamic vegetation-related predictors were ex-
cluded because most climate model outputs are not based on
runs for which the climate model is coupled with a dynamic
global vegetation model (DGVM) but rather use prescribed
vegetation cycles.

The third criterion ensured compatibility of all data used in
the analysis. In order to carry out the data-driven approach,
all potential predictors need to have the same spatiotempo-
ral domain and resolution as used for the satellite-based tar-
get variable. Thus, all potential predictors were spatially con-

strained to Fennoscandia using a spatial resolution of 0.25◦

and consisted of monthly values from April to September
over the period 2001–2019. After the preparation of the po-
tential predictors, the spatial domain was further limited to
grid cells for which all data (including the target variable) had
values for all time steps and to grid cells where the fraction
of burnable area (fraction_burnable) was greater than zero.

2.3 Data and pre-processing of potential predictors

The final selection comprised 30 potential predictors, sev-
eral of which were highly correlated (Fig. 4). The derivation
of each potential predictor is described in the following sec-
tions, ordered by categories as given in Table 1 (first column).

2.3.1 Precipitation, temperature and meteorological
drought indices

The precipitation and temperature predictors were calculated
based on ensemble mean daily precipitation totals (rr), and
daily minimum, maximum and mean air temperature (tn, tx
and tg, respectively) at 0.25◦× 0.25◦ from E-OBS version
23.1e (Cornes et al., 2018). E-OBS is a European dataset
based on the European Climate Assessment & Dataset sta-
tion information (ECA&D), covering the period 1950 until
the near present.

From the daily values, monthly precipitation
sums (rr_sum) and monthly means of tn, tx and tg
(tn_mean, tx_mean and tg_mean, respectively) were
calculated. The corresponding normalised anomalies
(rr_sum_anomaly, tn_mean_anomaly, tx_mean_anomaly
and tg_mean_anomaly) were calculated by subtracting the
1991–2020 mean and dividing by the 1991–2020 standard
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Figure 4. Statistical dependency of the potential predictors (abbreviations according to Table 1) using the full dataset: (a) Spearman rank
correlation and (b) hierarchical clustering using Ward’s method (Ward, 1963).

deviation of each month separately. The reference period
1991–2020 was chosen to follow the most recent normal
period (WMO guidelines; World Meteorological Organi-
zation). An additional index, tx_max, was constructed by
extracting the maximum daily tx for each month.

Two meteorological drought indices were included: the
standardised precipitation index (SPI; Guttman, 1999; Mc-
Kee et al., 1993) and standardised precipitation evapotran-
spiration index (SPEI; Beguería et al., 2014; Vicente-Serrano
et al., 2010), each calculated for accumulation periods of 2,
3, 6 and 9 months. The accumulation period is added to the
abbreviation, e.g. SPI3 (representing a 3-month accumula-
tion period). Both the SPI and SPEI are indicators of the dry-
ness/wetness of a site as compared to normal and can be com-
pared across locations with different climatology and highly
non-normal precipitation distributions (Stagge et al., 2014).
Whereas the SPI is an estimate of the precipitation anomaly,
the SPEI estimates the anomaly in the climatic water bal-
ance defined as precipitation minus potential evapotranspi-
ration (PET). We used the Hargreaves equation (Hargreaves
and Samani, 1985) to estimate PET, following the recom-
mendation by Stagge et al. (2014). The Hargreaves equation
estimates daily PET based on each day’s tg, a proxy for net
radiation (tx minus tn), and an estimate of extraterrestrial
radiation based on the grid latitude and day of the year. To
compute the SPI (SPEI), the precipitation (precipitation mi-
nus PET) for a given accumulation period during the refer-
ence period is fitted to a parametric distribution, then non-
exceedance probabilities from the distribution is transformed
to the standard normal distribution and finally the standard
normal distribution is used to estimate anomalies in terms of
standard deviations over a period of interest. As for the pre-

cipitation and temperature anomaly calculations, 1991–2020
was used as the reference period. Following the recommen-
dations of Stagge et al. (2015), we applied the gamma dis-
tribution including a “centre of mass” adjustment for zero
precipitation for the SPI and the generalised extreme value
distribution for the SPEI. All final SPI and SPEI values were
limited to the range −3 to 3 due to the uncertainty related to
the extrapolation required for extreme values when based on
a limited historical record (Stagge et al., 2015).

2.3.2 Wind speed

Hourly eastward and northward components of 10 m wind
were derived from ERA5-Land hourly data, which are avail-
able from 1981 to the near present at a 0.1◦× 0.1◦ regu-
lar global grid (Muñoz Sabater, 2019a). Daily mean values
were calculated, and the eastward and northward components
were combined to derive the daily mean wind speed. Fur-
ther, the data were remapped using a second-order conserva-
tive remapping to match the 0.25◦ grid used for the analysis.
For each month, the daily mean wind speed was used to de-
rive the monthly mean wind speed (wspeed_mean) and the
10th and 90th percentile of daily wind speed (wspeed_p10
and wspeed_p90, respectively).

2.3.3 Snow and soil moisture

The fractional snow cover and the volumetric soil water in
four soil layers were obtained from ERA5-Land monthly
averaged data, which are available from 1981 to the near
present at a 0.1◦× 0.1◦ regular global grid (Muñoz Sabater,
2019b). As Fennoscandia covers a wide range of latitudes
and altitudes, snow is still present in our dataset for some
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months and grid cells, although the months analysed were
limited to April–October. The volumetric soil water is the
volume of water in a given soil layer of the ECMWF In-
tegrated Forecasting System and is associated with the soil
texture, soil depth and the underlying groundwater level. The
volumetric soil water in soil layer 1 (0–7 cm) is one of the
best performing datasets of established satellite- and model-
based shallow-soil moisture products (Beck et al., 2021).
As for the wind speed, the fractional snow cover data and
soil volumetric soil water data were remapped to a 0.25◦

grid using a second-order conservative remapping. This re-
sulted in four indices: the monthly mean fractional snow
cover (snowc) and the monthly mean volumetric soil wa-
ter in soil layer 1 (0–7 cm; swvl1), soil layer 2 (7–28 cm;
swvl2), soil layer 3 (28–100 cm; swvl3) and soil layer 4
(100–289 cm; swvl4). Normalised anomalies of the volu-
metric soil water indices (swvl1_anomaly, swvl1_anomaly,
swvl3_anomaly and swvl4_anomaly) were calculated by
subtracting the 1991–2020 mean and dividing by the 1991–
2020 standard deviation of each month separately.

2.3.4 Land cover

The fraction of burnable area (fraction_burnable) was ex-
tracted from the same dataset as used for the satellite-based
target variable (ESA-CCI, 2020). This index represents the
fraction of each grid cell that corresponds to vegetated land
cover that could burn, i.e. excluding waterbodies; permanent
snow and ice; urban areas; and bare areas. It is based on
the Copernicus Climate Change Service (C3S) land cover
classes. Details are found in Pettinari and Chuvieco (2018).

