Articles | Volume 23, issue 12
https://doi.org/10.5194/nhess-23-3823-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-3823-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
Division of Atmospheric Sciences and Global Change, Pacific Northwest National Laboratory, Richland, WA 99354, USA
Division of Atmospheric Sciences and Global Change, Pacific Northwest National Laboratory, Richland, WA 99354, USA
Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
Division of Atmospheric Sciences and Global Change, Pacific Northwest National Laboratory, Richland, WA 99354, USA
Related authors
Jingyu Wang, Xianfeng Wang, Edward Park, and Yun Lin
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-100, https://doi.org/10.5194/nhess-2023-100, 2023
Manuscript not accepted for further review
Short summary
Short summary
Building upon the findings in a preceding study by the authors (Wang et al., 2023), this brief communication successfully applied the soil moisture-based tornado damage track detection method to the 24–25 March 2023 Mississippi outbreak. This study also found that the notable discrepancies between spotter reports and ground survey assessments at the tornado early stage can be reconciled using the new method.
Enner Alcântara, José A. Marengo, José Mantovani, Luciana R. Londe, Rachel Lau Yu San, Edward Park, Yunung Nina Lin, Jingyu Wang, Tatiana Mendes, Ana Paula Cunha, Luana Pampuch, Marcelo Seluchi, Silvio Simões, Luz Adriana Cuartas, Demerval Goncalves, Klécia Massi, Regina Alvalá, Osvaldo Moraes, Carlos Souza Filho, Rodolfo Mendes, and Carlos Nobre
Nat. Hazards Earth Syst. Sci., 23, 1157–1175, https://doi.org/10.5194/nhess-23-1157-2023, https://doi.org/10.5194/nhess-23-1157-2023, 2023
Short summary
Short summary
The municipality of Petrópolis (approximately 305 687 inhabitants) is nestled in the mountains 68 km outside the city of Rio de Janeiro. On 15 February 2022, the city of Petrópolis in Rio de Janeiro, Brazil, received an unusually high volume of rain within 3 h (258 mm). This resulted in flash floods and subsequent landslides that caused 231 fatalities, the deadliest landslide disaster recorded in Petrópolis. This work shows how the disaster was triggered.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Jingyu Wang, Jiwen Fan, Robert A. Houze Jr., Stella R. Brodzik, Kai Zhang, Guang J. Zhang, and Po-Lun Ma
Geosci. Model Dev., 14, 719–734, https://doi.org/10.5194/gmd-14-719-2021, https://doi.org/10.5194/gmd-14-719-2021, 2021
Short summary
Short summary
This paper presents an evaluation of the E3SM model against NEXRAD radar observations for the warm seasons during 2014–2016. The COSP forward simulator package is implemented in the model to generate radar reflectivity, and the NEXRAD observations are coarsened to the model resolution for comparison. The model severely underestimates the reflectivity above 4 km. Sensitivity tests on the parameters from cumulus parameterization and cloud microphysics do not improve this model bias.
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data, 17, 3721–3740, https://doi.org/10.5194/essd-17-3721-2025, https://doi.org/10.5194/essd-17-3721-2025, 2025
Short summary
Short summary
We developed a high-resolution (4 km and hourly) observational derecho dataset over the United States east of the Rocky Mountains from 2004 to 2021 by using a mesoscale convective system dataset, bow echoes detected by a machine learning method, hourly gust speeds, and physically based identification criteria.
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024, https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
Short summary
Deep convection under various large-scale meteorological patterns (LSMPs) shows distinct precipitation features. In southeastern Texas, mesoscale convective systems (MCSs) contribute significantly to precipitation year-round, while isolated deep convection (IDC) is prominent in summer and fall. Self-organizing maps (SOMs) reveal convection can occur without large-scale lifting or moisture convergence. MCSs and IDC events have distinct life cycles influenced by specific LSMPs.
Jingyu Wang, Xianfeng Wang, Edward Park, and Yun Lin
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-100, https://doi.org/10.5194/nhess-2023-100, 2023
Manuscript not accepted for further review
Short summary
Short summary
Building upon the findings in a preceding study by the authors (Wang et al., 2023), this brief communication successfully applied the soil moisture-based tornado damage track detection method to the 24–25 March 2023 Mississippi outbreak. This study also found that the notable discrepancies between spotter reports and ground survey assessments at the tornado early stage can be reconciled using the new method.
Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang
Geosci. Model Dev., 16, 2753–2776, https://doi.org/10.5194/gmd-16-2753-2023, https://doi.org/10.5194/gmd-16-2753-2023, 2023
Short summary
Short summary
PyFLEXTRKR is a flexible atmospheric feature tracking framework with specific capabilities to track convective clouds from a variety of observations and model simulations. The package has a collection of multi-object identification algorithms and has been optimized for large datasets. This paper describes the algorithms and demonstrates applications for tracking deep convective cells and mesoscale convective systems from observations and model simulations at a wide range of scales.
Enner Alcântara, José A. Marengo, José Mantovani, Luciana R. Londe, Rachel Lau Yu San, Edward Park, Yunung Nina Lin, Jingyu Wang, Tatiana Mendes, Ana Paula Cunha, Luana Pampuch, Marcelo Seluchi, Silvio Simões, Luz Adriana Cuartas, Demerval Goncalves, Klécia Massi, Regina Alvalá, Osvaldo Moraes, Carlos Souza Filho, Rodolfo Mendes, and Carlos Nobre
Nat. Hazards Earth Syst. Sci., 23, 1157–1175, https://doi.org/10.5194/nhess-23-1157-2023, https://doi.org/10.5194/nhess-23-1157-2023, 2023
Short summary
Short summary
The municipality of Petrópolis (approximately 305 687 inhabitants) is nestled in the mountains 68 km outside the city of Rio de Janeiro. On 15 February 2022, the city of Petrópolis in Rio de Janeiro, Brazil, received an unusually high volume of rain within 3 h (258 mm). This resulted in flash floods and subsequent landslides that caused 231 fatalities, the deadliest landslide disaster recorded in Petrópolis. This work shows how the disaster was triggered.
Yun Lin, Jiwen Fan, Pengfei Li, Lai-yung Ruby Leung, Paul J. DeMott, Lexie Goldberger, Jennifer Comstock, Ying Liu, Jong-Hoon Jeong, and Jason Tomlinson
Atmos. Chem. Phys., 22, 6749–6771, https://doi.org/10.5194/acp-22-6749-2022, https://doi.org/10.5194/acp-22-6749-2022, 2022
Short summary
Short summary
How sea spray aerosols may affect cloud and precipitation over the region by acting as ice-nucleating particles (INPs) is unknown. We explored the effects of INPs from marine aerosols on orographic cloud and precipitation for an atmospheric river event observed during the 2015 ACAPEX field campaign. The marine INPs enhance the formation of ice and snow, leading to less shallow warm clouds but more mixed-phase and deep clouds. This work suggests models need to consider the impacts of marine INPs.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Yanda Zhang, Fangqun Yu, Gan Luo, Jiwen Fan, and Shuai Liu
Atmos. Chem. Phys., 21, 17433–17451, https://doi.org/10.5194/acp-21-17433-2021, https://doi.org/10.5194/acp-21-17433-2021, 2021
Short summary
Short summary
This paper explores the impacts of dust on summertime convective cloud and precipitation through a numerical experiment. The result indicates that the long-range-transported dust can notably affect the properties of convective cloud and precipitation by enhancing immersion freezing and invigorating convection. We also analyze the different dust effects predicted by the Morrison and SBM schemes, which are partially attributed to the saturation adjustment approach utilized in the bulk schemes.
Jianfeng Li, Zhe Feng, Yun Qian, and L. Ruby Leung
Earth Syst. Sci. Data, 13, 827–856, https://doi.org/10.5194/essd-13-827-2021, https://doi.org/10.5194/essd-13-827-2021, 2021
Short summary
Short summary
Deep convection has different properties at different scales. We develop a 4 km h−1 observational data product of mesoscale convective systems and isolated deep convection in the United States from 2004–2017. We find that both types of convective systems contribute significantly to precipitation east of the Rocky Mountains but with distinct spatiotemporal characteristics. The data product will be useful for observational analyses and model evaluations of convection events at different scales.