2.4 The Canadian Forest Fire Weather Index (FWI)

The Canadian Forest Fire Weather Index (FWI; Van Wag-
ner, 1987) was used as an alternative fire danger model to
compare the performance of the data-driven model with a
process-based fire weather index. We chose the FWI be-
cause it is developed for (Canadian) boreal forests and be-
cause it is used for fire danger forecasts in large parts of
Fennoscandia (Norway and Sweden; Norwegian Meteoro-
logical Institute, 2022; Swedish Meteorological and Hydro-
logical Institute, 2022). Noon temperature, wind speed, hu-
midity and 24 h precipitation are used to calculate the FWI
by estimating the moisture content in soil and organic mate-
rial, fire spread potential and potential heat release in heavier
fuel. FWI values are not upper-bounded, and the ranges used
for classifying fire danger vary. For example, the European
Forest Fire Information System (EFFIS) fire danger classes
based on the daily FWI (San-Miguel-Ayanz et al., 2012) are
very low (< 5.2), low (5.2–11.2), moderate (11.2–21.3), high
(21.3–38.0) and very high (≥ 38.0).

The FWI data were obtained from the Copernicus Emer-
gency Management Service (CEMS) global data produced
for EFFIS covering 1979 to the near present at a daily reso-

lution (CEMS, 2020). The original 0.25◦× 0.25◦ grid of the
EFFIS dataset is shifted 0.125◦ as compared to the grid used
for the analysis, and a second order conservative remapping
was therefore applied to remap the data. Finally, the FWI
metrics monthly mean FWI (FWI_mean) and monthly max
FWI (FWI_max) were calculated from daily FWI values.

2.5 Model set-up and training for Fennoscandia

The target variable and potential predictors comprised the
dataset used for the model training. Although a machine
learning algorithm for constructing the model is automated,
several choices have to be made in a model set-up and train-
ing procedure. This section describes these choices and the
considerations made, including how to split the dataset into
a training and a test set, and the choice of machine learning
algorithm, evaluation criterion, complexity terms to be tuned
and training procedure specifications.

2.5.1 Training and test set

The dataset was split into a training and a test set to obtain
an independent evaluation of the final model. Due to tempo-
ral dependency in the time series, a fully random selection of
data points to the training and test set would likely give a too
optimistic evaluation of the model. Instead, assuming lim-
ited dependence between years, whole years were selected
for both the training and test set. A total of 5 years (26 %)
was selected for the test set: 2004, 2011, 2013, 2017 and
2018. The remaining 14 years (74 %) constituted the training
set. The years were selected at random, with two exceptions:
(1) the year 2018 was manually chosen to be included in the
test set to evaluate the model’s prediction capability in what
is considered an extreme year in terms of hydrometeorologi-
cal conditions (Bakke et al., 2020) and (2) the year 2017 was
randomly chosen for the test set among the years 2016, 2017
or 2019, to allow for comparison with the Norwegian fire oc-
currence dataset (Sect. 2.6.5) for at least two years (2017 and
2018).

2.5.2 Machine learning algorithm

The machine learning algorithm was required to (1) have
a straightforward way of estimating the importance of the
predictors, (2) have the ability to deal with non-linearities,
(3) have the ability to deal with extreme imbalanced data
and (4) have the ability to predict fire danger using proba-
bilities rather than a binary classification of fire/no fire. A
random forest classifier (RF) was chosen as a machine learn-
ing algorithm that fulfilled the above requirements. The RF,
introduced by Breiman (2001), is a model built up of an en-
semble of decision tree classifiers (DTs). A DT is a non-
parametric supervised learner that builds a tree by splitting
the data multiple times based on predictor values (thresholds)
and performs classification estimates based on the target vari-
able values in the end nodes. The complexity of a DT is de-
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termined by the tree size and number of predictors. To re-
duce the variance (instability) of a single DT, an ensemble of
DTs can be built based on bootstrap samples of the data and
used for prediction by aggregating the DT estimates (bag-
ging). However, the benefit of aggregating the DT estimates
is limited by correlation among the DTs. A random forest is a
variant of bagging that meets this shortcoming by randomly
selecting a subset of predictors for each split, hence reduc-
ing the correlation among the DTs. The complexity of an RF
is determined by the tree size and number of predictors, as
well as the number of trees to build. Whereas an increase
in tree size and number of (irrelevant) predictors can lead
to overfitting, the number of trees to build cannot. However,
computational power and computational time limit the num-
ber of trees to be built, and the prediction accuracy typically
stabilises after a certain number of trees.

Here, we applied the random forest classifier method in the
Python package scikit-learn (Pedregosa et al., 2011).
To control the complexity of the model, the maximum size
of each tree (max_depth) and the number of predictors in-
cluded (Np) were tuned (see Sect. 2.5.4). The number of
trees was set to 100. The number of predictors to consider
for each split was set to the square root of the total number of
predictors, as recommended for RF classification problems
(Hastie et al., 2009). To account for the imbalance in the tar-
get data, the target classes (fire and no fire) were weighted
inversely proportional to the class frequencies. Remaining
parameters were set to default values given by the classi-
fier method. Instead of hardcoded classifications based on the
majority class of the end node, probability predictions were
calculated based on the proportion of each class. Probability
predictions allow for flexibility in the classification thresh-
old and are needed for the evaluation criterion chosen in this
study (Sect. 2.5.3).

2.5.3 Evaluation criterion

Model evaluation criteria typically consider all target vari-
able classes with equal weight. Consequently, many tradi-
tional evaluation criteria are not applicable due to the ex-
treme imbalance between the number of fire and no-fire data
points. As an example for our data, a model predicting no
fires at all would have a model accuracy (i.e. proportion of
correctly classified data points) of 99.7 %, equalling the pro-
portion of no-fire data points in the target data. This accu-
racy indicates a near-perfect model for a model that clearly
does not meet our objective. Thus, we needed a criterion that
is not affected by the extreme imbalance in the target data.
We chose the area under the curve of the receiver operating
characteristic (ROC-AUC), which calculates the area under
the curve of true-positive rate (sensitivity) vs. false-positive
rate (1− specificity) for different classification thresholds
based on the probability predictions (Fawcett, 2006). Thus,
it tackles imbalanced data and takes into account probability
prediction in one single measure. An ROC-AUC score less

than 0.5 indicates a worse-than-random model; a value of 1
indicates a perfect model. The ROC-AUC score is 0.5 for a
model predicting no fires at all, a model predicting fires for
all data points, and (on average for) a model predicting a tar-
get dataset in which each data point is randomly selected as
fire or no fire.

2.5.4 Training of the model

To avoid overfitting and to make the model as simple as pos-
sible without losing prediction capability, the RF complex-
ity parameter controlling the maximum depth of each tree
(max_depth) and the number of predictors (Np) were tuned.
The max_depth was tuned from values ranging from 1 (the
simplest tree structure) to 20 (a complex tree structure). In
case of Np, the model was trained to find the best predic-
tor subset using a backward-stepwise selection procedure.
To find the optimal combination of max_depth and Np, the
model was trained using cross-validation (CV).

The training set was split into seven CV folds by grouping
two and two years, keeping the number of fires as constant
as possible (due to the low number of fires in some years).
Full years were selected for the folds to limit the temporal
dependency (Sect. 2.5.1). For each CV iteration, the model
was trained on each combination of max_depth and Np. A
backward-stepwise selection procedure was implemented to
find the best predictor subset for each Np. For each CV iter-
ation and max_depth value, the backward-stepwise selection
procedure was as follows. (1) The model was fitted using
all predictors. (2) The model evaluation criterion was calcu-
lated using the left-out fold. (3) Predictor importance was es-
timated based on the left-out fold. (4) The predictor with the
lowest predictor importance was omitted from the predictor
subset. (5) The process is repeated from step 1, now using
the new predictor subset instead of all predictors. We also
tested an alternative backward-stepwise selection procedure,
which explicitly accounted for the high correlation between
predictors by omitting the least important of the two most
correlated predictors at each step. This method performed
less well. A limitation of this method is that predictors with
low correlation with other predictors are kept regardless of
their importance for the model performance.

Predictor importance was estimated using the permutation
importance from the Python package scikit-learn (Pe-
dregosa et al., 2011), which estimates the decrease in the
model score (here ROC-AUC score) when one of the pre-
dictors is randomly shuffled. To increase the robustness of
the estimate, the random shuffle was repeated five times,
and the mean of the predictor importance of each reshuffling
was used as the predictor importance estimate. The predic-
tor importance is typically close to zero (or even negative
due to randomness) for non-important predictors, as well as
for highly correlated predictors. In the case of highly cor-
related predictors, the predictor importance of one predictor
can experience an abrupt increase when a highly correlated
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predictor is omitted. Thus, the elimination criterion in the
backward-stepwise selection cannot depend on a static set of
predictor importance (e.g. of the full model; Genuer et al.,
2015) but needs to be based on the predictor importance of
the updated model for each predictor subset.

2.6 Final model selection and evaluation for
Fennoscandia

This section describes the selection (Sect. 2.6.1) and evalu-
ation (Sect. 2.6.2–2.6.5) of the final data-driven model for
Fennoscandia. The data-driven model performance was eval-
uated on the test set and compared with the performance
of the FWI (Sect. 2.6.2). Further, the predictor importance
was assessed (Sect. 2.6.3), and both the data-driven model
and FWI were used to produce fire danger probability maps
(Sect. 2.6.4). Finally, the data-driven model was evaluated
on an independent dataset, i.e. the Norwegian fire occurrence
dataset (Sect. 2.6.5).

2.6.1 Selection of a data-driven model

For each combination of max_depth and Np, the average
cross-validation ROC-AUC scores were calculated, and the
combination of max_depth and Np yielding the highest score
(max_depth_opt and Np_opt, respectively) was selected for
the final model. The selection of the optimal predictor sub-
set was not trivial, as the Np_opt predictors selected in each
cross-validation iteration could potentially differ due to the
varying sub-dataset used as the left-out fold. To select the op-
timal subset of Np_opt predictors, the 7-fold cross-validation
was performed again using max_depth_opt and Np_opt, and
the model was fitted to each of the predictor subsets se-
lected during the training of the model. The predictor sub-
set yielding the highest average cross-validation ROC-AUC
score was chosen for the final model.

2.6.2 Model evaluation

The predictability of the final model was evaluated for the
test set (i.e. the years not included in the training of the
model) using the ROC-AUC criterion (see Sect. 2.5.3). The
prediction capability of the data-driven model was then com-
pared with the ROC-AUC of the FWI metrics FWI_mean and
FWI_max (Sect. 2.4).

2.6.3 Predictor importance

To estimate the importance of each predictor selected for the
final model, we used permutation importance, as described
in Sect. 2.5.4 but now using 10 random shuffles. For compar-
ison, the impurity-based importance (from the Python pack-
age scikit-learn; Pedregosa et al., 2011) was also es-
timated. The impurity-based importance estimates the nor-
malised total reduction of the criterion introduced by each
predictor. Although it is typically biased towards predictors

with high cardinality, typically an issue for numerical pre-
dictors, this was not considered a problem here because all
input data were continuous. The impurity-based importance
sums to 1, and the higher a value, the more important the
predictor. As opposed to permutation importance, which can
be estimated on any dataset, the impurity-based importance
estimates are based on the training set only, which can be
misleading in the case of overfitting. On the other hand, in
the case of highly correlated predictors, the impurity-based
importance may still give a better representation of the im-
portance (as compared to permutation importance) due to the
randomness in the subset of predictors selected for each split
in the tree construction. Due to differences in the computa-
tion and the pros and cons of the two predictor importance
estimates, we applied both the permutation importance and
the impurity-based importance. Permutation importance was
estimated for the training set and test set separately.

2.6.4 Fire danger probability maps

Fire danger probability maps were produced for each month
and year in the test set using the prediction probabilities of
the data-driven model and plotted together with fire occur-
rences from the satellite-based fire occurrence dataset. Simi-
lar maps based on FWI_mean and FWI_max were also pro-
duced for comparison. In addition, the grid-wise Spearman
rank correlation between the model predictions FWI_mean
and FWI_max were calculated to reveal any consistent spa-
tial patterns in the agreement (or lack thereof) of the fire dan-
ger predictions.

2.6.5 Model evaluation using the Norwegian fire
occurrence dataset

The Norwegian fire occurrence dataset was included as an in-
dependent dataset to evaluate the data-driven model’s ability
to predict a more detailed fire dataset. The two years included
in both the test set for Fennoscandia and the Norwegian fire
occurrence dataset (i.e. 2017 and 2018) were used as the ba-
sis for this evaluation, with Norway as the spatial domain.
First, the model ability to predict the original target data
(i.e. the satellite-based fire occurrence dataset) and the inde-
pendent target data (i.e. Norwegian fire occurrence dataset)
were compared by computing the ROC-AUC scores. Second,
using Norwegian fire occurrence as a target, the ROC-AUC
score based on the data-driven model was compared to the
ROC-AUC scores based on FWI_mean and FWI_max.

Finally, we trained a data-driven model on the Norwegian
fire occurrence dataset instead of the satellite-based fire oc-
currence dataset for Fennoscandia to get a “fairer” compar-
ison of a data-driven model and the FWI’s ability to predict
the Norwegian fire occurrence dataset (we note that this step
is not included in Fig. 1). Because of the relatively short
period covered by the Norwegian dataset, of which 2017
and 2018 were used as the test set, only two years (2016
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and 2019) constituted the training set. Therefore, a 2-fold
cross-validation was applied (instead of the 7-fold used in the
main analysis), in which each year constituted a fold. The re-
maining training set-up follows the procedure as described in
Sect. 2.5.

2.7 Additional experiments

Two additional experiments were performed to test the effect
of (1) using two alternative machine learning algorithms and
(2) not including a dynamical vegetation index as a potential
predictor. A description of the experiments are given below.