Yuwei Zhang, Jiwen Fan, Zhanqing Li, and Daniel Rosenfeld
Atmos. Chem. Phys., 21, 2363–2381, https://doi.org/10.5194/acp-21-2363-2021, https://doi.org/10.5194/acp-21-2363-2021, 2021
Short summary
Short summary
Impacts of anthropogenic aerosols on deep convective clouds (DCCs) and precipitation are examined using both the Morrison bulk and spectral bin microphysics (SBM) schemes. With the SBM scheme, anthropogenic aerosols notably invigorate convective intensity and precipitation, causing better agreement between the simulated DCCs and observations; this effect is absent with the Morrison scheme, mainly due to limitations of the saturation adjustment approach for droplet condensation and evaporation.
Jingyu Wang, Jiwen Fan, Robert A. Houze Jr., Stella R. Brodzik, Kai Zhang, Guang J. Zhang, and Po-Lun Ma
Geosci. Model Dev., 14, 719–734, https://doi.org/10.5194/gmd-14-719-2021, https://doi.org/10.5194/gmd-14-719-2021, 2021
Short summary
Short summary
This paper presents an evaluation of the E3SM model against NEXRAD radar observations for the warm seasons during 2014–2016. The COSP forward simulator package is implemented in the model to generate radar reflectivity, and the NEXRAD observations are coarsened to the model resolution for comparison. The model severely underestimates the reflectivity above 4 km. Sensitivity tests on the parameters from cumulus parameterization and cloud microphysics do not improve this model bias.
Cited articles
Allen, J. T. and Tippett, M. K.: The characteristics of United States hail reports: 1955–2014. Electron, J. Severe Storms Meteorol., 10, 1–31, https://doi.org/10.55599/ejssm.v10i3.60, 2015.
Allen, J. T., Tippett, M. K., and Sobel, A. H.: Influence of the El Nino/Southern Oscillation on tornado and hail frequency in the United States, Nat. Geosci., 8, 278–283, https://doi.org/10.1038/Ngeo2385, 2015.
Allen, J. T., Giammanco, I. M., Kumjian, M. R., Punge, H. J., Zhang, Q., Groenemeijer, P., Kunz, M., and Ortega, K.: Understanding hail in the Earth system, Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665, 2020.
Anderson-Frey, A. K., Richardson, Y. P., Dean, A. R., Thompson, R. L., and Smith, B. T.: Characteristics of Tornado Events and Warnings in the Southeastern United States, Weather Forecast., 34, 1017–1034, https://doi.org/10.1175/WAF-D-18-0211.1, 2019.
Ashley, W. S., Haberlie, A. M., and Strohm, J.: A Climatology of Quasi-Linear Convective Systems and Their Hazards in the United States, Weather Forecast., 34, 1605–1631, https://doi.org/10.1175/WAF-D-19-0014.1, 2019.
Baggett, C. F., Nardi, K. M., Childs, S. J., Zito, S. N., Barnes, E. A., and Maloney, E. D.: Skillful subseasonal forecasts of weekly tornado and hail activity using the Madden–Julian Oscillation, J. Geophys. Res.-Atmos., 123, 12661–12675, https://doi.org/10.1029/2018JD029059, 2018.
Barrett, B. S. and Gensini, V. A.: Variability of central United States April–May tornado day likelihood by phase of the Madden-Julian Oscillation, Geophys. Res. Lett., 40, 2790–2795, https://doi.org/10.1002/grl.50522, 2013.
Barrett, B. S. and Henley, B. N.: Intraseasonal Variability of Hail in the Contiguous United States: Relationship to the Madden–Julian Oscillation, Mon. Weather Rev., 143, 1086–1103, https://doi.org/10.1175/MWR-D-14-00257.1, 2015.