Two additional, but related, machine learning algorithms
were tested to assess the applicability of using the random
forest algorithm. First, we tested a decision tree model (DT;
see Sect. 2.5.2) to see if a single tree was sufficient to con-
struct a good prediction model. The DT was trained using
the same procedure as for the RF model (Sect. 2.5), except
that all predictors were evaluated as candidates for each split.
Second, we tested a boosting algorithm called AdaBoost
(Freund and Schapire, 1997). Boosting algorithms are con-
sidered one of the most powerful learning ideas introduced
in this century (Hastie et al., 2009). The algorithm makes
predictions based on aggregation of results from a selec-
tion of constructed weak classifiers (here DT classifier with
max_depth= 1). For each new classifier constructed after the
first, the data points are weighted based on previous misclas-
sifications, in order to give more emphasis on the misclassi-
fied observations. AdaBoost was trained using the same pro-
cedure as for the RF model (Sect. 2.5), except that instead of
max_depth, the parameter defining the maximum number of
weak classifiers to construct (either 50, 100, 200 or 500) was
tuned.

We also carried out a separate experiment in which we in-
cluded a greenness indicator, the normalised difference veg-
etation index (NDVI), as a potential predictor. This index is
not possible to derive from climate models and was there-
fore excluded from the main analysis. However, it is a com-
monly used index to assess the vegetation status (Smith et al.,
2020) and used for fire forecasting (Michael et al., 2021;
Chowdhury and Hassan, 2015; Maselli et al., 2003). The
NDVI can be viewed as a potential estimate of burnable
biomass, which is highly variable in the Nordic landscape.
NDVI data were obtained from the monthly Terra MODIS
Vegetation Indices (MOD13C2) global 0.05◦ dataset (Didan,
2015). The data were spatially averaged to a 0.25◦ resolution.
The model training followed the same procedure as described
in Sect. 2.5.

3 Results

3.1 Selection of a data-driven model for Fennoscandia

Based on the average cross-validation (CV) ROC-AUC
scores for all combinations of the max_depth and num-
ber of predictors (Np), the highest score was found for
max_depth= 9 and Np= 15 (Fig. S1). The CV scores re-
vealed that there were no clear best choices of max_depth
independent of the selected number of predictors and vice
versa. This emphasises the importance of testing the com-
bined effect and not fitting max_depth and Np separately.
For many combinations, the ROC-AUC values were simi-
lar (varying only on the second decimal), opening for se-
lecting a simpler model without a too high cost of predic-
tion capability. We chose to automatically select the combi-
nation yielding the best score to avoid an extra element of
subjectivity. The max_depth of 9 was well within the investi-
gated max_depth values. The degrading scores on both ends
(i.e. the lowest and highest max_depth values investigated)
gave confidence in that the range of max_depth values inves-
tigated was sufficient. Of the original 30 potential predictors,
half remained for the final data-driven model. The number of
trees (i.e. 100) used for the data-driven model was consid-
ered sufficient, as indicated by the stabilisation of the model
performance (Fig. S2).

Of the 15 predictors, 5 were related to volumetric soil wa-
ter (swvl1, swvl2, swvl3, swvl4 and swvl2_anomaly), 3 to
temperature (tg_mean, tn_mean and tx_mean), 3 to wind
speed (wspeed_mean, wspeed_p10 and wspeed_p90), 2 to
precipitation (rr_sum and rr_sum_anomaly), and 1 each to
the predictors of snow cover (snowc) and fraction of burnable
area (fraction_burnable). All meteorological drought indices
and temperature anomalies were omitted. For precipitation
and soil moisture, both monthly mean (or sum) values and
monthly anomalies were selected. Notably, many of the se-
lected predictors were highly correlated (Fig. 4).

3.2 Model evaluation

All ROC-AUC scores presented are computed based on the
test set. The final data-driven (random forest) model ROC-
AUC score was 0.791 (Fig. 5). The data-driven model had
a slightly higher ROC-AUC score (differing in the second
decimal) compared to the FWI metrics, i.e. monthly max
FWI (FWI_max) and monthly mean FWI (FWI_mean). The
ROC-AUC scores of FWI_max and FWI_mean were more
similar, differing in the third decimal (0.784 and 0.783, re-
spectively). The ROC-AUC score of the data-driven model
using the random forest algorithm slightly outperformed the
two alternative machine learning algorithms tested, a deci-
sion tree (0.737; Fig. S3a) and AdaBoost (0.747; Fig. S4a),
confirming that the random forest algorithm was a suitable
choice for our analysis.
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Figure 5. Test set ROC curve and ROC-AUC score using the
data-driven model as compared to using monthly mean FWI
(FWI_mean) and monthly max FWI (FWI_max).

3.3 Predictor importance

Figure 6 shows the importance of the predictors, using the
permutation importance estimated for the training and test
set separately, as well as the impurity-based importance es-
timates. The dominant predictor in all cases was the volu-
metric soil water anomaly in soil layer 2 (swvl2_anomaly).
The remaining predictors were of significantly less, as well
as similar, importance. In all three algorithms tested, the
anomaly in shallow volumetric soil water (either in soil
layer 1 or 2), monthly mean of daily maximum temperature
and volumetric soil water in soil layer 4 were the top three
most important predictors (Figs. 6, S3b and S4b). The per-
mutation importance estimates of the training set is gener-
ally higher than that of the test set. This is expected since the
predictor subset was chosen based on the training set. Differ-
ences in the hydrometeorological conditions in the training
set years and test set years may also play a role in explaining
the differences in the order and magnitude of the permutation
importance estimates.

The bivariate and univariate distributions of the most dom-
inant predictor (swvl2_anomaly) and the predicted fire dan-
ger probabilities are shown in Fig. 7. The figure shows a clear
distinction between fire danger probabilities for fire and no-
fire data points for the training set (Fig. 7a), but it is less
distinct so in the test set (Fig. 7b). For both the training and
test set, most fire data points occur for swvl2_anomaly values
below zero (dryer soil that normal), and there is a weak nega-
tive relationship between the swvl2_anomaly values and fire
danger probabilities. However, a high density of fire danger
probabilities of approx. zero is distributed along a relatively
wide range of swvl2_anomaly values (between approx.−1.5
and 1), pointing to the importance of other predictors in min-
imising the fire danger probabilities for these data points.

In the experiment including the NDVI as potential predic-
tor, the test set ROC-AUC score was 0.799 (Fig. S5) com-
pared to 0.791 for the baseline. The most dominant predictor
for this experiment was still swvl2_anomaly, with the NDVI
in second place, regardless of the predictor importance es-
timate. The final model had a more complex tree structure
(max_depth= 16) and a lower number of predictors (11) as
compared to the model without the NDVI. The higher num-
ber of predictors in the model without the NDVI can likely
be explained by the fact that other predictors are included to
compensate for the lack of NDVI information about vegeta-
tion health.

3.4 Fire danger probability maps

Fire danger probability maps composed using the data-driven
model and (for comparison) the FWI metrics for 2018 are
shown in Fig. 8 and for the remaining test set years in
Fig. S6–S9. The maps also include the actual fire occurrences
according to the satellite-based target variable (marked as
dots). The year 2018 had one of the highest number of fire
occurrences during the period (Fig. 2), which is reflected in
high-end fire danger values covering large parts of the region,
in particular in May–July as well as August in the southeast.
By visual inspection, many of the fires occurred in cells of
high fire danger predicted by the data-driven model as well
as by the FWI metrics. On the other hand, several months
have high fire danger in areas with no fire occurrences. This
likely reflects either an actual high fire danger but a lack of
ignition sources or a weakness in the fire danger predictions.

In Fig. 9 high (> 0.8) grid-wise rank correlations in
fire danger between FWI_max and FWI_mean across
Fennoscandia reflect temporal agreement in fire danger be-
tween the two FWI metrics. However, the grid-wise rank cor-
relation between the data-driven model and either of the two
FWI metrics are spatially less coherent, with approx. 90 %
of the grid-cell correlations ranging between 0.4 and 0.9.
The highest correlations (between 0.7 and 0.9) are found in
eastern Fennoscandia (Russia) and along a southwestern–
northeastern belt from southern Norway, through mid and
northern Sweden, to northeastern Finland and Norway. The
lowest correlations (< 0.5) were found in parts of western
Norway, southeastern Sweden and southwestern Finland.

3.5 Model evaluation using the Norwegian fire
occurrence dataset

The ROC-AUC score of the data-driven model prediction of
the original (satellite-based) target variable for Fennoscandia
was recalculated for the evaluation period (2017 and 2018)
with Norway as the spatial domain. The ROC-AUC score
of the Norwegian fire occurrence dataset was 0.755 as com-
pared to 0.726 for the satellite-based fire occurrence dataset
(Fig. S10a). The pronounced difference in number of fires
(Fig. 3) is reflected in the non-smooth ROC-AUC curves of
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Figure 6. The importance of the predictors selected for the final data-driven model estimated using the permutation importance of the test
and training set separately, as well as the impurity-based feature importance of the training set. The bar height of the permutation importance
represents the mean, and the error bar represents the standard deviation of 10 random shuffles of each predictor. The bars are ordered by the
permutation importance of the test set.

Figure 7. The bivariate and univariate distributions of the anomaly in volumetric soil water in soil layer 2 (swvl2_anomaly) and predicted
fire danger probabilities. Results are shown for (a) the training set and (b) the test set. The distributions are given separately for the fire data
points (red) and no-fire data points (blue) from the satellite-based target variable. The histograms show the relative frequencies, and the box
plot whiskers define the 5th–95th percentile range.

the satellite-based as compared to the Norwegian fire pre-
dictions. Due to the low number of fire occurrences in the
satellite-based target variable, the corresponding ROC-AUC
score must be interpreted with caution.

Prediction of the Norwegian fire occurrence dataset using
the two FWI metrics had a notably higher ROC-AUC score

(0.851 for FWI_max and 0.867 for FWI_mean) as compared
to 0.755 for the data-driven model trained for Fennoscan-
dia (Fig. S10b). The monthly fire danger maps for Norway
jointly showing fire occurrences reflect the higher prediction
performance obtained by the FWI metrics, in particular in
capturing the fire dense areas in May–July 2018 (Fig. S11–
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Figure 8. Fire danger probability maps for April–September 2018 using (a–f) the data-driven model predictions, (g–l) FWI_mean and (m–
r) FWI_max. Blue markers show fire occurrences using the satellite-based fire occurrence dataset. Colour axes are truncated at the 5th and
95th percentile.

Figure 9. Spearman rank correlation of (a) the data-driven model and FWI_mean, (b) the data-driven model and FWI_max, and
(c) FWI_mean and FWI_max. The correlations are calculated using the test set. Hatches indicate regions of an effective p value (i.e. p value
accounting for autocorrelation) smaller than 0.01.

S12). The satellite-based target variable had a low represen-
tation of fire occurrences in Norway; accordingly, we did not
expect an equally good performance of the data-driven model
trained for Fennoscandia as for the FWI when evaluated for
the Norwegian dataset.

The separate data-driven model trained using the Norwe-
gian fire occurrence dataset as the target variable (Sect. 2.6.5)
resulted in a final model for Norway with max_depth= 2
and Np= 8. This represents a considerably simpler model
compared to the data-driven model trained using the satellite-
based fire occurrence dataset for Fennoscandia. This may be
explained by the reduced geospatial complexity in the train-
ing set. The ROC-AUC score improved from 0.755 to 0.836

for the test set years 2017 and 2018 (Fig. S13a), although this
is still slightly below the FWI performance. As opposed to
the data-driven model trained for Fennoscandia, this model
selected the monthly maximum temperature and monthly
mean of daily maximum temperature as the two dominant
predictors (Fig. S13b). The remaining predictors were of no-
tably lower importance and related to (anomalies in) volu-
metric soil water, high wind speed, precipitation anomalies
and the fraction of burnable area.
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4 Discussion

A data-driven model developed on a monthly and 0.25◦ spa-
tial resolution was found suitable for fire danger probability
mapping in Fennoscandia, despite the region’s spatiotempo-
ral heterogeneity in hydroclimatological conditions. In the
following, we discuss the selected predictors, known chal-
lenges, the added value of a data-driven model and ways for-
ward.

4.1 Dominant predictors of Fennoscandian wildfires

The relatively large number of statistically dependent predic-
tors selected for the data-driven model illustrates the com-
plexity of the controlling mechanisms of fires. In the liter-
ature, a wildfire is often referred to as a compound hazard
as it is caused by the co-occurrence of several drivers, not
necessarily extreme themselves.

The dominant predictor for the data-driven model (both
training and test set) was the normalised anomaly of the volu-
metric soil water in soil layer 2 (swvl2_anomaly). The bivari-
ate plots point to the importance of dryness in the soil relative
to normal conditions for favourable fire conditions. Anoma-
lies in soil moisture are typically a concurrent or delayed re-
sponse to anomalies in precipitation and evapotranspiration,
with the delay depending on subsurface properties such as
soil characteristics and depth to the groundwater table. This
is reflected in a positive correlation between swvl2_anomaly
and the meteorological drought indices (SPI and SPEI). Soil
moisture has been found a better predictor for burned area
than precipitation anomalies in another boreal region Forkel
et al. (Baikal region; 2012), supporting our findings. Stud-
ies that report the SPI or SPEI as important predictors (e.g.
Gudmundsson et al., 2014) often do not include soil mois-
ture anomaly in their study. Our analysis for Fennoscandia
finds that soil moisture anomaly is preferred as a predictor
over the meteorological drought indices. This is likely due to
the direct influence of the soil moisture content on the wa-
ter uptake by plants and general drying of organic matter,
making the biomass more susceptible to combustion. Thus,
soil moisture may be considered an indicator of litter fuel
moisture conditions. Although swvl2_anomaly stands out as
a dominant predictor, the overall weak relationship between
this predictor and the fire danger probability as revealed by
the bivariate plot emphasises the importance of other predic-
tors in the data-driven model for Fennoscandia.