Blair, S. F., Laflin, J. M., Cavanaugh, D. E., Sanders, K. J., Currens, S. R., Pullin, J. I., Cooper, D. T., Deroche, D. R., Leighton, J. W., Fritchie, R. V., Mezeul II, M. J., Goudeau, B. T., Kreller, S. J., Bosco, J. J., Kelly, C. M., and Mallinson, H. M.: High-Resolution Hail Observations: Implications for NWS Warning Operations, Weather Forecast., 32, 1101–1119, https://doi.org/10.1175/WAF-D-16-0203.1, 2017.
Brotzge, J., Nelson, S. E., Thompson, R. L., and Smith, B. T.: Tornado probability of detection and lead time as a function of convective mode and environmental parameters, Weather Forecast., 28, 1261–1276, https://doi.org/10.1175/WAF-D-12-00119.1, 2013.
Burrows, D. A., Ferguson, C. R., Campbell, M. A., Xia, G., and Bosart, L. F.: An Objective Classification and Analysis of Upper-Level Coupling to the Great Plains Low-Level Jet over the Twentieth Century, J. Climate, 32, 7127–7152, https://doi.org/10.1175/JCLI-D-18-0891.1, 2019.
Chasteen, M. B. and Koch, S. E.: Multiscale Aspects of the 26–27 April 2011 Tornado Outbreak. Part I: Outbreak Chronology and Environmental Evolution, Mon. Weather Rev., 150, 175–201, https://doi.org/10.1175/MWR-D-21-0013.1, 2022a.
Chasteen, M. B. and Koch, S. E.: Multiscale Aspects of the 26–27 April 2011 Tornado Outbreak. Part II: Environmental Modifications and Upscale Feedbacks Arising from Latent Processes, Mon. Weather Rev., 150, 203–234, https://doi.org/10.1175/MWR-D-21-0014.1, 2022b.
Childs, S. J., Schumacher, R. S., and Allen, J. T.: Cold-Season Tornadoes: Climatological and Meteorological Insights, Weather Forecast., 33, 671–691, https://doi.org/10.1175/WAF-D-17-0120.1, 2018.
Cintineo, J. L., Smith, T. M., Lakshmanan, V., Brooks, H. E., and Ortega, K. L.: An objective high-resolution hail climatology of the contiguous United States, Weather Forecast., 27, 1235–1248, https://doi.org/10.1175/WAF-D-11-00151.1, 2012.
Craven, J. P., Brooks, H. E., and Hart, J. A.: Baseline climatology of sounding derived parameters associated with deep, moist convection, in 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 643–646, https://www.nssl.noaa.gov/users/brooks/public_html/papers/cravenbrooksnwa.pdf (last access: 20 May 2022), 2004.
Cui, W., Dong, X., Xi, B., and Feng, Z.: Climatology of Linear Mesoscale Convective System Morphology in the United States based on Random Forests Method, J. Climate, 34, 7257–7276, https://doi.org/10.1175/JCLI-D-20-0862.1, 2021.
Doswell, C. A. and Burgess, D. W.: On Some Issues of United States Tornado Climatology, Mon. Weather Rev., 116, 495–501, https://doi.org/10.1175/1520-0493(1988)116<0495:OSIOUS>2.0.CO;2, 1988.
Doswell, C. A., Brooks, H. E., and Kay, M. P.: Climatological Estimates of Daily Local Nontornadic Severe Thunderstorm Probability for the United States, Weather Forecast., 577–595, https://doi.org/10.1175/WAF866.1, 2005.
Duda, J. D. and Gallus Jr., W. A.: Spring and Summer Midwestern Severe Weather Reports in Supercells Compared to Other Morphologies, Weather Forecast., 25, 190–206, https://doi.org/10.1175/2009WAF2222338.1, 2010.
Fan, J., Wang, J., and Lin, Y.: Urbanization Enhances Tornado Potential: A Case Study, Front. Earth Sci., 11, 1148506, https://doi.org/10.3389/feart.2023.1148506, 2023.
Feng, Z.: HPSS archive: listing of /home/w/wang406/www/Publication/Wang2023NHESS/, NERSC [data set], https://portal.nersc.gov/archive/home/w/wang406/www/Publication/Wang2023NHESS (last access: 14 December 2023), 2019.
Feng, Z., Leung, L. R., Houze Jr., R. A., Hagos, S., Hardin, J., Yang, Q., Han, B., and Fan, J.: Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States, J. Adv. Model. Earth Syst., 10, 1470–1494, https://doi.org/10.1029/2018MS001305, 2018.
Feng, Z., Houze, R. A., Leung, L. R., Song, F., Hardin, J. C., Wang, J., Gustafson, W. I., and Homeyer, C. R.: Spatiotemporal Characteristics and Large-Scale Environments of Mesoscale Convective Systems East of the Rocky Mountains, J. Climate, 32, 7303–7328, https://doi.org/10.1175/JCLI-D-19-0137.1, 2019.
Feng, Z., Leung, L. R., Liu, N., Wang, J., Houze Jr., R. A., Li, J., Hardin, J. C., Chen, D., and Guo, J.: A Global High-Resolution Mesoscale Convective System Database Using Satellite-Derived Cloud Tops, Surface Precipitation, and Tracking, J. Geophys. Res.-Atmos., 126, e2020JD034202, https://doi.org/10.1029/2020JD034202, 2021.
Gallus, W. A., Snook, N. A., and Johnson, E. V.: Spring and Summer Severe Weather Reports over the Midwest as a Function of Convective Mode: A Preliminary Study, Weather Forecast., 23, 101–113, https://doi.org/10.1175/2007WAF2006120.1, 2008.
Gensini, V. A. and Allen, J. T.: U.S. hail frequency and the global wind oscillation, Geophys. Res. Lett., 45, 1611–1620, https://doi.org/10.1002/2017GL076822, 2018.
Gensini, V. A. and Marinaro, A.: Tornado frequency in the United States related to global relative angular momentum, Mon. Weather Rev., 144, 801–810, https://doi.org/10.1175/MWR-D-15-0289.1, 2016.
Grams, J. S., Gallus Jr., W. A., Wharton, L. S., Koch, S. E., Loughe, A., and Ebert E. E.: The use of a modified Ebert–McBride technique to evaluate mesoscale model QPF as a function of convective system morphology during IHOP 2002, Weather Forecast., 21, 288–306, https://doi.org/10.1175/WAF918.1, 2006.
Guastini, C. T. and Bosart, L. F.: Analysis of a progressive derecho climatology and associated formation environments, Mon. Weather Rev., 144, 1363–1382, https://doi.org/10.1175/MWR-D-15-0256.1, 2016.
Haberlie, A. M. and Ashley, W. S.: A Method for Identifying Midlatitude Mesoscale Convective Systems in Radar Mosaics. Part I: Segmentation and Classification, J. Appl. Meteorol. Clim., 57, 1575–1598, https://doi.org/10.1175/JAMC-D-17-0293.1, 2018a.
Haberlie, A. M. and Ashley, W. S.: A method for identifying midlatitude mesoscale convective systems in radar mosaics. Part II: Tracking, J. Appl. Meteorol. Clim., 57, 1599–1621, https://doi.org/10.1175/JAMC-D-17-0294.1, 2018b.
Haberlie, A. M. and Ashley, W. S.: Climatological Representation of Mesoscale Convective Systems in a Dynamically Downscaled Climate Simulation, Int. J. Climatol., 39, 1144–1153, https://doi.org/10.1002/joc.5880, 2019.
Holton, J. R.: An introduction to dynamic meteorology, Elsevier Academic Press, Burlington, MA, 535 pp., https://doi.org/10.1119/1.1987371, 2004.
Houze, R. A., Smull, B. F., and Dodge, P.: Mesoscale Organization of Springtime Rainstorms in Oklahoma, Mon. Weather Rev., 118, 613–654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2, 1990.
Houze, R. A., Rasmussen, K. L., Zuluaga, M. D., and Brodzik, S. R.: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite, Rev. Geophys., 53, 994–1021, https://doi.org/10.1002/2015RG000488, 2015.
Houze Jr., R. A.: Mesoscale convective systems, Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150, 2004.
Houze Jr., R. A.: 100 Years of Research on Mesoscale Convective Systems, Meteorol. Monogr., 59, 17.1–17.54, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1, 2018.