Monthly mean daily maximum temperature (tx_mean) and
volumetric soil water in the deepest soil layer (swvl4) have
the second and third highest test set permutation importance,
respectively. Together with anomalies in shallow volumetric
soil water (soil layer 1 or 2), these predictors were the most
dominant also in the additional experiments using a decision
tree and AdaBoost, instead of a random forest, as the ma-
chine learning algorithm. Including the NDVI as a potential
predictor still gives swvl2_anomaly as the dominant predic-

tor, with the NDVI as the second and swvl4 and tx_mean
as the fourth and fifth most important according to test set
permutation importance. The consistency in terms of predic-
tors chosen between the experiments emphasises the impor-
tance of these predictors in predicting fire danger probabil-
ities. Whereas tx_mean is the average of the highest daily
temperatures, affecting the general evaporative demand and
transpiration, swvl4 is related to slowly changing deep soil
moisture, which is important for water uptake by plants with
deep roots. Accordingly, each index has a separate role in
controlling the conditions favourable (or non-favourable) for
fires, roles that also differ from the role of a shallow-soil
moisture anomaly.

The creation of a data-driven model using the Norwegian
fire occurrence dataset as the target variable for the model
training gave a somewhat different selection of dominant pre-
dictors. A fewer number of predictors were selected, and
the highly correlated tx_max and tx_mean stood out as the
two most dominant predictors. We recognise three potential
reasons for the difference between this model and the origi-
nal model developed for Fennoscandia: a change in the tar-
get variable, study domain and period under investigation,
whereof the two latter follow from the first. The target vari-
able was based on 10-fold more fire occurrences for Norway
than what was available for the satellite-based dataset for
Fennoscandia. It is here worth noting the overall difference in
the size of the fires recorded in each database, with generally
larger fires being represented in satellite-based burned area
products rather than in the Norwegian dataset. Thus, the pre-
dictors found for the Norwegian target variable may be more
important for small fires, which is typically not included in
the satellite-based dataset. Moreover, the difference may re-
flect different dominant controls of fires in Norway as com-
pared to the remaining part of Fennoscandia and in particular
as compared to the areas with the highest density of fire oc-
currences in the satellite-based dataset. There is also a likely
possibility that the reanalysis data do not represent the vol-
umetric soil water conditions as well in Norway compared
to other parts of Fennoscandia. The difference in period used
in the model development should also be considered. In the
Norwegian model set-up, only two years were used for train-
ing and two years for evaluation. These years may not reflect
the longer period used for Fennoscandia. In general, more
trust is given to models trained on longer time series, en-
abling a better representation of the variability in hydrome-
teorological conditions.

Several of the potential predictors derived from the ERA5-
Land reanalysis (i.e. wind speed, snow cover and soil mois-
ture) were selected as final predictors. This confirms their
relevance for predicting wildfires, despite the fact that they
combine observations with modelled data. An advantage of
reanalysis products over observational datasets is that they
are more closely linked to climate model outputs. Thus, the
inclusion of reanalysis-based indices in the final model for
predicting observed fires points to the prospective of using
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modelled data for future climate projections. In addition, we
found that all ERA5 wind-related predictors were selected,
while it has been assumed that wind would have a limited im-
pact at these spatial scales (e.g. Aldersley et al., 2011). The
wind-related predictors may have been selected due to the
wind’s role in drying of the ground and vegetation by increas-
ing evapotranspiration, its role in spreading the fire to a size
recognisable for the satellite, and its indirect role through the
link between wind and dominant weather patterns. In short,
the selection of ERA5-derived predictors confirms that the
use of reanalysis products is useful for wildfire prediction by
data-driven model approaches.

4.2 Model transferability at the cost of additional
potential predictors

Ensuring transferability of the data-driven model to climate
projections comes at a cost of limiting the type of potential
predictors. In the case of predicting fire danger in a station-
ary climate, several additional predictors are expected to im-
prove the prediction accuracy. Two such predictors are lati-
tude and month of the year, which could guide the model to
differentiate between important hydrometeorological predic-
tors depending on the season. For example, it is expected that
SPEI3 has a different effect on fire danger when the accumu-
lation period covers a snow accumulation period as compared
to the growing season. However, such predictors are not suit-
able for a non-stationary climate as the snow and growing
season characteristics are expected to change, e.g. the timing
and duration, and the relation to hydrometeorological indices
may thus no longer be valid.

Remotely sensed vegetation characteristics have proved
useful for predicting burned area on a global scale (Kuhn-
Régnier et al., 2021; Forkel et al., 2017). One such predic-
tor is the NDVI, which improved the model to some degree
when tested in a separate analysis. Other time-varying veg-
etation or fuel volume indices are expected to further im-
prove the prediction accuracy. However, such data are not al-
ways available as continuous spatiotemporal fields but cover
a smaller area over a limited period of time. Climate mod-
els that are coupled with DGVMs allow for a wider selection
of dynamic vegetation predictors. Vegetation characteristics
are found to have a strong relationship with burned area in
fire-prone ecosystems (Forkel et al., 2019), and we antici-
pate that the inclusion of vegetation characteristics available
in DGVMs would have improved our model for Fennoscan-
dia.

Other predictors that are expected to improve the fire pre-
diction are predictors related to sources of ignition. Light-
ning, sparks from trains and humans are all important fire
starters, and lightning data as well as maps of infrastructure
and closeness to human settlement are therefore expected to
improve the model predictions. A link between human set-
tlement and fires is not clear from the satellite-based fire
occurrence dataset (Fig. 2b). However, the Norwegian fire

occurrence dataset (Fig. 3b) suggests a link between wild-
fire occurrences and population centres. This may partly be
due to humans and human infrastructure being fire starters
and partly reflecting an overlap between human settlement in
Norway and burnable areas. In addition, the inclusion of ig-
nition sources would have made the model more in line with
the target variable (fire occurrences), as the target variable
implicitly includes the ignition aspect.

A model constructed for integration with a climate model
used for estimating fire probability under different climate
scenarios is different from a model constructed for monitor-
ing/forecasting near-real-time fire occurrences. The two have
different application purposes. A model constructed for mon-
itoring/forecasting near-real-time fire occurrences can give
a prediction of higher accuracy for short-term preparedness,
whereas fire models applicable for use in climate projections
are valuable for long-term planning and mitigation strategies.

4.3 The effect of the type of fire data chosen as the
target variable

In this study, we selected a satellite-based fire occurrence
dataset as the target variable for the main analysis and a
national fire occurrence record as an alternative target vari-
able for comparison. The lack of small fires in the satellite-
based dataset was particularly notable when compared with
the Norwegian dataset for April–September 2018 (Fig. 3).
During 2018, Norway experienced a record high number of
grass and forest fires (DSB, 2019). However, many of these
fires were small and rather quickly extinguished and thus not
captured by the satellite. The FWI outperformed the data-
driven model trained on the satellite-based target variable in
predicting the Norwegian fire occurrence dataset. This was
not surprising, as the data-driven model was not trained on
the Norwegian dataset; small fires in general; and for most of
Norway, no fires at all. A data-driven model trained on small
fires in Norway considerably improved the prediction ability,
despite only two years being available for model training.