Hu, H., Feng, Z., and Leung, L. R.: Quantifying Flood Frequency Associated with Clustered Mesoscale Convective Systems in the United States, J. Hydrometeorol., 23, 1685–1703, https://doi.org/10.1175/JHM-D-22-0038.1, 2022.
Hu, H. C., Feng, Z., and Leung, L. Y. R.: Linking Flood Frequency With Mesoscale Convective Systems in the US, Geophys. Res. Lett., 48, e2021GL092546, https://doi.org/10.1029/2021GL092546, 2021.
Jeong, J., Fan, F., Homeyer, C. R., and Hou, Z.: Understanding Hailstone Temporal Variability and Contributing Factors over the U.S. Southern Great Plains, J. Climate, 33, 3947–3966, https://doi.org/10.1175/JCLI-D-19-0606.1, 2020.
Jeong, J.-H., Fan, J. W., and Homeyer, C. R.: Spatial and temporal trends and variabilities of hailstones in the United States Northern Great Plains and their possible attributions, J. Climate, 34, 6819–6840, https://doi.org/10.1175/Jcli-D-20-0245.1, 2021.
Johns, R. H.: A synoptic climatology of northwest-flow severe weather outbreaks. Part II: Meteorological parameters and synoptic patterns, Mon. Weather Rev., 112, 449–464, https://doi.org/10.1175/1520-0493(1984)112<0449:ASCONF>2.0.CO;2, 1984.
Kelly, D. L., Schaefer, J. T., and Doswell III, C. A.: Climatology of Nontornadic Severe Thunderstorm Events in the United States, Mon. Weather Rev., 113, 1997–2014, https://doi.org/10.1175/1520-0493(1985)113<1997:CONSTE>2.0.CO;2, 1985.
Kennedy, P. C. and Detwiler, A. G.: A case study of the origin of hail in a multicell thunderstorm using in situ aircraft and polarimetric radar data, J. Appl. Meteorol., 42, 1679–1690, https://doi.org/10.1175/1520-0450(2003)042<1679:ACSOTO>2.0.CO;2, 2003.
Knupp, K. R., Murphy, T. A., Coleman, T. A., Wade, R. A., Mullins, S. A., Schultz, C. J., Schultz, E. V., Carey, L., Sherrer, A., McCaul Jr., E. W., Carcione, B., Latimer, S., Kula, A., Laws, K., Marsh, P. T., and Klockow, K.: Meteorological overview of the devastating 27 April 2011 tornado outbreak, B. Am. Meteorol. Soc., 95, 1041–1062, https://doi.org/10.1175/bams-d-11-00229.1, 2014.
Lee, B. D. and Wilhelmson, R. B.: The numerical simulation of non-supercell tornadogenesis. Part II: Evolution of a family of tornadoes along a weak outflow boundary, J. Atmos. Sci., 54, 2387–2415, 1997.
Lepore, C., Tippett, M. K., and Allen, J. T.: ENSO-based probabilistic forecasts of March–May U.S. tornado and hail activity, Geophys. Res. Lett., 44, 9093–9101, https://doi.org/10.1002/2017gl074781, 2017.
Li, J., Feng, Z., Qian, Y., and Leung, L. R.: A high-resolution unified observational data product of mesoscale convective systems and isolated deep convection in the United States for 2004–2017, Earth Syst. Sci. Data, 13, 827–856, https://doi.org/10.5194/essd-13-827-2021, 2021.
Lukens, K. E., Berbery, E. H., and Hodges, K. I.: The imprint of strong-storm tracks on winter weather in North America, J. Climate, 31, 2057–2074, https://doi.org/10.1175/JCLI-D-17-0420.1, 2018.
Maddox, R. A., Chappell, C. F., and Hoxit, L. R.: Synoptic and Meso-α Scale Aspects of Flash Flood Events, B. Am. Meteorol. Soc., 60, 115–123, https://doi.org/10.1175/1520-0477-60.2.115, 1979.
Markowski, P. M., Rasmussen, E. N., and Straka, J. M.: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95, Weather Forecast., 13, 852–859, https://doi.org/10.1175/1520-0434(1998)013<0852:TOOTIS>2.0.CO;2, 1998.
Molthan, A. L., Case, J. L., Dembek, S. R., Jedlovec, G. J., and Lapenta, W. M.: The Super Tuesday outbreak: Forecast sensitivities to single-moment microphysics schemes. Preprints, in: 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., https://ams.confex.com/ams/pdfpapers/141747.pdf (last access: 20 May 2022), 2008.
Moore, T. W.: Annual and seasonal tornado activity in the United States and the global wind oscillation, Clim. Dynam., 50, 4323–4334, https://doi.org/10.1007/s00382-017-3877-5, 2018.
Miller, P. W. and Mote, T. L.: Standardizing the Definition of a “Pulse” Thunderstorm, B. Am. Meteorol. Soc., 98, 905–913, https://doi.org/10.1175/BAMS-D-16-0064.1, 2017.
Moller, A. R., Doswell, C. A., Foster, M. P., and Woodall G. R.: The Operational Recognition of Supercell Thunderstorm Environments and Storm Structures, Weather Forecast., 9, 327–347, https://doi.org/10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2, 1994.
Munich Re: Natural Catastrophes 2015 Analyses, Assessments, Positions, https://reliefweb.int/report/world/natural-catastrophes-2013-analyses-assessments-positions (last access: 20 May 2022), 2016.
Murphy, A. M., Homeyer, C. R., and Allen, K. Q.: Development and investigation of gridrad-severe, a multi-year severe event radar dataset, Mon. Weather Rev., 151, 2257–2277, https://doi.org/10.1175/MWR-D-23-0017.1, 2023.
National Weather Service: National Weather Service Instruction 10-1605, https://www.nws.noaa.gov/directives/sym/pd01016005curr.pdf (last access: 1 June 2023), 2021.
NCEI: Storm events database, https://www.ncdc.noaa.gov/stormevents/ftp.jsp (last access: 20 May 2022), 2023.
Nelson, S. P.: The hybrid multicellular–supercellular storm – an efficient hail producer. Part II. General characteristics and implications for hail growth, J. Atmos. Sci., 44, 2060–2073, https://doi.org/10.1175/1520-0469(1987)044<2060:THMSEH>2.0.CO;2, 1987.
Nielsen, E. R. and Schumacher, R. S.: Dynamical insights into extreme short-term precipitation associated with supercells and mesovortices, J. Atmos. Sci., 75, 2983–3009, https://doi.org/10.1175/JAS-D-17-0385.1, 2018.
Nielsen, E. R. and Schumacher, R. S.: Dynamical mechanisms supporting extreme rainfall accumulations in the Houston “Tax Day” 2016 flood, Mon. Weather Rev., 148, 83–109, https://doi.org/10.1175/MWR-D-19-0206.1, 2020.
Parker, M. D. and Johnson, R. H.: Organizational modes of midlatitude mesoscale convective systems, Mon. Weather Rev., 128, 3413–3436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2, 2000.
Prein, A. F. and Holland, G. J.: Global estimates of damaging hail hazard, Weather Clim. Extrem., 22, 10–23, https://doi.org/10.1016/j.wace.2018.10.004, 2018.
Rasmussen, E. N.: Refined Supercell and Tornado Forecast Parameters, Weather Forecast., 18, 530–535, https://doi.org/10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2, 2003.
Rasmussen, E. N. and Blanchard, D. O.: A Baseline Climatology of Sounding-Derived Supercell andTornado Forecast Parameters, Weather Forecast., 13, 1148–1164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2, 1998.
Schaefer, J. T., Levit, J. J., Weiss, S. J., and McCarthy, D. W.: The frequency of large hail over the contiguous United States, in: 14th Conf. on Applied Meteorology, Seattle, WA, Amer. Meteor. Soc., https://ams.confex.com/ams/pdfpapers/69834.pdf (last access: 20 May 2022), 2004.
Schoen, J. and Ashley, W. S.: A climatology of fatal convective wind events by storm type, Weather Forecast., 26, 109–121, https://doi.org/10.1175/2010WAF2222428.1, 2011.
Schumacher, R. S.: Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems, J. Atmos. Sci., 66, 1543–1568, https://doi.org/10.1175/2008JAS2856.1, 2009.