It is not given which of the data sources for fire occurrence
is better to use as the target variable. A benefit of national
records is that they typically have registered most fire occur-
rences, including small fires. However, the recording proce-
dures and information logged may have changed over time
and vary from country to country (e.g. Aalto and Venäläinen,
2021). In addition, there are large differences among coun-
tries in the coverage of historical fire recording, as well as
the availability of such datasets, limiting transnational stud-
ies. Satellite-based burned area products are typically readily
available, are consistent across country boundaries and exist
for longer periods than what can be found for many national
records. They also have a global spatial coverage, which al-
lows for a large-scale application of the proposed methodol-
ogy, such as an analysis of different drivers in different re-
gions.
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As an alternative to burned area, satellite-based active-fire
products can be used to construct a fire occurrence dataset.
Active-fire products are capable of detecting smaller fires
compared to standard burned area products (Wooster et al.,
2021; Oliva and Schroeder, 2015). Whereas small fire de-
tection is improved in many regions by using active-fire
products, detection errors (i.e. false fires) are a problem in
some regions and seasons (Wooster et al., 2021; Zhang et al.,
2018). The active-fire products detect burning at the time of
overpass given relatively cloud-free conditions, which can
be a problem for regions within Fennoscandia that are sel-
dom cloud-free. We chose to apply the burned area product
because it is considered less sensitive to cloud cover. Fur-
ther, the burned area product has a more direct relevance to
climate-relevant consequences, such as albedo and ecosys-
tem functioning. In addition, an independent target dataset
was included for comparison, i.e. a local fire record of Nor-
way.

Whether or not the lack of small fires in the satellite-based
products is a limitation or not depends on the objective. For
example for forecasting, monitoring or projections used for
fire preparedness planning in Norway, capturing small fires
is vital as small fires have the potential to develop into large
fires with devastating impacts. It is worth noting that small
fires are not necessarily small following natural conditions
but may be so following the wildfire preparedness and sup-
pression in the area. Thus, predicting small and large fires
may be of similar importance for a region. However, fires
that stay small are of less importance in terms of large-scale
changes in emissions, albedo and ecosystem functioning.

4.4 Fire danger probability mapping

To our knowledge, our study is the first in which a data-
driven model is developed for Fennoscandian wildfire dan-
ger, by means of training on transnational datasets derived
from satellite imagery over multiple years at a sub-yearly
time step. The spatial and temporal resolution of the data-
driven model presented in this paper takes into account
the variable hydrometeorology over the region, seasons and
years, which is necessary in order to make use of the model
to produce fire danger probability maps.

The present study confirms that both the FWI and our data-
driven model are skilful models for fire danger probability
mapping in Fennoscandia. The ROC-AUC scores were rela-
tively high for both, especially given the lack of ignition in
both models. The good performance was reflected in the gen-
eral ability of the fire danger probability maps to predict high
fire danger in regions where fires occurred. High fire danger
probabilities are also found in data points without fire oc-
currence. This was expected, as ignition is needed for a fire
to occur. The varying grid-wise rank correlation between the
data-driven model and each of the two FWI metrics (Fig. 9)
underscores that fire danger probability maps produced by
the two different approaches are different despite their sim-

ilar and skilful overall performance. An interesting spatial
pattern is the notable difference in correlation closely follow-
ing the Russian–Finnish border, with the higher correlations
found in Russia. A likely reason for this is the fact that the
data-driven model is better tuned to Russian conditions as
compared to Finnish conditions due to the relatively higher
number of fires in Russia (Fig. 2), whereas the FWI perfor-
mance is independent of the fire occurrence density. The spa-
tially varying correlation between the FWI and data-driven
model highlights the benefit of including different types of
models to improve our knowledge of the uncertainties re-
lated to fire danger. Thus, we do not suggest replacing current
process-based models with data-driven models but recom-
mend using them jointly in assessments of fire occurrences
(or probability thereof).

4.5 Added value of a data-driven model and ways
forward

A data-driven (statistical/machine learning) model differs
fundamentally from a process-based global fire model or
fire weather index. Process-based models use established or
assumed relationships between various indices and fire oc-
currence to construct fire danger or fire occurrence models.
While a data-driven model is also based on process under-
standing in the selection of indices tested as potential predic-
tors, it differs by explicitly accounting for fire occurrences in
the construction of the model.

There are several benefits of a data-driven approach for
mapping fire danger probability. First, a data-driven model
can be applied as an additional and independent model, as
already mentioned in Sect. 4.4. It can either be fire danger
probability mapping as exemplified in this study or be com-
bined with ignition and/or spread, for example in a similar
way as is done in process-based global fire models. Depend-
ing on the construction of the model, it can be applied jointly
with both fire weather indices and process-based global fire
models. Assessments using multiple models of fundamen-
tally different construction can improve the trust in the pre-
dictions and the knowledge of the prediction uncertainties.

Second, a data-driven approach can automatically sort out
important predictors and omit the remaining ones. In this
way, they can provide useful new insight into which indices
one should consider when analysing the probability of fire
occurrence. For example, soil moisture data are usually not
considered in fire weather indices such as the FWI, whereas
shallow-soil moisture anomaly was found the most dominant
predictor by the data-driven model for Fennoscandia. New
insight into relevant predictors can help improve the process-
based models. One can also investigate the important predic-
tors’ sensitivity to spatial and temporal resolutions as long as
the potential predictors and target variable allow it. A finer
spatiotemporal resolution may reveal other (fine-scale) in-
dices, such as altitude and local wind, as dominant predic-
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tors, as compared to a coarser resolution where such indices
are averaged out.

A benefit of a data-driven model as developed here is
that the approach can be transferred to other regions. This
is in opposition to the FWI, which is developed for boreal
forests and should be used with caution when applied for
other biomes (Bedia et al., 2018; Dowdy et al., 2009). In
this work we used a satellite-derived fire dataset and globally
available hydrometeorological variables, which can all be ob-
tained for other regions around the world. This would only
require additional training on the local settings but would not
require a new workflow or model implementation. This re-
gional transferability can be combined with the flexibility of
implementing different sets of potential predictors and tar-
get variables, allowing for regional and application-specific
analysis. This was exemplified by the present study, in which
a data-driven approach was applied for predicting fire dan-
ger probabilities on an understudied region of the boreal re-
gion with highly varying hydroclimatology. A notable im-
provement was found when using the local fire occurrence
dataset to train the model, illustrating the potential of high-
performing data-driven models adapted to local conditions,
when high-quality target data are available. The difference in
the selection of dominant predictors between the data-driven
model constructed for Fennoscandia and Norway exempli-
fied that certain relationships are more important in some re-
gions than others. The flexibility in spatial domain and pre-
dictors also allows for large-scale analysis, more in line with
process-based global fire models in terms of constructing re-
gionally independent relationships between drivers and fires.