Schumacher, R. S. and Rasmussen, K. L.: The formation, character and changing nature of mesoscale convective systems, Nat. Rev. Earth Environ., 1, 300–314, https://doi.org/10.1038/s43017-020-0057-7, 2020.
Smith, B. T., Thompson, R. L., Grams, J. S., Broyles, C., and Brooks, H. E.: Convective Modes for Significant Severe Thunderstorms in the Contiguous United States. Part I: Storm Classification and Climatology, Weather Forecast., 27, 1114–1135, https://doi.org/10.1175/WAF-D-11-00115.1, 2012. '
Song, F., Feng, Z., Leung, L. R., Houze Jr, R. A., Wang, J., Hardin, J., and Homeyer, C. R.: Contrasting Spring and Summer Large-Scale Environments Associated with Mesoscale Convective Systems over the U.S. Great Plains, J. Climate, 32, 6749–6767, https://doi.org/10.1175/JCLI-D-18-0839.1, 2019.
Starzec, M., Homeyer, C. R., and Mullendore, G. L.: Storm Labeling in Three Dimensions (SL3D): A Volumetric Radar Echo and Dual-Polarization Updraft Classification Algorithm, Mon. Weather Rev., 145, 1127–1145, https://doi.org/10.1175/MWR-D-16-0089.1, 2017.
Thompson, R. L., Smith, B. T., Grams, J. S., Dean, A. R., and Broyles, C.: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments, Weather Forecast., 27, 1136–1154, https://doi.org/10.1175/WAF-D-11-00116.1, 2012.
Trapp, R. J., Tessendorf, S. A., Godfrey, E. S., and Brooks, H. E.: Tornadoes from Squall Lines and Bow Echoes. Part I: Climatological Distribution, Weather Forecast., 20, 23–34, https://doi.org/10.1175/WAF-835.1, 2005.
Trapp, R. J., Wheatley, D. M., Atkins, N. T., Przybylinski, R. W., and Wolf, R.: Buyer Beware: Some Words of Caution on the Use of Severe Wind Reports in Postevent Assessment and Research, Weather Forecast., 21, 408–415, https://doi.org/10.1175/WAF938.1, 2006.
Verbout, S. M., Brooks, H. E., Leslie, L. M., and Schultz, D. M.: Evolution of the U.S. Tornado Database: 1954–2003, Weather Forecast., 21, 86–93, https://doi.org/10.1175/WAF910.1, 2006.
Wang, J., Houze Jr., R. A., Fan, J., Brodzik, S. R., Feng, Z., and Hardin, J. C.: The detection of mesoscale convective systems by the GPM Ku-band spaceborne radar, J. Meteorol. Soc. Jpn., 97, 1059–1073, https://doi.org/10.2151/jmsj.2019-058, 2019a.
Wang, J., Dong, X., Kennedy, A., Hagenhoff, B., and Xi, B.: A Regime-Based Evaluation of Southern and Northern Great Plains Warm-Season Precipitation Events in WRF, Weather Forecast., 34, 805–831, https://doi.org/10.1175/WAF-D-19-0025.1, 2019b.
Whittaker, L. M. and Horn, L. H.: Northern Hemisphere extratropical cyclone activity for four mid-season months, J. Climatol., 4, 297–310, https://doi.org/10.1002/joc.3370040307, 1984.
Wurman, J., Alexander, C., Robinson, P., and Richardson, Y.: Low-Level Winds in Tornadoes and Potential Catastrophic Tornado Impacts in Urban Areas, B. Am. Meteorol. Soc., 88, 31–46, https://doi.org/10.1175/BAMS-88-1-31, 2007.
Short summary
Hail and tornadoes are devastating hazards responsible for significant property damage and economic losses in the United States. Quantifying the connection between hazard events and mesoscale convective systems (MCSs) is of great significance for improving predictability, as well as for better understanding the influence of the climate-scale perturbations. A 14-year statistical dataset of MCS-related hazard production is presented.
Hail and tornadoes are devastating hazards responsible for significant property damage and...
Altmetrics
Final-revised paper
Preprint