By limiting the potential predictors to those available in
most climate models when developing the data-driven model,
the final model allows for analyses of future changes in fire
danger probabilities given different climate scenarios. Al-
though outside of the scope of this study, applying our model
in future climate scenarios can give valuable new insight
as what to expect of changes in fire danger probability in
Fennoscandia under future climate scenarios.

In summary, our study has demonstrated the value of a
data-driven model as an independent model for constructing
monthly fire danger probability maps and as a tool for iden-
tifying dominant predictors. Data-driven models have a high
degree of flexibility, making them suitable for adaptation to
other regions and applications. Thus, we regard data-driven
models as valuable contributions in a wide range of applica-
tions related to fire monitoring, forecasting and projections.

5 Conclusions

The data-driven approach was found suitable for the identi-
fication of dominant predictors for fire occurrence and con-
struction of spatiotemporally resolved fire danger probabil-
ity maps in Fennoscandia. Anomalies in the volumetric soil
water in soil layer 2 (7–28 cm) were found to be the domi-

nant predictor, followed by the monthly mean of daily max-
imum temperature and volumetric soil water in the deepest
soil layer (layer 4; 100–289 cm). Other selected predictors
were related to wind speed, precipitation, snow cover and
fraction of burnable area. The selected predictors emphasise
the importance of other predictors than weather alone, as has
traditionally been used for fire weather indices. In addition,
the variation in the type of predictors emphasises the com-
plexity in driving mechanisms for fire occurrence and the
value of a bottom-up approach to automatically identify the
most important predictors.

The following concludes our research questions presented
in the Introduction:

1. The data-driven model for Fennoscandia was compara-
ble to (and slightly outperformed) the Canadian For-
est Fire Weather Index (FWI), which was developed
for similar biomes and latitudes as Fennoscandia. The
temporal rank correlations of the fire danger probabil-
ity maps produced by the two approaches showed large
spatial variability, pointing to the value of including
more than one approach when mapping fire danger.

2. The data-driven model performance decreased and was
outperformed by the FWI when used to predict a lo-
cal fire occurrence dataset for Norway. This can be ex-
plained by the lack of fire occurrences in Norway in the
satellite-based target variable used for model training.

3. When using the Norwegian fire occurrence dataset as
the target variable in the training, the model perfor-
mance increased and reached a similar performance
level as for the FWI, despite only two years being avail-
able for the model training.

4. The random forest algorithm used in the main analy-
sis outperformed the simpler (decision tree) and more
sophisticated (AdaBoost) machine learning algorithm.
The random forest algorithm was therefore found suit-
able for the objective of this study. Nevertheless, we ac-
knowledge the potential of yet other machine learning
algorithms not tested here, to improve the predictions
further.

5. There was a minor decrease in the model performance
when the NDVI was not included as a potential predic-
tor. Thus, most of the effect of the NDVI for fire occur-
rence is compensated for by other predictors. In a moni-
toring or forecasting situation, where the transferability
to climate models is not important, the inclusion of the
NDVI can be useful.

The selection of potential predictors was limited to pre-
dictors available in most climate models and transferable to
different climate scenarios. Accordingly, our model allows
for analyses of future changes in fire occurrence characteris-
tics, which would be a natural next step. This can preferably
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be done jointly with process-based approaches, in order to
evaluate the agreement and spread among the different types
of models. The approach presented in this study can also be
adapted to other regions and with the inclusion of other po-
tential predictors.

Finally, we want to make a general remark on the impor-
tance of user-made choices in data-driven approaches. Even
though the machine learning (or statistical) algorithm in itself
is automated, the model construction and estimated perfor-
mance can be highly sensitive to user-made choices. Exam-
ples include choices of the machine learning algorithm and
training procedure; selection of the target variable and poten-
tial predictors, predictor subset, and evaluation criterion (in
particular in the case of extreme imbalance); and the impor-
tance of testing the model on a dataset independent of the
model construction. In the present study, we aimed to make
all user-made choices transparent and justified, and we tested
for alternative options for several of the choices. In conclu-
sion, a data-driven approach has proven an important tool to
identify dominant predictors of fire occurrence and as an al-
ternative fire danger probability model to already established
process-based models, as this study demonstrates.

Code availability. Code is available upon reasonable
request to the corresponding author. The command
line Climate Data Operator programme (CDO;
https://doi.org/10.5281/zenodo.3991595, Schulzweida et al.,
2019; Schulzweida, 2021) and the Python package xarray
(https://doi.org/10.5281/zenodo.5648431, Hoyer et al., 2021;
Hoyer and Hamman, 2017) were used for processing the NetCDF
files. SPI and SPEI calculations were performed using the
SCI package in R (https://cran.r-project.org/package=SCI, last
access: 9 January 2023; Gudmundsson and Stagge, 2016).
The remaining calculations and visualisations were performed
using Python: NumPy (https://github.com/numpy/numpy, last
access: 5 January 2023; NumPy project, 2021; Harris et al.,
2020) and pandas (https://doi.org/10.5281/zenodo.5203279,
Reback et al., 2021) for data handling; scikit-learn
(https://doi.org/10.5281/zenodo.4725836, Grisel et al.,
2021; Pedregosa et al., 2011) for the construction, train-
ing and evaluation of the data-driven models; SciPy
(https://doi.org/10.5281/zenodo.4635380, Virtanen et al.,
2021, 2020) for computation of the correlations between pre-
dictors; xskillscore (https://doi.org/10.5281/zenodo.5173153,
Bell et al., 2021) for calculating the correlation effective
p value between the data-driven models and FWI metrics;
and Matplotlib (https://doi.org/10.5281/zenodo.5194481,
Caswell et al., 2021; Hunter, 2007), cartopy
(https://doi.org/10.5281/zenodo.1490296, Elson et
al., 2018; Met Office, 2010–2015) and seaborn
(https://doi.org/10.5281/zenodo.5205191, Waskom et al., 2021;
Waskom, 2021) for the visualisations of the results.

Data availability. All data used are available online.
E-OBS (https://doi.org/10.24381/cds.151d3ec6, EU-
FP6 project UERRA et al., 2021), ERA5-Land (https:
//doi.org/10.24381/cds.e2161bac, Muñoz Sabater, 2019a, and
https://doi.org/10.24381/cds.68d2bb30, Muñoz Sabater, 2019b)
and v5.1.1cds (https://doi.org/10.24381/cds.f333cf85, ESA-CCI,
2020) are available at the Copernicus Climate Change Service
(C3S) Climate Data Store. NDVI data are available at NASA’s
Land Processes Distributed Active Archive Center (LP DAAC;
https://doi.org/10.5067/MODIS/MOD13C2.006, Didan, 2015). The
Norwegian wildfire record is available from the Norwegian Direc-
torate for Civil Protection (DSB; https://www.brannstatistikk.no/,
last access: 25 November 2020, DSB, 2020). Note that the DSB
web page is in Norwegian. Data are freely available, and in case of
any questions regarding the data, please use the contact information
provided by the web page.
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